Skip to main content

Quantum Thermometry

  • Chapter
  • First Online:
Thermodynamics in the Quantum Regime

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 195))

Abstract

We discuss the application of techniques of quantum estimation theory and quantum metrology to thermometry. The ultimate limit to the precision at which the temperature of a system at thermal equilibrium can be determined is related to the heat capacity when global measurements are performed on the system. We prove that if technical or practical limitations restrict our capabilities to local probing, the highest achievable accuracy to temperature estimation reduces to a sort of mesoscopic version of the heat capacity. Adopting a more practical perspective, we also discuss the relevance of qubit systems as optimal quantum thermometers, in order to retrieve the temperature, or to discriminate between two temperatures, characterizing a thermal reservoir. We show that quantum coherence and entanglement in a probe system can facilitate faster, or more accurate measurements of temperature. While not surprising given this has been demonstrated in phase estimation, temperature is not a conventional quantum observable, therefore these results extend the theory of parameter estimation to measurement of non-Hamiltonian quantities. Finally we point out the advantages brought by a less standard estimation technique based on sequential measurements, when applied to quantum thermometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The maximum-likelihood principle selects the parameter values that make the data most probable. It stems from the definition of the likelihood function \(\mathcal{L}(\lambda )\) as the joint conditional probability of the observed data, that for the case of independent measurements reduces to the product of the probabilities of the single outcomes \(\theta _i\),

    $$\begin{aligned} \mathcal{L}(\lambda )=\mathcal{L}(\vec {\theta }|\lambda )=\prod _{i}^{N} p(\theta _i|\lambda ). \end{aligned}$$
    (21.3)

    The maximum-likelihood estimate is the value of \(\lambda \) that maximizes \(\mathcal{L}(\lambda )\) or equivalently its logarithm. This procedure selects the parameter values that make the data most probable. It results that the variance on the maximum-likelihood estimate of \(\lambda \), in the limit of large N, saturates the Cramér–Rao bound (21.1).

  2. 2.

    Given \(p_i\) and \(p'_i\) two probability density distributions, and \(\{\rho _i \}\) and \(\{\rho '_i\}\) two sets of density matrices, it results that \(\mathcal{F}\left( \sum _{i} p_i \rho _i, \sum _{i} p'_i \rho '_i \right) \ge \sum _{i}\sqrt{p_i p'_i}\mathcal{F} ( \rho _i, \rho '_i )\). This property is dubbed strong concavity property for the fidelity.

  3. 3.

    Although we note that the ‘phase operator’ of a harmonic oscillator is itself only properly defined in a limiting sense, much like the position operator of a free particle: one can write a limit of hermitian operators that localise the quantity, but they are accompanied by a divergence in the conjugate variable (number or position), which leads to unphysical energetic divergences. However, this is different from temperature, which cannot be defined as the limit of a sequence of hermitian operators.

  4. 4.

    It results that in this case the SLD commutes with the system Hamiltonian, implying that energy measurements are optimal. Moreover, thermal states represent a special case as they belong to the so-called exponential class [42].

  5. 5.

    Let \(\rho ^{\Gamma }\) be the state of a given system \(\Gamma \). It is always possible to introduce another system a (the so-called reference or ancillary system) and define a pure state \(|\rho ^{\Gamma }\rangle \) on \(\Gamma a\) such that \(\rho ^{\Gamma } = \mathrm {Tr}_{a}[|\rho ^{\Gamma }\rangle \langle \rho ^{\Gamma }| ]\). Furthermore, if \(|\rho ^{\Gamma }\rangle \) and \(|{\rho '}^{\Gamma }\rangle \) are two purifications of \(\rho ^{\Gamma }\) on \(\Gamma a\) there exists a unitary transformation U on a such that \(|{\rho '}^{\Gamma }\rangle = (\mathbb {I}_\Gamma \otimes U ) |\rho ^{\Gamma }\rangle \), being \(\mathbb {I}_\Gamma \) the identity operator on \(\Gamma \). The last property is known as “freedom in purifications” [49].

  6. 6.

