Skip to main content

Nanotechnology for Water Remediation

  • Chapter
  • First Online:
Environmental Nanotechnology

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 21))

Abstract

Scarcity of fresh drinkable water has escalated to be the one of the major global problem. Traditional wastewater treatment technologies are not adequate enough to produce safe water due to increasing demand of water coupled with stringent health guidelines and emerging contaminants. On that note, the advent of nanotechnology has given immense scope and opportunities for the removal of heavy metals, microorganisms and organic pollutants from wastewater and has emerged to be a very dynamic branch in the utilization of nanotechnology due to their unique physiochemical and biological properties compared to their bulk. Exploiting these properties of high specific surface area and surface reactivity have resulted in the excessive use and study of nanoparticles in wastewater remediation. The use of various nanomaterials, including carbon based nanomaterial, metal and metal oxides nanoparticles as were focused on, and their mode of action towards waste water remediation were discussed. Herein we tried to incorporate an overview of recent advances in nanotechnologies for water and wastewater treatment and understand various advantages, limitations and future direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari MD, Mukherjee S, Saikia J, Das G, Ramesh A (2014) Magnetic nanoparticles for selective capture and purification of an antimicrobial peptide secreted by food-grade lactic acid bacteria. J Mater Chem B 2(10):1432–1438

    Article  CAS  Google Scholar 

  • Anjum M, Miandad R, Waqas M, Gehany F, Barakat MA (2016) Remediation of wastewater using various nano-materials. Arab J Chem

    Google Scholar 

  • Arancibia-Miranda N, Baltazar SE, García A, Muñoz-Lira D, Sepúlveda P, Rubio MA, Altbir D (2016) Nanoscale zero valent supported by Zeolite and Montmorillonite: template effect of the removal of lead ion from an aqueous solution. J Hazard Mater

    Google Scholar 

  • Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271

    Article  CAS  Google Scholar 

  • Chaturvedi S, Dave PN, Shah NK (2012) Applications of nano-catalyst in new era. J Saudi Chem Soc 16(3):307–325

    Article  CAS  Google Scholar 

  • Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment, technology: a review. Water Res 44:2997–3027

    Article  CAS  Google Scholar 

  • Danilczuk M, Lund A, Sadlo J, Yamada H, Michalik J (2006) Conduction electron spin resonance of small silver particles. Spectrochim Acta A Mol Biomol Spectrosc 63(1):189–191

    Article  CAS  Google Scholar 

  • Das R, Vecitis CD, Schulze A, Cao B, Ismail AF, Lu X, Chene J, Ramakrishna S (2017) Recent advances in nanomaterials for water protection and monitoring. Chem Soc Rev 46:6946–7020

    Article  CAS  Google Scholar 

  • Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63(12):515–582

    Article  CAS  Google Scholar 

  • Gazit E (2007) Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 36(8):1263–1269

    Article  CAS  Google Scholar 

  • Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1

    Article  Google Scholar 

  • Gupta VK, Tyagi I, Sadegh H, Shahryari-Ghoshekandi R, Makhlouf ASH, Maazinejad B (2015) Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: a review. Sci Technol Dev 34:195–214

    Article  Google Scholar 

  • Han X, Kuang Q, Jin M, Xie Z, Zheng L (2009) Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J Am Chem Soc 131(9):3152–3153

    Article  CAS  Google Scholar 

  • Hattori A, Yamamoto M, Tada H, Ito S (1998) A promoting effect of NH4F addition on the photocatalytic activity of sol-gel TiO2 films. Chem Lett 27(8):707–708

    Article  Google Scholar 

  • Hayat K, Gondal MA, Khaled MM, Ahmed S, Shemsi AM (2011) Nano ZnO synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water. Appl Catal A Gen 393(1):122–129

    Article  CAS  Google Scholar 

  • Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, Huang D, Hao B (2008) Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24(8):4140–4144

