Skip to main content

Food Webs in Caves

  • Chapter
  • First Online:
Cave Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 235))

Abstract

Energy (carbon) availability is considered the primary mechanism influencing both evolutionary and ecological processes in cave ecosystems, and both experimental and observational studies broadly support this hypothesis. However, we suggest that this conceptual model overlooks several factors that also influence cave community dynamics. In this chapter we explore these additional factors in two types of cave food webs, those supported by energy from detritus (dead animal or plant matter) and chemolithoautotrophic bacteria. We begin by examining the origin of each energy source and then explore what factors influence the input and/or productivity rates of each energy source, including the strength of surface connectivity, the productivity of surface habitats, and the compounds available for oxidation. We then explore how several factors are influencing cave community dynamics, including resource quantity and quality, size of resource surpluses, spatial distribution of resources, consumer-resource stoichiometry, top-down forces, and the relative harshness of certain cave environments. We hope this discussion both provides a broad overview of how food web dynamics influence cave community structure and highlights areas of future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams PA (1995) Monotonic or unimodal diversity-productivity gradients: what does competition theory predict? Ecology 76:2019–2027

    Article  Google Scholar 

  • Arsuffi TL, Suberkropp K (1989) Selective feeding by shredders on leaf-colonizing stream fungi: comparison of macroinvertebrate taxa. Oecologia 79:30–37

    Article  CAS  PubMed  Google Scholar 

  • Baiser B, Buckley HL, Gotelli NJ et al (2013) Predicting food-web structure with metacommunity models. Oikos 122:492–506

    Article  Google Scholar 

  • Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13:148–160

    Article  CAS  Google Scholar 

  • Baker A, Genty D (1999) Fluorescence wavelength and intensity variations of cave waters. J Hydrol 217:19–34

    Article  Google Scholar 

  • Ban F, Pan G, Zhu J et al (2008) Temporal and spatial variations in the discharge and dissolved organic carbon of drip waters in Beijing Shihua Cave, China. Hydrol Process 22:3749–3758

    Article  CAS  Google Scholar 

  • Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to ecosystems. Blackwell, Malden

    Google Scholar 

  • Birdwell JE, Engel AS (2010) Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy. Org Geochem 41:270–280

    Article  CAS  Google Scholar 

  • Brussock PP, Willis LD, Brown AV (1988) Leaf decomposition in an Ozark cave and spring. J Freshw Ecol 4:263–269

    Article  CAS  Google Scholar 

  • Cebrian J, Lartigue J (2004) Patterns of herbivory and decomposition in aquatic and terrestrial ecosystems. Ecol Monogr 74:237–259

    Article  Google Scholar 

  • Chelius MK, Moore JC (2004) Molecular phylogenetic analysis of archaea and bacteria in Wind Cave, South Dakota. Geomicrobiol J 21:123–134

    Article  CAS  Google Scholar 

  • Chelius MK, Beresford G, Horton H et al (2009) Impacts of alterations of organic inputs on the bacterial community within the sediments of Wind Cave, South Dakota, USA. Int J Speleol 38:1–10

    Article  Google Scholar 

  • Chen B, Wise DH (1999) Bottom-up limitation of predaceous arthropods in a detritus-based terrestrial food web. Ecology 80:761–772

    Article  Google Scholar 

  • Christman MC, Culver DC, Madden MK et al (2005) Patterns of endemism of the eastern North American cave fauna. J Biogeogr 32:1441–1452

    Article  Google Scholar 

  • Cooney TJ, Simon KS (2009) Influence of dissolved organic matter and invertebrates on the function of microbial films in groundwater. Microb Ecol 58:599–610

    Article  PubMed  Google Scholar 

  • Craig C (2013) Investigating limiting factors in surface vs. subterranean systems: a threshold elemental ratio approach. University of Alabama, Master’s Thesis, Tuscaloosa, Alabama

    Google Scholar 

  • Cross WF, Benstead JP, Rosemond AD et al (2003) Consumer-resource stoichiometry in detritus-based streams. Ecol Lett 6:721–732