    The same conclusions can be driven by noticing an interesting connection between the LQTS, related to the reconstruction of T, and the more studied case of phase estimation mentioned in the former section. Indeed by comparing relations (21.7)–(21.8) with (21.19)–(21.20) we have

    $$\begin{aligned} \mathfrak {S}_\mathcal{A}[\rho _{\beta }] + \mathcal{Q}_{a}(\lambda )= \mathcal{Q}_\mathcal{S S'}(\lambda ) \end{aligned}$$
    (21.23)

    where \(\mathcal{Q}_{a}(\lambda )\) and \(\mathcal{Q}_\mathcal{S \mathcal S'}(\lambda )\) are the QFI associated to the estimation of \(\lambda \) encoded on \(|\rho _\beta \rangle \) via the unitary superoperator \(\mathcal{E}_{\lambda /2}\) such that \(\mathcal{E}_{\lambda /2}(|\rho _\beta \rangle \langle \rho _\beta | )=e^{-i H' \lambda /2}|\rho _\beta \rangle \langle \rho _\beta | e^{i H' \lambda /2}= |\rho _\beta ^{(\lambda )}\rangle \langle \rho _\beta ^{(\lambda )}|\), assuming to have access at the measurement stage to subsystem \(a=\mathcal{B A' B'}\) and \(\mathcal{S \mathcal S'} = \mathcal{A} a\), respectively:

    $$\begin{aligned} \mathcal{Q}_{a}(\lambda )=\sum _{i<j} \frac{(e_i - e_{j})^2}{e_i + e_{j}}|\langle e_i | H' | e_j\rangle |^2, \quad \mathcal{Q}_\mathcal{S S'}(\lambda )\,{=}\,\langle {\rho _\beta }| H'^2 | \rho _\beta \rangle - \langle {\rho _\beta }| H' |\rho _\beta \rangle ^2 =\langle {\rho _\beta }| H^2 | \rho _\beta \rangle - \langle {\rho _\beta }| H |\rho _\beta \rangle ^2. \end{aligned}$$
    (21.24)

    In other words the accuracies corresponding to the temperature estimation on \(\mathcal{A}\) and the phase estimation on its complementary counterpart a, which are both positive quantities, are forced to sum up to the energy variance of the global system, thus establishing a sort of complementarity relation. Indeed, as already mentioned, the LQTS \(\mathfrak {S}_\mathcal{A}[\rho _{\beta }]\) and similarly \(\mathcal{Q}_{a}(\lambda )\) are increasing functions of the dimension of \(\mathcal{A}\) and a, respectively.

  7. 7.

    By definition the elements \(\Pi _\theta \) of a POVM are positive operators. This implies that for each \(\Pi _\theta \) there exists an other positive operator \(M_\theta \), determined up to a unitary transformation, such that \(\Pi _{\theta }=M_\theta ^\dagger M_\theta \) and \(\int d\theta M_\theta ^\dagger M_\theta = \mathbb {I}\). Therefore the probability of measuring \(\theta \) on a state \(\rho \) is given by \(p(\theta |\rho )=\mathrm {Tr}[\Pi _\theta \rho ]= \mathrm {Tr}[ M_\theta \rho M_\theta ^\dagger ]\), and the normalized state of the system after the measurement reads \(\rho _\theta = M_\theta \rho M_\theta ^\dagger /p(\theta |\rho )\). Finally, to each operator \(M_\theta \) we can associate a superoperator \(\mathcal{M}_\theta \) such that \(\mathcal{M}_\theta (\rho )=M_\theta \rho M_\theta ^\dagger \) and \(\int d\theta \mathcal{M}_\theta = \mathcal{I}\), with \(\mathcal{I}\) being the identity superoperator.

References

  1. P.J. Mohr, B.N. Taylor, Rev. Mod. Phys. 77, 1 (2005). https://doi.org/10.1103/RevModPhys.77.1

  2. W. Weng, J.D. Anstie, T.M. Stace, G. Campbell, F.N. Baynes, A.N. Luiten, Phys. Rev. Lett. 112, 160801 (2014). https://doi.org/10.1103/PhysRevLett.112.160801

