Skip to main content

DC MicroGrids

  • Chapter
  • First Online:
Book cover Microgrids Design and Implementation

Abstract

This chapter introduces concepts of DC MicroGrids exposing their elements, features, modeling, control, and applications. Renewable energy sources, energy storage systems, and loads are the basic components of a DC MicroGrid. These components can be better integrated, thanks to their DC feature, resulting in simpler power converter topologies, as well as the control strategy required for this application. A DC MicroGrid is developed as a realistic average model where the dynamics of the system are expressed in differential equations, including the nonlinearities of the model. A nonlinear distributed control strategy is developed for the DC MicroGrid, assuring the stability of the DC bus to guarantee the proper operation of each component of the MicroGrid. The energy storage systems are separated according to their time-scale operation, where a faster one (supercapacitor) controls voltage variations on the DC bus, and a slower one (battery) provides the power flow balance. The comparison with classical linear controllers is carried out to highlight the better performance of the nonlinear approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Planas, E., Gil-de Muro, A., Andreu, J., Kortabarria, I., & de Alegría, I. M. (2013). General aspects, hierarchical controls and droop methods in microgrids: A review. Renewable and Sustainable Energy Reviews, 17, 147–159.

    Article  Google Scholar 

  2. Costa, P. M., & Matos, M. A. (June 2006). Economic analysis of microgrids including reliability aspects. In 2006 International Conference on Probabilistic Methods Applied to Power Systems (pp. 1–8).

    Google Scholar 

  3. Zubieta, L. E. (2016). Are microgrids the future of energy?: DC microgrids from concept to demonstration to deployment. IEEE Electrification Magazine, 4(2), 37–44.

    Article  Google Scholar 

  4. Dragicevic, T., Vasquez, J. C., Guerrero, J. M., & Skrlec, D. (2014). Advanced LVDC electrical power architectures and microgrids: A step toward a new generation of power distribution networks. IEEE Electrification Magazine, 2(1), 54–65.

    Article  Google Scholar 

  5. Olivares, D. E., Mehrizi-Sani, A., Etemadi, A. H., Cañizares, C. A., Iravani, R., & Kazerani, M. (2014). Trends in microgrid control. IEEE Transactions on Smart Grid, 5(4), 1905–1919.

    Article  Google Scholar 

  6. Jing, W., Lai, C. H., Wong, S. H. W., & Wong, M. L. D. (2017). Battery-supercapacitor hybrid energy storage system in standalone DC microgrids: A review. IET Renewable Power Generation, 11(4), 461–469.

    Article  Google Scholar 

  7. Justo, J. J., Mwasilu, F., Lee, J., & Jung, J.-W. (2013). AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renewable and Sustainable Energy Reviews, 24, 387–405.

    Article  Google Scholar 

  8. Unamuno, E., & Barrena, J. A. (2015). Hybrid AC/DC microgrids—part ii: Review and classification of control strategies. Renewable and Sustainable Energy Reviews, 52, 1123–1134.

    Article  Google Scholar 

  9. Akhil, A. A., Huff, G., Currier, A. B., Kaun, B. C., Rastler, D. M., & Chen, S. B. (2013). DOE/EPRI 2013 electricity storage handbook in collaboration with NRECA. Albuquerque: Sandia National Laboratories.

    Google Scholar 

  10. Locment, F., Sechilariu, M., & Houssamo, I. (2012). DC load and batteries control limitations for photovoltaic systems. Experimental validation. IEEE Transactions on Power Electronics, 27(9), 4030–4038.

    Article  Google Scholar 

  11. Ribeiro, P. F., Johnson, B. K., Crow, M. L., Arsoy, A., & Liu, Y. (2001). Energy storage systems for advanced power applications. Proceedings of the IEEE, 89(12), 1744–1756.