    Article  Google Scholar 

  • Cross WF, Benstead JP, Frost PC et al (2005) Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives. Freshwater Biol 50:1895–1912

    Article  CAS  Google Scholar 

  • Cross WF, Wallace JB, Rosemond AD et al (2006) Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem. Ecology 87:1556–1565

    Article  CAS  PubMed  Google Scholar 

  • Cross WF, Wallace JB, Rosemond AD (2007) Nutrient enrichment reduces constraints on material flows in a detritus-based food web. Ecology 88:2563–2575

    Article  PubMed  Google Scholar 

  • Culver DC, Pipan T (2009) The biology of caves and other subterranean habitats. Oxford University Press, Oxford

    Google Scholar 

  • Culver DC, Sket B (2000) Hotspots of subterranean biodiversity in caves and wells. J Cave Karst Stud 62:11–17

    Google Scholar 

  • Culver DC, Christman MC, Elliott WR et al (2003) The North American obligate cave fauna: regional patterns. Biodivers Conserv 12:441–468

    Article  Google Scholar 

  • Culver DC, Christman MC, Šereg I et al (2004) The location of terrestrial species-rich caves in a cave-rich area. Subterr Biol 2:27–32

    Google Scholar 

  • Culver D, Deharveng L, Bedos A et al (2006) The mid-latitude biodiversity ridge in terrestrial cave fauna. Ecography 29:120–128

    Article  Google Scholar 

  • Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Annu Rev Ecol Syst 10:147–172

    Article  Google Scholar 

  • Datry T, Malard F, Gibert J (2005) Response of invertebrate assemblages to increased groundwater recharge rates in a phreatic aquifer. J North Am Benthol Soc 24:461–477

    Article  Google Scholar 

  • Dattagupta S, Schaperdoth I, Montanari A et al (2009) A novel symbiosis between chemoautotrophic bacteria and a freshwater cave amphipod. ISME J 3:935–943

    Article  CAS  PubMed  Google Scholar 

  • Eberhard S (2004) Ecology and hydrology of a threatened groundwater-dependent ecosystem: the Jewel Cave karst system in Western Australia. Murdoch University, Ph.D. dissertation, Perth

    Google Scholar 

  • Edler C, Dodds WK (1996) The ecology of a subterranean isopod, Caecidotea tridentata. Freshw Biol 35:249–259

    Article  Google Scholar 

  • Elser JJ, O'Brien WJ, Dobberfuhl DR et al (2000) The evolution of ecosystem processes: growth rate and elemental stoichiometry of a key herbivore in temperate and arctic habitats. J Evol Biol 13:845–853

    Article  Google Scholar 

  • Emerson JK, Roark AM (2007) Composition of guano produced by frugivorous, sanguivorous, and insectivorous bats. Acta Chiropterol 9:261–267

    Article  Google Scholar 

  • Engel AS (2007) Observations on the biodiversity of sulfidic karst habitats. J Cave Karst Stud 69:187–206

    CAS  Google Scholar 

  • Engel AS (2010) Microbial diversity of cave ecosystems. In: Barton LL, Mandl M, Loy A (eds) Geomicrobiology: molecular and environmental perspective. Springer, Dordrecht, pp 219–238

    Chapter  Google Scholar 

  • Fagan WF, Siemann E, Mitter C et al (2002) Nitrogen in insects: implications for trophic complexity and species diversification. Am Nat 160:784–802

    Article  PubMed  Google Scholar 

  • Fenolio DB, Graening GO, Collier BA et al (2006) Coprophagy in a cave-adapted salamander; the importance of bat guano examined through nutritional and stable isotope analyses. Proc R Soc Lond B Bio 273:439–443

    Article  CAS  Google Scholar 

  • Fenolio DB, Niemiller ML, Bonett RM et al (2014) Life history, demography, and the influence of cave-roosting bats on a population of the grotto salamander (Eurycea spelaea) from the Ozark Plateaus of Oklahoma (Caudata: Plethodontidae). Herpetol Conserv Bio 9:394–405

    Google Scholar 

  • Ferreira RL, Martins RP, Yanega D (2000) Ecology of bat guano arthropod communities in a Brazilian dry cave. Ecotropica 6:105–116