  3. K.V. Hovhannisyan, L.A. Correa, Phys. Rev. B 98, 045101(2018). https://doi.org/10.1103/PhysRevB.98.045101

  4. A.E. Allahverdyan, Th.M. Nieuwenhuizen, Phys. Rev. B 66, 115309 (2002). https://doi.org/10.1103/PhysRevB.66.115309

  5. S. Hilt, E. Lutz, Phys. Rev. A 79, 010101 (R) (2009). https://doi.org/10.1103/PhysRevA.79.010101

  6. N.S. Williams, K. Le Hur, A.N. Jordan, J. Phys. A Math. Theor. 44, 385003 (2011). https://doi.org/10.1088/1751-8113/44/38/385003

  7. M. Brunelli, S. Olivares, M.G.A. Paris, Phys. Rev. A 84, 032105 (2011). https://doi.org/10.1103/PhysRevA.84.032105

  8. U. Marzolino, D. Braun, Phys. Rev. A 88, 063609 (2013). https://doi.org/10.1103/PhysRevA.88.063609

  9. G. Salvatori, A. Mandarino, M.G.A. Paris, Phys. Rev. A 90, 022111 (2014). https://doi.org/10.1103/PhysRevA.90.022111

  10. L.A. Correa, M. Mehboudi, G. Adesso, A. Sanpera, Phys. Rev. Lett. 114, 220405 (2015). https://doi.org/10.1103/PhysRevLett.114.220405

  11. M.G.A. Paris, J. Řeháček, Quantum State Estimation. Lecture Notes in Physics, vol. 649 (Springer, Berlin, 2004). https://doi.org/10.1007/b98673

  12. M.G.A. Paris, Int. J. Quantum Inf. 7, 125 (2009). arXiv:0804.2981

  13. H. Cramér, Mathematical Methods of Statistics (Princeton University Press, Princeton, 1946)

    MATH  Google Scholar 

  14. S.L. Braunstein, C.M. Caves, G.J. Milburn, Ann. Phys. (N.Y.) 247, 135 (1996). https://doi.org/10.1006/aphy.1996.0040

  15. A. Peres, Phys. Rev. A 30, 1610 (1984). https://doi.org/10.1103/PhysRevA.30.1610

  16. R. Jozsa, J. Mod. Opt. 41, 2315 (1994). https://doi.org/10.1080/09500349414552171

  17. V. Giovannetti, S. Lloyd, L. Maccone, Nat. Photon. 5, 222 (2011). https://doi.org/10.1038/nphoton.2011.35

  18. M. Hayashi, Asymptotic Theory of Quantum Statistical Inference: Selected Papers (World Scientific, Singapore, 2005). https://doi.org/10.1142/5630

  19. M. Hayashi, Quantum Information, Ch. 6–7 (Springer, Berlin, 2006). https://doi.org/10.1007/3-540-30266-2

  20. C.W. Helstrom, Phys. Lett. A 25 (1967). https://doi.org/10.1016/0375-9601(67)90366-0

  21. A.S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdam, 1982). https://doi.org/10.1007/978-88-7642-378-9

  22. D.G. Fischer, M. Freyberger, Phys. Lett. A 273, 293 (2000). https://doi.org/10.1016/S0375-9601(00)00513-2

  23. A. Fujiwara, J. Phys. A Math. Gen. 39, 12489 (2006). https://doi.org/10.1088/0305-4470/39/40/014

  24. D.J.C. Bures, Trans. Am. Math. Soc. 135, 199 (1969). https://doi.org/10.1090/S0002-9947-1969-0236719-2

  25. V. Giovannetti, S. Lloyd, L. Maccone, Science 306, 1330 (2004). https://doi.org/10.1126/science.1104149

  26. V. Giovannetti, S. Lloyd, L. Maccone, Phys. Rev. Lett. 96, 010401 (2006). https://doi.org/10.1103/PhysRevLett.96.010401

  27. M. de Burgh, S.D. Bartlett, Phys. Rev. A 72, 042301 (2005). https://doi.org/10.1103/PhysRevA.72.042301

  28. Z. Ji, G. Wang, R. Duan, Y. Feng, M. Ying, IEEE Trans. Inf. Theory 54, 5172 (2008). https://doi.org/10.1109/TIT.2008.929940