    Article  Google Scholar 

  12. de Matos, J. G., e Silva, F. S. F., & Ribeiro, L. A. d. S. (2015). Power control in AC isolated microgrids with renewable energy sources and energy storage systems. IEEE Transactions on Industrial Electronics, 62(6), 3490–3498.

    Google Scholar 

  13. de Souza Ribeiro, L. A., Saavedra, O. R., de Lima, S. L., & de Matos, J. G. (2011). Isolated micro-grids with renewable hybrid generation: The case of lençóis island. IEEE Transactions on Sustainable Energy, 2(1), 1–11.

    Article  Google Scholar 

  14. Ribeiro, L. A. d. S., Saavedra, O. R., Lima, S. L., de Matos, J. G., & Bonan, G. (2012). Making isolated renewable energy systems more reliable. Renewable Energy, 45, 221–231.

    Google Scholar 

  15. Lasseter, R. H. (2011). Smart distribution: Coupled microgrids. Proceedings of the IEEE, 99(6), 1074–1082.

    Article  Google Scholar 

  16. Kumar, D., Zare, F., & Ghosh, A. (2017). DC microgrid technology: System architectures, AC grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects. IEEE Access, 5, 12,230–12,256.

    Article  Google Scholar 

  17. Dragičević, T., Lu, X., Vasquez, J. C., & Guerrero, J. M. (2016). DC microgrids—part i: A review of control strategies and stabilization techniques. IEEE Transactions on Power Electronics, 31(7), 4876–4891.

    Google Scholar 

  18. Yang, N., Nahid-Mobarakeh, B., Gao, F., Paire, D., Miraoui, A., & Liu, W. (2016). Modeling and stability analysis of multi-time scale DC microgrid. Electric Power Systems Research, 140, 906–916.

    Article  Google Scholar 

  19. Ashabani, S. M., & Mohamed, Y. A. r. I. (2014). New family of microgrid control and management strategies in smart distribution grids; analysis, comparison and testing. IEEE Transactions on Power Systems, 29(5), 2257–2269.

    Google Scholar 

  20. Rokrok, E., Shafie-Khah, M., & Catalão, J. P. S. (Sept. 2017). Comparison of two control strategies in an autonomous hybrid microgrid. In 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe) (pp. 1–6).

    Google Scholar 

  21. Iovine, A., Siad, S. B., Damm, G., Santis, E. D., & Benedetto, M. D. D. (2017). Nonlinear control of a DC microgrid for the integration of photovoltaic panels. IEEE Transactions on Automation Science and Engineering, 14(2), 524–535.

    Article  Google Scholar 

  22. Iovine, A., Siad, S. B., Damm, G., Santis, E. D., & Benedetto, M. D. D. (Oct 2016). Nonlinear control of an AC-connected DC microgrid. In IECON 2012nd Annual Conference of the IEEE Industrial Electronics Society (pp. 4193–4198).

    Google Scholar 

  23. Tahim, A. P. N., Pagano, D. J., & Ponce, E. (Dec. 2012). Nonlinear control of DC-DC bidirectional converters in stand-alone DC microgrids. In 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) (pp. 3068–3073).

    Google Scholar 

  24. Wang, C., Li, X., Guo, L., & Li, Y. W. (2014). A nonlinear-disturbance-observer-based DC-bus voltage control for a hybrid AC/DC microgrid. IEEE Transactions on Power Electronics, 29(11), 6162–6177.

    Article  Google Scholar 

  25. Parhizi, S., Lotfi, H., Khodaei, A., & Bahramirad, S. (2015). State of the art in research on microgrids: A review. IEEE Access, 3, 890–925.

    Article  Google Scholar 

  26. Morstyn, T., Hredzak, B., & Agelidis, V. G. (2018). Control strategies for microgrids with distributed energy storage systems: An overview. IEEE Transactions on Smart Grid, 9(4), 3652–3666.

