Skip to main content

Coherence of the Product Law for Independent Continuous Events

  • Chapter
  • First Online:
  • 953 Accesses

Part of the book series: Trends in Logic ((TREN,volume 47))

Abstract

Let \(A^*\) and \(B^*\) be finite sets of continuous events (e.g., physical observables, or random variables) represented by elements of semisimple MV-algebras A and B. Suppose \(\alpha :A^*\rightarrow [0,1]\) and \(\beta :B^*\rightarrow [0,1]\) are coherent books, i.e., maps satisfying de Finetti’s coherence criterion. Suppose all events in \(A^*\) are (logically) independent of all events in \(B^*.\) Let \(C=A\otimes B\) be the semisimple tensor product of A and B. We first prove that if \(a,a'\in A^*\) and \( b,b'\in B^*\) satisfy \(a\otimes b=a'\otimes b'\), then \(\alpha (a)\beta (b)=\alpha (a')\beta (b')\). Thus by setting \(\gamma (a \otimes b)=\alpha (a)\beta (b)\) we obtain a [0, 1]-valued function \(\gamma \) defined on the set \(C^*\) of pure tensors of C of the form \(a\otimes b\) for \(a\in A^*\) and \(b\in B^*\). We then prove that \(\gamma \) is a coherent book on \(C^*\). For the proofs we need the MV-algebraic extension of de Finetti Dutch Book theorem, Fubini theorem, and the Kroupa–Panti theorem (which in turn rests on the preservation properties of the \(\varGamma \) functor, the Stone–Weierstrass theorem and the Riesz representation theorem).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cignoli, R., I.M.L. D’Ottaviano, and D. Mundici. 2000. Algebraic Foundations of Many-Valued Reasoning, Trends in Logic, vol. 7. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  2. de Finetti, B. 1993. Sul significato soggettivo della probabilitá, Fundamenta Mathematicae, 17 (1931) 298–329. Translated into English as “On the Subjective Meaning of Probability”. In Probabilitá e Induzione, ed. P. Monari, and D. Cocchi, 291–321. Bologna: Clueb.

    Google Scholar 

  3. de Finetti, B. 1980. La prévision: ses lois logiques, ses sources subjectives, Annales de l’Institut H. Poincaré, 7 (1937) 1–68. Translated into English by Henry E. Kyburg Jr., as “Foresight: Its Logical Laws, its Subjective Sources”. In Studies in Subjective Probability, Wiley, New York, 1964, ed. H.E. Kyburg Jr., and H.E. Smokler, 53–118. New York: Second edition published by Krieger.

    Google Scholar 

  4. de Finetti, B. 2017. Theory of Probability, A Critical Introductory Treatment, Translated by Antonio Machí and Adrian Smith. Chichester, UK: Wiley.

    Book  Google Scholar 

  5. Horn, A., and A. Tarski. 1948. Measures in Boolean algebras. Transactions of the American Mathematical Society 64: 467–497.

    Article  Google Scholar 

  6. Kakutani, S. 1941. Concrete representation of abstract (M)-spaces, (A characterization of the space of continuous functions). Annals of Mathematics, (2), 42: 994–1024.

    Google Scholar 

  7. Koppelberg, S. 1989. General Theory of Boolean Algebras. In Handbook of Boolean Algebras (Vol.1), ed. by J.D.Monk with the cooperation of R. Bonnet, Elsevier, Amsterdam.

    Google Scholar 

  8. Kroupa, T. 2006. Every state on semisimple MV-algebra is integral. Fuzzy Sets and Systems 157: 2771–2782.

    Article  Google Scholar 

  9. Kühr, J., and D. Mundici. 2007. De Finetti theorem and Borel states in [0,1]-valued algebraic logic. International Journal of Approximate Reasoning 46: 605–616.

    Article  Google Scholar 

  10. Mundici, D. 1986. Interpretation of AF \(C^{*}\)-algebras in Łukasiewicz sentential calculus. Journal of Functional Analysis 65: 15–63.

    Article  Google Scholar 

  11. Mundici, D. 1993. Logic of infinite quantum systems. International Journal of Theoretical Physics 32: 1941–1955.

    Article  Google Scholar 

  12. Mundici, D. 1995. Averaging the truth value in Łukasiewicz sentential logic. Studia Logica, Special issue in honor of Helena Rasiowa 55: 113–127.

    Google Scholar 

  13. Mundici, D. 1999. Tensor products and the Loomis-Sikorski theorem for MV-algebras. Advances in Applied Mathematics 22: 227–248.

    Article  Google Scholar 

  14. Mundici, D. 2009. Interpretation of de Finetti coherence criterion in Łukasiewicz logic. Annals of Pure and Applied Logic 161: 235–245.

    Article  Google Scholar 

  15. Mundici, D. 2011. Advanced Łukasiewicz calculus and MV-algebras, Trends in Logic, vol. 35. Berlin: Springer.

    Book  Google Scholar 

  16. Mundici, D. 2017. Coherence of de Finetti coherence. Synthese 194: 4055–4063.

    Article  Google Scholar 

  17. Panti, G. 2009. Invariant measures in free MV-algebras. Communications in Algebra 36: 2849–2861.

    Article  Google Scholar 

  18. Sikorski, R. 1960. Boolean Algebras, 2nd edition, Ergeb. der Math. und ihrer Grenzgeb., vol. 25. Berlin: Springer.

    Google Scholar 

  19. Tao, T. 2010. An Epsilon of Room I: Real Analysis, vol. 117, Graduate Studies in Mathematics. Providence RI: American Mathematical Society.

    Google Scholar 

  20. Tao, T. 2011. An Introduction to Measure Theory, vol. 126, Graduate Studies in Mathematics. Providence RI: American Mathematical Society.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Mundici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mundici, D. (2018). Coherence of the Product Law for Independent Continuous Events. In: Carnielli, W., Malinowski, J. (eds) Contradictions, from Consistency to Inconsistency. Trends in Logic, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-98797-2_10

Download citation

Publish with us

Policies and ethics