    Google Scholar 

  • Foulquier A, Malard F, Mermillod-Blondin F et al (2010) Vertical change in dissolved organic carbon and oxygen at the water table region of an aquifer recharged with stormwater: biological uptake or mixing? Biogeochemistry 99:31–47

    Article  CAS  Google Scholar 

  • Foulquier A, Malard F, Mermillod-Blondin F et al (2011a) Surface water linkages regulate trophic interactions in a groundwater food web. Ecosystems 14:1339–1353

    Article  CAS  Google Scholar 

  • Foulquier A, Mermillod-Blondin F, Malard F et al (2011b) Response of sediment biofilm to increased dissolved organic carbon supply in groundwater artificially recharged with stormwater. J Soil Sediment 11:382–393

    Article  CAS  Google Scholar 

  • Fretwell SD (1977) The regulation of plant communities by the food chains exploiting them. Perspect Biol Med 20:169–185

    Article  Google Scholar 

  • Galas J, Bednarz T, Dumnicka E et al (1996) Litter decomposition in a mountain cave water. Arch Hydrobiol 138:199–211

    CAS  Google Scholar 

  • Gers C (1998) Diversity of energy fluxes and interactions between arthropod communities: from soil to cave. Acta Oecol 19:205–213

    Article  Google Scholar 

  • Gnaspini P, Trajano E (2000) Guano communities in tropical caves. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world: subterranean ecosystems. Elsevier Science, New York, pp 251–268

    Google Scholar 

  • Goldscheider N (2012) A holistic approach to groundwater protection and ecosystem services in karst terrains. AQUA Mundi 3:117–124

    Google Scholar 

  • Graening GO, Brown AV (2003) Ecosystem dynamics and pollution effects in an Ozark cave stream. J Am Water Resour Assoc 39:1497–1507

    Article  CAS  Google Scholar 

  • Griebler C, Lueders T (2009) Microbial biodiversity in groundwater ecosystems. Freshw Biol 54:649–677

    Article  Google Scholar 

  • Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control, and competition. Am Nat 94:421–425

    Article  Google Scholar 

  • Hall RO Jr, Meyer JL (1998) The trophic significance of bacteria in a detritus-based stream food web. Ecology 79:1995–2012

    Article  Google Scholar 

  • Hall RO Jr, Wallace JB, Eggert SL (2000) Organic matter flow in stream food webs with reduced detrital resource base. Ecology 81:3445–3463

    Article  Google Scholar 

  • Hall RO Jr, Likens GE, Malcom HM (2001) Trophic basis of invertebrate production in 2 streams at the Hubbard Brook Experimental Forest. J N Am Benthol Soc 20:432–447

    Article  Google Scholar 

  • Hall SJ, Raffaelli D (1991) Food-web patterns: lessons from a species-rich web. J Anim Ecol 60:823–841

    Article  Google Scholar 

  • Howarth FG, James SA, McDowell W et al (2007) Identification of roots in lava tube caves using molecular techniques: implications for conservation of cave arthropod faunas. J Insect Conserv 11:251–261

    Article  Google Scholar 

  • Humphreys WF (1991) Experimental re-establishment of pulse-driven populations in a terrestrial troglobite community. J Anim Ecol 60:609–623

    Article  Google Scholar 

  • Humphreys WF (2001) Background and glossary. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world: subterranean ecosystems. Elsevier Science, New York, pp 3–14

    Google Scholar 

  • Hunt M, Millar I (2001) Cave invertebrate collecting guide, vol 26. Department of Conservation Technical Series

    Google Scholar 

  • Huntsman BM, Venarsky MP, Benstead JP (2011a) Relating carrion breakdown rates to ambient resource level and community structure in four cave stream ecosystems. J N Am Benthol Soc 30:882–892

    Article  Google Scholar 

  • Huntsman BM, Venarsky MP, Benstead JP et al (2011b) Effects of organic matter availability on the life history and production of a top vertebrate predator (Plethodontidae: Gyrinophilus palleucus) in two cave streams. Freshw Biol 56:1746–1760