    Article  CAS  Google Scholar 

  • Istratie R, Stoia M, Păcurariu C, Locovei C (2016) Single and simultaneous adsorption of methyl orange and phenol onto magnetic iron oxide/carbon nanocomposites. Arab J Chem

    Google Scholar 

  • Jagadevan S, Jayamurthy M, Dobson P, Thompson IP (2012) A novel hybrid nano zerovalent iron initiated oxidation–Biological degradation approach for remediation of recalcitrant waste metalworking fluids. Water Res 46(7):2395–2404

    Article  CAS  Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279(1):71–76

    Article  CAS  Google Scholar 

  • Kalfa OM, Yalçınkaya Ö, Türker AR (2009) Synthesis of nano B 2 O 3/TiO2 composite material as a new solid phase extractor and its application to preconcentration and separation of cadmium. J Hazard Mater 166(1):455–461

    Article  CAS  Google Scholar 

  • Khalil A, Gondal MA, Dastageer MA (2011) Augmented photocatalytic activity of palladium incorporated ZnO nanoparticles in the disinfection of Escherichia coli microorganism from water. Appl Catal A Gen 402(1):162–167

    Article  CAS  Google Scholar 

  • Kikuchi Y, Sunada K, Iyoda T, Hashimoto K, Fujishima A (1997) Photocatalytic bactericidal effect of TiO 2 thin films: dynamic view of the active oxygen species responsible for the effect. J Photochem Photobiol A Chem 106(1):51–56

    Article  CAS  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Hwang C-Y (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1):95–101

    Article  CAS  Google Scholar 

  • Kuwahara Y, Kamegawa T, Mori K, Yamashita H (2010) Design of new functional Titanium oxide-based photocatalysts for degradation of organics diluted in water and air. Curr Org Chem 14(7):616–629

    Article  CAS  Google Scholar 

  • Li Y-H, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wu D, Wei B (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41(14):2787–2792

    Article  CAS  Google Scholar 

  • Li L, Fan M, Brown RC, Van Leeuwen J, Wang J, Wang W, Zhang P (2006) Synthesis, properties, and environmental applications of nanoscale iron-based materials: a review. Crit Rev Environ Sci Technol 36(5):405–431

    Article  CAS  Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602

    Article  CAS  Google Scholar 

  • Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions. Lett Appl Microbiol 25(4):279–283

    Article  CAS  Google Scholar 

  • Lyon DY, Brown DA, Alvarez PJJ (2008) Implications and potential applications of bactericidal fullerene water suspensions: effect of nC60 concentration, exposure conditions and shelf life. Water Sci Technol 57(10):1533–1538

    Article  CAS  Google Scholar 

  • Macak JM, Zlamal M, Krysa J, Schmuki P (2007) Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3(2):300–304

    Article  CAS  Google Scholar 

  • Mihranyan A, Ferraz N, Strømme M (2012) Current status and future prospects of nanotechnology in cosmetics. Prog Mater Sci 57(5):875–910

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346

    Article  CAS  Google Scholar 

  • Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11(3):401–425

    Article  CAS  Google Scholar 

  • Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M (2004) Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl Catal A Gen 265(1):115–121

    Article  CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    Article  CAS  Google Scholar 

  • Palimi MJ, Rostami M, Mahdavian M, Ramezanzadeh B (2014) Surface modification of Fe2O3 nanoparticles with 3-aminopropyltrimethoxysilane (APTMS): an attempt to investigate surface treatment on surface chemistry and mechanical properties of polyurethane/Fe2O3 nanocomposites. Appl Surf Sci 320:60–72

    Article  CAS  Google Scholar 

  • Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339(16):2693–2700

    Article  CAS  Google Scholar 

  • Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):3931–3946

    Article  CAS  Google Scholar 

  • Ramakrishna S, Fujihara K, Teo W-E, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9(3):40–50

    Article  CAS  Google Scholar 

  • Saha B, Das S, Saikia J, Das G (2011) Preferential and enhanced adsorption of different dyes on iron oxide nanoparticles: a comparative study. J Phys Chem C 115(16):8024–8033

    Article  CAS  Google Scholar 

  • Saikia J, Saha B, Das G (2011) Efficient removal of chromate and arsenate from individual and mixed system by malachite nanoparticles. J Hazard Mater 186(1):575–582

    Article  CAS  Google Scholar 

  • Saikia J, Sikdar Y, Saha B, Das G (2013) Malachite nanoparticle: a potent surface for the adsorption of xanthene dyes. J Environ Chem Eng 1(4):1166–1173

    Article  CAS  Google Scholar 

  • Sanchez F, Sobolev K (2010) Nanotechnology in concrete–a review. Constr Build Mater 24(11):2060–2071

    Article  Google Scholar 

  • Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods 54(2):177–182

    Article  CAS  Google Scholar 

  • Seery MK, George R, Floris P, Pillai SC (2007) Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J Photochem Photobiol A Chem 189(2):258–263

    Article  CAS  Google Scholar 

  • Shi Q, Liang H, Feng D, Wang J, Stucky GD (2008) Porous carbon and carbon/metal oxide microfibers with well-controlled pore structure and interface. J Am Chem Soc 130(15):5034–5035

    Article  CAS  Google Scholar 

  • Sökmen M, Candan F, Sümer Z (2001) Disinfection of E. coli by the Ag-TiO 2/UV system: lipidperoxidation. J Photochem Photobiol A Chem 143(2):241–244

    Article  Google Scholar 

  • Sung-Suh HM, Choi JR, Hah HJ, Koo SM, Bae YC (2004) Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. J Photochem Photobiol A Chem 163(1):37–44

    Article  CAS  Google Scholar 

  • Torres GR, Lindgren T, Lu J, Granqvist C-G, Lindquist S-E (2004) Photoelectrochemical study of nitrogen-doped titanium dioxide for water oxidation. J Phys Chem B 108(19):5995–6003

    Article  CAS  Google Scholar 

  • Usmani MA, Khan I, Bhat AH, Pillai RS, Ahmad N, Mohamad Haafiz MK, Oves M (2017) Current trend in the application of nanoparticles for waste water treatment and purification: a review. Curr Org Synth

    Google Scholar 

  • Vecitis CD, Zodrow KR, Kang S, Elimelech M (2010) Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano 4(9):5471–5479

    Article  CAS  Google Scholar 

  • Vinodgopal K, Wynkoop DE, Kamat PV (1996) Environmental photochemistry on semiconductor surfaces: photosensitized degradation of a textile azo dye, acid orange on TiO2 particles using visible light. Environ Sci Technol 30(5):1660–1666

    Article  CAS  Google Scholar 

  • Wegmann M, Michen B, Graule T (2008) Nanostructured surface modification of microporous ceramics for efficient virus filtration. J Eur Ceram Soc 28(8):1603–1612

    Article  CAS  Google Scholar 

  • WHO, UNICEF (2010) Progress on sanitation and drinking-water, 2010 Update. World Health Organization.

    Google Scholar 

  • Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40(14):4336–4345

    Article  CAS  Google Scholar 

  • Xiu Z-m, Zhang Q-b, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275

    Article  CAS  Google Scholar 

  • Yang K, Xing B (2010) Adsorption of organic compounds by carbon nanomaterials in aqueous phase: polanyi theory and its application. Chem Rev 110(10):5989–6008

    Article  CAS  Google Scholar 

  • Yang K, Wu W, Jing Q, Zhu L (2008) Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes. Environ Sci Technol 42(21):7931–7936

    Article  CAS  Google Scholar 

  • Zhang Z, Wang C-C, Zakaria R, Ying JY (1998) Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B 102(52):10871–10878

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiban Saikia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saikia, J., Gogoi, A., Baruah, S. (2019). Nanotechnology for Water Remediation. In: Dasgupta, N., Ranjan, S., Lichtfouse, E. (eds) Environmental Nanotechnology. Environmental Chemistry for a Sustainable World, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-98708-8_7

Download citation

Publish with us

Policies and ethics