  29. S.F. Huelga, C. Macchiavello, T. Pellizzari, A.K. Ekert, M.B. Plenio, J.I. Cirac, Phys. Rev. Lett. 79, 3865 (1997). https://doi.org/10.1103/PhysRevLett.79.3865

  30. R. Chaves, J.B. Brask, M. Markiewicz, J. Kołodyński, A. Acín, Phys. Rev. Lett. 111, 120401 (2013). https://doi.org/10.1103/PhysRevLett.111.120401

  31. J. Kolodyński, R. Demkowicz-Dobrzański, Phys. Rev. A 82, 053804 (2010). https://doi.org/10.1103/PhysRevA.82.053804

  32. B.M. Escher, R.L. de Matos Filho, L. Davidovich, Nat. Phys. 7, 406 (2011). https://doi.org/10.1038/nphys1958

  33. A. De Pasquale, D. Rossini, P. Facchi, V. Giovannetti, Phys. Rev. A 88, 052117 (2013). https://doi.org/10.1103/PhysRevA.88.052117

  34. C.M. Caves, Phys. Rev. D 23, 1693 (1981). https://doi.org/10.1103/PhysRevD.23.1693

  35. B. Yurke, S.L. McCall, J.R. Klauder, Phys. Rev. A 33, 4033 (1986). https://doi.org/10.1103/PhysRevA.33.4033

  36. J.P. Dowling, Phys. Rev. A 57, 4736 (1998). https://doi.org/10.1103/PhysRevA.57.4736

  37. S.M. Barnett, C. Fabre, A. Maître, Eur. Phys. J. D 22, 513 (2003). https://doi.org/10.1140/epjd/e2003-00003-3

  38. M.A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, W.P. Bowen, Nat. Photon. 7, 229 (2013). https://doi.org/10.1038/nphoton.2012.346

  39. T.M. Stace, Phys. Rev. A 82, 011611 (2010). https://doi.org/10.1103/PhysRevA.82.011611

  40. P. Zanardi, P. Giorda, M. Cozzini, Phys. Rev. Lett. 99, 100603 (2007). https://doi.org/10.1103/PhysRevLett.99.100603

  41. P. Zanardi, M.G.A. Paris, L.C. Venuti, Phys. Rev. A 78, 042105 (2008). https://doi.org/10.1103/PhysRevA.78.042105

  42. H.J.D. Miller1, J. Anders. https://doi.org/10.1038/s41467-018-04536-7

  43. T.M. Stace, A.N. Luiten, Phys. Rev. A 81, 033848 (2010). https://doi.org/10.1103/PhysRevA.81.033848

  44. C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, Ch.J. Bordé, C. Chardonnet, Phys. Rev. Lett. 98, 250801 (2007). https://doi.org/10.1103/PhysRevLett.98.250801

  45. G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, L. Gianfrani, Phys. Rev. Lett. 100, 200801 (2008). https://doi.org/10.1103/PhysRevLett.100.200801

  46. G.-W. Truong, J.D. Anstie, E.F. May, T.M. Stace, A.N. Luiten, Nat. Commun. 6, 8345 (2015). https://doi.org/10.1038/ncomms9345

  47. A. De Pasquale, D. Rossini, R. Fazio, V. Giovannetti, Nat. Commun. 7, 12782 (2016). https://doi.org/10.1038/ncomms12782

  48. A. Uhlmann, Rep. Math. Phys. 9, 273–279 (1976). https://doi.org/10.1016/0034-4877(76)90060-4

  49. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000). https://doi.org/10.1017/CBO9780511976667

  50. S.L. Braunstein, C.M. Caves, Phys. Rev. Lett. 72, 3439 (1994). https://doi.org/10.1103/PhysRevLett.72.3439

  51. C. Gogolin, J. Eisert, Rep. Prog. Phys. 79, 056001 (2016). https://doi.org/10.1088/0034-4885/79/5/056001

  52. E. Ising, Zeitschrift für Physik A Hadrons and Nuclei 31, 253 (1925). https://doi.org/10.1007/BF02980577

  53. H. Bethe, Zeitschrift für Physik 71, 205 (1931). https://doi.org/10.1007/BF01341708

  54. F.-Y. Wu, Rev. Mod. Phys. 54, 235 (1982). https://doi.org/10.1103/RevModPhys.54.235

  55. J. Hubbard, Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 276, 238 (1963). https://doi.org/10.1098/rspa.1963.0204