    Article  Google Scholar 

  • Hüppop K (2001) How do cave animals cope with the food scarcity in caves? In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world: subterranean ecosystems. Elsevier Science, New York, pp 159–188

    Google Scholar 

  • Hutchins BT (2013) The trophic ecology of phreatic karst aquifers. Texas State University, Ph.D. dissertation, San Marcos

    Google Scholar 

  • Hutchins BT, Schwartz BF, Nowlin WH (2014) Morphological and trophic specialization in a subterranean amphipod assemblage. Freshw Biol 59:2447–2461

    Article  Google Scholar 

  • Ings TC, Montoya JM, Bascompte J et al (2009) Review: ecological networks–beyond food webs. J Anim Ecol 78:253–269

    Article  PubMed  Google Scholar 

  • Iskali G, Zhang YX (2015) Guano subsidy and the invertebrate community in Bracken Cave: the world’s largest colony of bats. J Cave Karst Stud 77:28–36

    Article  Google Scholar 

  • Jasinska EJ, Knott B, McComb AJ (1996) Root mats in ground water: a fauna-rich cave habitat. J N Am Benthol Soc 15:508–519

    Article  Google Scholar 

  • Johnson BR, Wallace JB, Rosemond AD et al (2006) Larval salamander growth responds to enrichment of a nutrient poor headwater stream. Hydrobiologia 573:227–232

    Article  CAS  Google Scholar 

  • Kinkle BK, Kane TC (2001) Chemolithoautotrophic micro-organisms and their potential role in subsurface environments. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world: subterranean ecosystems. Elsevier Science, New York, pp 309–318

    Google Scholar 

  • Kinner NE, Harvey RW, Blakeslee K et al (1998) Size-selective predation on groundwater bacteria by nanoflagellates in an organic-contaminated aquifer. Appl Environ Microbiol 64:618–625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kinsey J, Cooney TJ, Simon KS (2007) A comparison of the leaf shredding ability and influence on microbial films of surface and cave forms of Gammarus minus Say. Hydrobiologia 589:199–205

    Article  Google Scholar 

  • Kostalos M, Seymour RL (1976) Role of microbial enriched detritus in the nutrition of Gammarus minus (Amphipoda). Oikos 27:512–516

    Article  Google Scholar 

  • Lavoie KH, Helf KL, Poulson TL (2007) The biology and ecology of North American cave crickets. J Cave Karst Stud 69:114–134

    Google Scholar 

  • Madigan MT, Martinko JM, Stahl DA et al (2010) Brock biology of microorganisms. Benjamin Cummings, San Francisco

    Google Scholar 

  • Madsen EL, Sinclair JL, Ghiorse WC (1991) In situ biodegradation: microbiological patterns in a contaminated aquifer. Science 252:830–833

    Article  CAS  PubMed  Google Scholar 

  • Moore JC, Berlow EL, Coleman DC et al (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600

    Article  Google Scholar 

  • Neisch J, Pohlman J, Iliffe T (2012) The use of stable and radiocarbon isotopes as a method for delineating sources of organic material in anchialine systems. Nat Croat 21(Suppl 1):83–85

    Google Scholar 

  • Notenboom J, Plénet S, Turquin MJ (1994) Groundwater contamination and its impact on groundwater animals and ecosystems. In: Gibert J, Danielopol DL (eds) Groundwater ecology. Academic, San Diego, pp 477–504

    Chapter  Google Scholar 

  • Oksanen L, Fretwell SD, Arruda J et al (1981) Exploitation ecosystems in gradients of primary productivity. Am Nat 118:240–261

    Article  Google Scholar 

  • Opsahl SP, Chanton JP (2006) Isotopic evidence for methane-based chemosynthesis in the Upper Floridan aquifer food web. Oecologia 150:89–96

    Article  PubMed  Google Scholar 

  • Pabich WJ, Valiela I, Hemond HF (2001) Relationship between DOC concentration and vadose zone thickness and depth below water table in groundwater of Cape Cod, USA. Biogeochemistry 55:247–268

    Article  Google Scholar 

  • Pace ML, Cole JJ (1994) Comparative and experimental approaches to top-down and bottom-up regulation of bacteria. Microb Ecol 28:181–193