    Article  Google Scholar 

  27. Guerrero, J. M., Vasquez, J. C., Matas, J., De Vicuña, L. G., & Castilla, M. (2011). Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization. IEEE Transactions on Industrial Electronics, 58(1), 158–172.

    Article  Google Scholar 

  28. Iovine, A. (2016). Nonlinear and hybrid control techniques for microgrids and autonomous vehicles (Ph.D. dissertation, L’Aquila University).

    Google Scholar 

  29. Bidram, A., & Davoudi, A. (2012). Hierarchical structure of microgrids control system. IEEE Transactions on Smart Grid, 3(4), 1963–1976.

    Article  Google Scholar 

  30. Inthamoussou, F. A., Pegueroles-Queralt, J., & Bianchi, F. D. (2013). Control of a supercapacitor energy storage system for microgrid applications. IEEE Transactions on Energy Conversion, 28(3), 690–697.

    Article  Google Scholar 

  31. Boicea, V. A. (2014). Energy storage technologies: The past and the present. Proceedings of the IEEE, 102(11), 1777–1794.

    Article  Google Scholar 

  32. Sera, D., Mathe, L., Kerekes, T., Spataru, S. V., & Teodorescu, R. (2013). On the perturb-and-observe and incremental conductance MPPT methods for PV systems. IEEE Journal of Photovoltaics, 3(3), 1070–1078.

    Article  Google Scholar 

  33. Huynh, D. C., & Dunnigan, M. W. (2016). Development and comparison of an improved incremental conductance algorithm for tracking the MPP of a solar PV panel. IEEE Transactions on Sustainable Energy, 7(4), 1421–1429.

    Article  Google Scholar 

  34. Chen, Y. (2015). Nonlinear control and stability analysis of multi-terminal high voltage direct current networks (Ph.D. dissertation, Université Paris-Sud).

    Google Scholar 

  35. Chen, Y., Damm, G., Benchaib, A., & Lamnabhi-Lagarrigue, F. (June 2014) Feedback linearization for the DC voltage control of a VSC-HVDC terminal. In 2014 European Control Conference (ECC) (pp. 1999–2004).

    Google Scholar 

  36. Rouchon, P. (1994). Necessary condition and genericity of dynamic feedback linearization. Journal of Mathematical Systems, Estimation, and Control, 4(2), 257–260.

    MathSciNet  MATH  Google Scholar 

  37. Charlet, B., Lévine, J., & Marino, R. (1989). On dynamic feedback linearization. Systems & Control Letters, 13(2), 143–151.

    Article  MathSciNet  Google Scholar 

  38. Oriolo, G., Luca, A. D., & Vendittelli, M. (2002). WMR control via dynamic feedback linearization: Design, implementation, and experimental validation. IEEE Transactions on Control Systems Technology, 10(6), 835–852.

    Article  Google Scholar 

  39. Marino, R. (1990). Static and dynamic feedback linearization of nonlinear systems. In Perspectives in control theory (pp. 249–260). Basel: Springer.

    Chapter  Google Scholar 

  40. Iovine, A., Damm, S., Santis, E. D., Benedetto, M. D. D., Galai-Dol, L. & Pepe, P. (June 2018). Voltage stabilization in a DC microgrid by an ISS-like Lyapunov function implementing droop control. In ECC 2018 - European Control Conference (pp. 4193–4198).

    Google Scholar 

  41. Sontag, E. D. (2008). Input to state stability: Basic concepts and results. In Nonlinear and optimal control theory (pp. 163–220). Berlin: Springer.

    Chapter  Google Scholar 

  42. Khalil, H. K. (2014). Nonlinear control. Upper Saddle River: Prentice Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilney Damm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perez, F., Damm, G. (2019). DC MicroGrids. In: Zambroni de Souza, A., Castilla, M. (eds) Microgrids Design and Implementation. Springer, Cham. https://doi.org/10.1007/978-3-319-98687-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98687-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98686-9

  • Online ISBN: 978-3-319-98687-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics