Skip to main content

Performance of Quantum Thermodynamic Cycles

  • Chapter
  • First Online:
Book cover Thermodynamics in the Quantum Regime

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 195))

Abstract

Quantum cycles are the microscopic version of the macroscopic thermodynamic cycles, such as the Carnot cycle or the Otto cycle. The quantum Otto cycle consists of four-strokes, two adiabats and two isochores. The equations for the dynamics on the adiabats and isochores are derived from first principles and illustrated for a working medium consisting of spins. We review a frictionlike behaviour due to the noncommutability of the external and internal Hamiltonians. The performance of the engine cycle and the refrigerator cycle are illustrated using a simple model of an ensemble of spin pairs with an effective interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Geva, R. Kosloff, A quantum-mechanical heat engine operating in finite time. A model consisting of spin-1/2 systems as the working fluid. J. Chem. Phys. 96, 3054 (1992). https://doi.org/10.1063/1.461951

  2. E. Geva, R. Kosloff, On the classical limit of quantum thermodynamics in finite time. J. Chem. Phys. 97, 4398 (1992). https://doi.org/10.1063/1.463909

  3. H.T. Quan, Y. Liu, C.P. Sun, F. Nori, Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007). https://doi.org/10.1103/PhysRevE.76.031105

  4. A.E. Allahverdyan, E. Armen, R.S. Johal, G. Mahler, Work extremum principle: structure and function of quantum heat engines. Phys. Rev. E 77, 041118 (2008). https://doi.org/10.1103/PhysRevE.77.041118

  5. R. Silva, G. Manzano, P. Skrzypczyk, N. Brunner, Performance of autonomous quantum thermal machines: Hilbert space dimension as a thermodynamical resource. Phys. Rev. E 94, 032120 (2016). https://doi.org/10.1103/PhysRevE.94.032120

  6. M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Efficiency at maximum power of low-dissipation Carnot engines. Phys. Rev. Lett. 105, 150603 (2010). https://doi.org/10.1103/PhysRevLett.105.150603

  7. R. Kosloff, T. Feldmann, Discrete four-stroke quantum heat engine exploring the origin of friction. Phys. Rev. E 65, 055102 (2002). https://doi.org/10.1103/PhysRevE.65.055102

  8. T. Feldmann, R. Kosloff, Quantum four-stroke heat engine: thermodynamic observables in a model with intrinsic friction. Phys. Rev. E 68, 016101 (2003). https://doi.org/10.1103/PhysRevE.68.016101

  9. Y. Rezek, R. Kosloff, Irreversible performance of a quantum harmonic heat engine. New J. Phys. 8, 83 (2006). https://doi.org/10.1088/1367-2630/8/5/083

  10. R. Kosloff, Y. Rezek, The quantum harmonic Otto cycle. Entropy 19, 136 (2017). https://doi.org/10.3390/e19040136

  11. T. Feldmann, R. Kosloff, Performance of discrete heat engines and heat pumps in finite time. Phys. Rev. E 61, 4774 (2000). https://doi.org/10.1103/PhysRevE.61.4774

  12. J. He, J. Chen, B. Hua, Quantum refrigeration cycles using spin-1/2 systems as working substance. Phys. Rev. E 65, 036145 (2002). https://doi.org/10.1103/PhysRevE.65.036145

  13. Y. Rezek, P. Salamon, K.H. Hoffmann, R. Kosloff, The quantum refrigerator: the quest for absolute zero. Europhys. Lett. 85, 30008 (2009). https://doi.org/10.1209/0295-5075/85/30008

  14. T. Feldmann, R. Kosloff, Minimal temperature of quantum refrigerators. Europhys. Lett. 89, 20004 (2010). https://doi.org/10.1209/0295-5075/89/20004

  15. R. Kosloff, T. Feldmann, Optimal performance of reciprocating demagnetization quantum refrigerators. Phys. Rev. E 82, 011134 (2010). https://doi.org/10.1103/PhysRevE.82.011134

  16. E. Torrontegui, R. Kosloff, Quest for absolute zero in the presence of external noise. Phys. Rev. E 88, 032103 (2013). https://doi.org/10.1103/PhysRevE.88.032103

  17. T. Feldmann, E. Geva, R. Kosloff, P. Salomon, Heat engines in finite time governed by master equations. Am. J. Phys. 64, 485 (1996). https://doi.org/10.1119/1.18197

  18. F. Plastina, A. Alecce, T.J.G. Apollaro, G. Falcone, G. Francica, G. Galve, N. Lo Gullo, R. Zambrini, Irreversible work and inner friction in quantum thermodynamic processes. Phys. Rev. Lett. 113, 260601 (2014). https://doi.org/10.1103/PhysRevLett.113.260601

  19. X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin, J.G. Muga, Fast optimal frictionless atom cooling in harmonic traps: shortcut to adiabaticity. Phys. Rev. Lett. 104, 063002 (2010). https://doi.org/10.1103/PhysRevLett.104.063002

  20. T. Feldmann, R. Kosloff, Short time cycles of purely quantum refrigerators. Phys. Rev. E 85, 051114 (2012). https://doi.org/10.1103/PhysRevE.85.051114

  21. H. Breuer, F. Petruccione, The Theory of Open Quamtum Systems (Oxford University Press, New York, 2002). https://doi.org/10.1093/acprof:oso/9780199213900.001.0001

  22. G. Lindblad, On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976). https://doi.org/10.1007/BF01608499

  23. V. Gorini, A. Kossakowski, E. Sudarshan, Completely positive dynamical semigroups of n-level systems. J. Math. Phys. 17, 821 (1976). https://doi.org/10.1063/1.522979

  24. T. Feldmann, R. Kosloff, Quantum lubrication: suppression of friction in a first-principles four-stroke heat engine. Phys. Rev. E 73, 025107(R) (2006). https://doi.org/10.1103/PhysRevE.73.025107

  25. T. Baumgratz, M. Cramer, M.B. Plenio, Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014). https://doi.org/10.1103/PhysRevLett.113.140401

  26. A. Bartana, R. Kosloff, D. Tannor, Laser cooling of molecular internal degrees of freedom by a series of shaped pulses. J. Chem. Phys. 99, 196 (1993). https://doi.org/10.1063/1.465797

  27. A. del Campo, J. Goold, M. Paternostro, More bang for your buck: super-adiabatic quantum engines. Sci. Rep. 4, 6208 (2014). https://doi.org/10.1038/srep06208

  28. R. Uzdin, A. Levy, R. Kosloff, Equivalence of quantum heat machines, and quantum-thermodynamics signatures. Phys. Rev. X 5, 031044 (2015). https://doi.org/10.1103/PhysRevX.5.031044

  29. R. Uzdin, R. Kosloff, Universal features in the efficiency at maximal work of hot quantum Otto engines. Europhys. Lett. 108, 40001 (2014). https://doi.org/10.1209/0295-5075/108/40001

  30. I.I. Novikov, Efficiency of an atomic power generating installation. At. Energy 3, 1269 (1957). https://doi.org/10.1007/BF01507240

  31. F.L. Curzon, B. Ahlborn, Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 43, 22 (1975). https://doi.org/10.1119/1.10023

  32. C. Van den Broeck, Thermodynamic efficiency at maximum power. Phys. Rev. Lett. 95, 190602 (2005). https://doi.org/10.1103/PhysRevLett.95.190602

  33. P. Salamon, J.D. Nulton, G. Siragusa, T.R. Andersen, A. Limon, Principles of control thermodynamics. Energy 26, 307 (2001). https://doi.org/10.1016/S0360-5442(00)00059-1

  34. P. Salamon, K.H. Hoffmann, Y. Rezek, R. Kosloff, Maximum work in minimum time from a conservative quantum system. Phys. Chem. Chem. Phys. 11, 1027 (2009). https://doi.org/10.1039/b816102j

  35. J.P. Palao, L.A. Correa, G. Adesso, D. Alonso, Efficiency of inefficient endoreversible thermal machines. Braz. J. Phys. 46, 282 (2016). https://doi.org/10.1007/s13538-015-0396-x

  36. O. Abah, E. Lutz, Optimal performance of a quantum Otto refrigerator. Europhys. Lett. 113, 60002 (2016). https://doi.org/10.1209/0295-5075/113/60002

  37. J.M. Gordon, K.C. Ng, H.T. Chua, Optimizing chiller operation based on finite-time thermodynamics: universal modeling and experimental confirmation. Int. J. Refrig. 20, 191 (1997). https://doi.org/10.1016/S0140-7007(96)00074-6

  38. T. Feldmann, R. Kosloff, Characteristics of the limit cycle of a reciprocating quantum heat engine. Phys. Rev. E 70, 046110 (2004). https://doi.org/10.1103/PhysRevE.70.046110

  39. A. Insinga, B. Andresen, P. Salamon, R. Kosloff, Quantum heat engines: limit cycles and exceptional points. Phys. Rev. E 97 062153 (2018). https://doi.org/10.1103/PhysRevE.97.062153

  40. A. Insinga, B. Andresen, P. Salamon, Thermodynamical analysis of a quantum heat engine based on harmonic oscillator. Phys. Rev. E 94, 012119 (2016). https://doi.org/10.1103/PhysRevE.94.012119

  41. M. Hübner, Explicit computation of the Bures distance for density matrices. Phys. Lett. A 163, 239 (1992). https://doi.org/10.1016/0375-9601(92)91004-B

  42. U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012). https://doi.org/10.1088/0034-4885/75/12/126001

  43. J.O. González, J.P. Palao, D. Alonso, Relation between topology and heat currents in multilevel absorption machines. New J. Phys. 19, 113037 (2017). https://doi.org/10.1088/1367-2630/aa8647

  44. T. Feldmann, R. Kosloff, Transitions between refrigeration regions in extremely short quantum cycles. Phys. Rev. E 93, 052150 (2016). https://doi.org/10.1103/PhysRevE.93.052150

  45. R. Uzdin, A. Levy, R. Kosloff, Quantum heat machines equivalence, work extraction beyond Markovianity, and strong coupling via heat exchangers. Entropy 18, 124 (2016). https://doi.org/10.3390/e18040124

  46. J. Rosnagel, S.T. Dawkins, K.N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, K. Singer, A single-atom heat engine. Science 352, 325 (2016). https://doi.org/10.1126/science.aad6320

Download references

Acknowledgements

Tova Feldmann thanks Prof. Ronnie Kosloff the collaboration for over twenty years, during which Ronnie taught her new ways of thinking in science. Tova Feldmann also thanks Amikam Levy for many interesting conversations. José P. Palao thanks Ronnie Kosloff, Antonia Ruiz and J. Onam González for useful discussions, and acknowledges financial support by the Spanish MINECO (FIS2013-4132-P, FIS2017-82855-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José P. Palao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feldmann, T., Palao, J.P. (2018). Performance of Quantum Thermodynamic Cycles. In: Binder, F., Correa, L., Gogolin, C., Anders, J., Adesso, G. (eds) Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-99046-0_3

Download citation

Publish with us

Policies and ethics