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini TG, Ferreira LR (2013) Structure and interactions in a cave guano – soil continuum community. Eur J Soil Biol 57:19–26

    Article  Google Scholar 

  • Pianka ER (1966) Latitudinal gradients in species diversity: a review of concepts. Am Nat 100:33–46

    Article  Google Scholar 

  • Plath M, Tobler M, Riesch R et al (2007) Survival in an extreme habitat: the roles of behaviour and energy limitation. Naturwissenschaften 94:991–996

    Article  CAS  PubMed  Google Scholar 

  • Pohlman JW (2011) The biogeochemistry of anchialine caves: progress and possibilities. Hydrobiologia 677:33–51

    Article  CAS  Google Scholar 

  • Pohlman JW, Iliffe TM, Cifuentes LA (1997) A stable isotope study of organic cycling and the ecology of an anchialine cave ecosystem. Mar Ecol Prog Ser 155:17–27

    Article  CAS  Google Scholar 

  • Polis GA, Strong DR (1996) Food web complexity and community dynamics. Am Nat 147:813–846

    Article  Google Scholar 

  • Porter ML, Engel AS, Kane TC et al (2009) Productivity-diversity relationships from chemolithoautotrophically based sulfidic karst systems. Int J Speleol 38:27–40

    Article  Google Scholar 

  • Poulson TL, Lavoie K (2001) The trophic basis of subsurface ecosystems. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world: subterranean ecosystems. Elsevier Science, New York, pp 231–250

    Google Scholar 

  • Power ME (1992) Top-down and bottom-up forces in food webs: do plants have primacy. Ecology 73:733–746

    Article  Google Scholar 

  • Power ME, Dietrich WE (2002) Food webs in river networks. Ecol Res 17:451–471

    Article  Google Scholar 

  • Riesch R, Plath M, Schlupp I (2010) Toxic hydrogen sulfide and dark caves: life-history adaptations in a livebearing fish (Poecilia mexicana, Poeciliidae). Ecology 91:1494–1505

    Article  PubMed  Google Scholar 

  • Roach KA, Tobler M, Winemiller KO (2011) Hydrogen sulfide, bacteria, and fish: a unique, subterranean food chain. Ecology 92:2056–2062

    Article  PubMed  Google Scholar 

  • Salgado SS, Motta PC, Aguiar LMD et al (2014) Tracking dietary habits of cave arthropods associated with deposits of hematophagous bat guano: a study from a neotropical savanna. Aust Ecol 39:560–566

    Article  Google Scholar 

  • Sarbu SM (2001) Movile Cave: a chemoautotrophically based groundwater ecosystem. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world: subterranean ecosystems. Elsevier Science, New York, pp 319–343

    Google Scholar 

  • Sarbu SM, Kane TC, Kinkle BK (1996) A chemoautotrophically based cave ecosystem. Science 272:1953–1955

    Article  CAS  PubMed  Google Scholar 

  • Schiff SL, Aravena R, Trumbore SE et al (1997) Export of DOC from forested catchments on the Precambrian Shield of Central Ontario: clues from 13C and 14C. Biogeochemistry 36:43–65

    Article  CAS  Google Scholar 

  • Schneider K, Christman MC, Fagan WF (2011) The influence of resource subsidies on cave invertebrates: results from an ecosystem-level manipulation experiment. Ecology 92:765–776

    Article  PubMed  Google Scholar 

  • Shabarova T, Villiger J, Morenkov O et al (2014) Bacterial community structure and dissolved organic matter in repeatedly flooded subsurface karst water pools. FEMS Microbiol Ecol 89:111–126

    Article  CAS  PubMed  Google Scholar 

  • Shahack-Gross R, Berna F, Karkanas P et al (2004) Bat guano and preservation of archaeological remains in cave sites. J Archaeol Sci 31:1259–1272

    Article  Google Scholar 

  • Shurin JB, Gruner DS, Hillebrand H (2006) All wet or dried up? Real differences between aquatic and terrestrial food webs. Proc R Soc Ser B Bio 273:1–9

    Article  Google Scholar 

  • Simon KS (2008) Ecosystem science and karst systems, vol 13. Frontiers of Karst Research Special Publication, pp 49–53

    Google Scholar 

  • Simon KS, Benfield EF (2001) Leaf and wood breakdown in cave streams. J N Am Benthol Soc 20:550–563

    Article  Google Scholar 

  • Simon KS, Buikema AL Jr (1997) Effects of organic pollution on an Appalachian cave: changes in macroinvertebrate populations and food supplies. Am Midl Nat 138:387–401

    Article  Google Scholar 

  • Simon KS, Benfield EF, Macko SA (2003) Food web structure and the role of epilithic biofilms in cave streams. Ecology 84:2395–2406

    Article  Google Scholar 

  • Simon KS, Pipan T, Culver DC (2007) A conceptual model of the flow and distribution of organic carbon in caves. J Cave Karst Stud 69:279–284

    CAS  Google Scholar 

  • Simon KS, Fong D, Hinderstein L et al (2008) Focus group on ecosystem function, vol 13. Frontiers of Karst Research Special Publication, pp 96–97

    Google Scholar 

  • Simon KS, Pipan T, Ohno T et al (2010) Spatial and temporal patterns in abundance and character of dissolved organic matter in two karst aquifers. Fund Appl Limnol/Arch Hydrobiol 177:81–92

    Article  CAS  Google Scholar 

  • Sintes E, Martinez-Taberner A, Moya G et al (2004) Dissecting the microbial food web: structure and function in the absence of autotrophs. Aquat Microb Ecol 37:283–293

    Article  Google Scholar 

  • Sinton LW (1984) The macroinvertebrates in a sewage-polluted aquifer. Hydrobiologia 119:161–169

    Article  Google Scholar 

  • Sket B (1999) The nature of biodiversity in hypogean waters and how it is endangered. Biodivers Conserv 8:1319–1338

    Article  Google Scholar 

  • Sket B (2005) Dinaric karst, diversity. In: Culver DC, White WB (eds) Encyclopedia of caves. Elsevier, New York, pp 158–165

    Google Scholar 

  • Smith GA, Nickels JS, Kerger BD et al (1986) Quantitative characterization of microbial biomass and community structure in subsurface material: a prokaryotic consortium responsive to organic contamination. Can J Microbiol 32:104–111

    Article  CAS  Google Scholar 

  • Smock LA, Roeding CE (1986) The trophic basis of production of the macroinvertebrate community of a southeastern USA Blackwater stream. Holarct Ecol 9:165–174

    Google Scholar 

  • Souza-Silva M, Martins RP, Ferreira RL (2011) Trophic dynamics in a neotropical limestone cave. Subterr Biol 9:127–138

    Article  Google Scholar 

  • Souza-Silva M, Bernardi LFDO, Martins RP et al (2012) Transport and consumption of organic detritus in a neotropical limestone cave. Acta Carsol 41:139–150

    Google Scholar 

  • Souza-Silva M, Junior AS, Ferreira RL (2013) Food resource availability in a quartzite cave in the Brazilian montane Atlantic forest. J Cave Karst Stud 75:177–188

    Article  Google Scholar 

  • Stagliano DM, Whiles MR (2002) Macroinvertebrate production and trophic structure in a tallgrass prairie headwater stream. J N Am Benthol Soc 21:97–113

    Article  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Tank JL, Rosi-Marshall EJ, Griffiths NA et al (2010) A review of allochthonous organic matter dynamics and metabolism in streams. J N Am Benthol Soc 29:118–146

    Article  Google Scholar 

  • Tatár E, Mihucz VG, Zámbó L et al (2004) Seasonal changes of fulvic acid, Ca and Mg concentrations of water samples collected above and in the Béke Cave of the Aggtelek karst system (Hungary). Appl Geochem 19:1727–1733

    Article  CAS  Google Scholar 

  • Tissier G, Perrette Y, Dzikowski M et al (2013) Seasonal changes of organic matter quality and quantity at the outlet of a forested karst system (La Roche Saint Alban, French Alps). J Hydrol 482:139–148