  56. M. Kliesch, C. Gogolin, M. Kastoryano, A. Riera, J. Eisert, Phys. Rev. X 4, 031019 (2014). https://doi.org/10.1103/PhysRevX.4.031019

  57. G. De Palma, A. De Pasquale, V. Giovannetti, Phys. Rev. A 95, 052115 (2017). https://doi.org/10.1103/PhysRevA.95.052115

  58. P. Zanardi, L. Campos Venuti, P. Giorda, Phys. Rev. A 76, 062318 (2007). https://doi.org/10.1103/PhysRevA.76.062318

  59. M. Mehboudi, M. Moreno-Cardoner, G. De Chiara, A. Sanpera, New J. Phys. 17, 055020 (2015). https://doi.org/10.1088/1367-2630/17/5/055020

  60. K. Schwab, E.A. Henriksen, J.M. Worlock, M.L. Roukes, Nature (London) 404, 974 (2000). https://doi.org/10.1038/35010065

  61. N. Linden, S. Popescu, P. Skrzypczyk, Phys. Rev. Lett. 105, 130401 (2010). https://doi.org/10.1103/PhysRevLett.105.130401

  62. B. Klinkert, F. Narberhaus, Cell. Mol. Life Sci. 66, 2661 (2009). https://doi.org/10.1007/s00018-009-0041-3

  63. R. Schirhagl, K. Chang, M. Loretz, C.L. Degen, Annu. Rev. Phys. Chem. 65, 83 (2014). https://doi.org/10.1146/annurev-physchem-040513-103659

  64. J. Gemmer, M. Michel, G. Mahler, Quantum Thermodynamics (Springer, Berlin, 2004). https://doi.org/10.1007/b98082

  65. M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011). Erratum: Rev. Mod. Phys. 83, 1653 (2011). https://doi.org/10.1103/RevModPhys.83.771

  66. M. Horodecki, J. Oppenheim, Nat. Commun. 4, 2059 (2013). https://doi.org/10.1038/ncomms3059

  67. M. Carrega, P. Solinas, A. Braggio, M. Sassetti, U. Weiss, New J. Phys. 17, 045030 (2015). https://doi.org/10.1088/1367-2630/17/4/045030

  68. M. Carrega, P. Solinas, A. Braggio, M. Sassetti, U. Weiss, Phys. Rev. Lett. 116, 240403 (2016). https://doi.org/10.1103/PhysRevLett.116.240403

  69. S. Jevtic, D. Newman, T. Rudolph, T.M. Stace, Phys. Rev. A 91, 012331 (2015). https://doi.org/10.1103/PhysRevA.91.012331

  70. D. Reeb, M.M. Wolf, IEEE Trans. Inf. Theory 61, 1458 (2015). https://doi.org/10.1109/TIT.2014.2387822

  71. L.A. Correa, M. Perarnau-Llobet, K.V. Hovhannisyan, S. Hernández-Santana, M. Mehboudi, A. Sanpera, Phys. Rev. A 96, 062103 (2017). https://doi.org/10.1103/PhysRevA.96.062103

  72. P.P. Hofer, J.B. Brask, N. Brunner, arXiv:1711.09827v2

  73. M. Guţă, Phys. Rev. A 83, 062324 (2011). https://doi.org/10.1103/PhysRevA.83.062324

  74. D. Burgarth, V. Giovannetti, A.N. Kato, K. Yuasa, New J. Phys. 17, 113055 (2015). https://doi.org/10.1088/1367-2630/17/11/113055

  75. A. De Pasquale, K. Yuasa, V. Giovannetti, Phys. Rev. A 96, 012316 (2017). https://doi.org/10.1103/PhysRevA.96.012316

Download references

Acknowledgements

ADP acknowledges financial support from the University of Florence in the framework of the University Strategic Project Program 2015 (project BRS00215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella De Pasquale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Pasquale, A., Stace, T.M. (2018). Quantum Thermometry. In: Binder, F., Correa, L., Gogolin, C., Anders, J., Adesso, G. (eds) Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-99046-0_21

Download citation

Publish with us

Policies and ethics