    Article  CAS  Google Scholar 

  • Tobler M (2008) Divergence in trophic ecology characterizes colonization of extreme habitats. Biol J Linn Soc 95:517–528

    Article  Google Scholar 

  • Tobler M, Schlupp I, Heubel KU et al (2006) Life on the edge: hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters. Extremophiles 10:577–585

    Article  CAS  PubMed  Google Scholar 

  • Tobler M, Roach K, Winemiller KO et al (2013) Population structure, habitat use, and diet of giant waterbugs in a sulfidic cave. Southwest Nat 58:420–426

    Article  Google Scholar 

  • Torres-Ruiz M, Wehr JD, Perrone AA (2007) Trophic relations in a stream food web: importance of fatty acids for macroinvertebrate consumers. J N Am Benthol Soc 26:509–522

    Article  Google Scholar 

  • Tuttle MD, Stevenson DE (1977) Variation in the cave environment and its biological implications. In: Zuber R, Chester J, Gilbert S, Rhodes D (eds) National cave management symposium proceedings. Adobe Press, Albuquerque, pp 108–121

    Google Scholar 

  • van Beynen P, Ford D, Schwarcz H (2000) Seasonal variability in organic substances in surface and cave waters at Marengo Cave, Indiana. Hydrol Process 14:1177–1197

    Article  Google Scholar 

  • van Beynen PE, Schwarcz HP, Ford DC et al (2002) Organic substances in cave drip waters: studies from Marengo Cave, Indiana. Can J Earth Sci 39:279–284

    Article  Google Scholar 

  • Venarsky MP, Benstead JP, Huryn AD (2012a) Effects of organic matter and season on leaf litter colonisation and breakdown in cave streams. Freshw Biol 57:773–786

    Article  Google Scholar 

  • Venarsky MP, Huryn AD, Benstead JP (2012b) Re-examining extreme longevity of the cave crayfish Orconectes australis using new mark-recapture data: a lesson on the limitations of iterative size-at-age models. Freshw Biol 57:1471–1481

    Article  Google Scholar 

  • Venarsky MP, Huntsman BM, Huryn AD et al (2014) Quantitative food web analysis supports the energy-limitation hypothesis in cave stream ecosystems. Oecologia 176:859–869

    Article  PubMed  Google Scholar 

  • Venarsky MP, Benstead JP, Huryn AD et al (2018) Experimental detritus manipulations unite surface and cave stream ecosystems along a common energy gradient. Ecosystems 21:629–642

    Article  CAS  Google Scholar 

  • Wallace JB, Eggert SL, Meyer JL et al (1999) Effects of resource limitation on a detrital-based ecosystem. Ecol Monogr 69:409–442

    Article  Google Scholar 

  • Webster JR, Benfield EF (1986) Vascular plant breakdown in freshwater ecosystems. Annu Rev Ecol Syst 17:567–594

    Article  Google Scholar 

  • Williams PW (2008) The role of the epikarst in karst and cave hydrogeology: a review. Int J Speleol 37:1–10

    Article  Google Scholar 

  • Wood PJ, Gunn J, Perkins J (2002) The impact of pollution on aquatic invertebrates within a subterranean ecosystem – out of sight out of mind. Arch Hydrobiol 155:223–237

    Article  Google Scholar 

  • Wood PJ, Gunn J, Rundle SD (2008) Response of benthic cave invertebrates to organic pollution events. Aquat Conserv 18:909–922

    Article  Google Scholar 

  • Wurster CM, Munksgaard N, Zwart C et al (2015) The biogeochemistry of insectivorous cave guano: a case study from insular Southeast Asia. Biogeochemistry 124:163–175

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Comments from Alex Huryn, Paul Cryan, Daniel Nelson, Michael Kendrick, Stuart Halse, and Oana Moldovan greatly improved this book chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Venarsky, M.P., Huntsman, B.M. (2018). Food Webs in Caves. In: Moldovan, O., Kováč, Ľ., Halse, S. (eds) Cave Ecology. Ecological Studies, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-319-98852-8_14

Download citation

Publish with us

Policies and ethics