Skip to main content

Reversible Pushdown Transducers

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11088))

Included in the following conference series:

Abstract

Deterministic pushdown transducers are studied with respect to their ability to compute reversible transductions, that is, to transform inputs into outputs in a reversible way. This means that the transducers are also backward deterministic and thus are able to uniquely step the computation back and forth. The families of transductions computed are classified with regard to four types of length-preserving transductions as well as to the property of working reversibly. It turns out that accurate to one case separating witness transductions can be provided. For the remaining case it is possible to establish the equivalence of both families by proving that stationary moves can always be removed in length-preserving reversible pushdown transductions.

This work was supported by the European COST Action IC 1405: Reversible Computation – Extending Horizons of Computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, and Compiling, vol. I: Parsing. Prentice-Hall Inc., Englewood Cliffs (1972)

    Google Scholar 

  2. Angluin, D.: Inference of reversible languages. J. ACM 29, 741–765 (1982)

    Article  MathSciNet  Google Scholar 

  3. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)

    Article  MathSciNet  Google Scholar 

  4. Bensch, S., Björklund, J., Kutrib, M.: Deterministic stack transducers. Int. J. Found. Comput. Sci. 28, 583–602 (2017)

    Article  MathSciNet  Google Scholar 

  5. Berstel, J.: Transductions and Context-Free Languages. Teubner, Stuttgart (1979)

    Book  Google Scholar 

  6. Dartois, L., Fournier, P., Jecker, I., Lhote, N.: On reversible transducers. In: ICALP 2017, LIPIcs, vol. 80, pp. 113:1–113:12. Schloss Dagstuhl (2017)

    Google Scholar 

  7. Holzer, M., Jakobi, S., Kutrib, M.: Minimal reversible deterministic finite automata. Int. J. Found. Comput. Sci. 29, 251–270 (2018)

    Article  MathSciNet  Google Scholar 

  8. Ibarra, O.H., Yen, H.: On the containment and equivalence problems for two-way transducers. Theor. Comput. Sci. 429, 155–163 (2012)

    Article  MathSciNet  Google Scholar 

  9. Igarashi, Y.: A pumping lemma for real-time deterministic context-free languages. Theor. Comput. Sci. 36, 89–97 (1985)

    Article  MathSciNet  Google Scholar 

  10. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: FOCS 1997, pp. 66–75. IEEE Computer Society (1997)

    Google Scholar 

  11. Kutrib, M., Malcher, A.: Reversible pushdown automata. J. Comput. Syst. Sci. 78, 1814–1827 (2012)

    Article  MathSciNet  Google Scholar 

  12. Kutrib, M., Malcher, A.: One-dimensional cellular automaton transducers. Fund. Inform. 126, 201–224 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Kutrib, M., Malcher, A., Wendlandt, M.: Reversible queue automata. Fund. Inform. 148, 341–368 (2016)

    Article  MathSciNet  Google Scholar 

  14. Kutrib, M., Malcher, A., Wendlandt, M.: Transducing reversibly with finite state machines. In: Carayol, A., Nicaud, C. (eds.) CIAA 2017. LNCS, vol. 10329, pp. 151–162. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60134-2_13

    Chapter  MATH  Google Scholar 

  15. Lavado, G.J., Pighizzini, G., Prigioniero, L.: Minimal and reduced reversible automata. J. Autom. Lang. Comb. 22, 145–168 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Lavado, G.J., Prigioniero, L.: Concise representations of reversible automata. In: Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316, pp. 238–249. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60252-3_19

    Chapter  MATH  Google Scholar 

  17. Lecerf, Y.: Logique mathématique: Machines de Turing réversible. C. R. Séances Acad. Sci. 257, 2597–2600 (1963)

    MathSciNet  Google Scholar 

  18. Pin, J.-E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol. 583, pp. 401–416. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0023844

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kutrib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guillon, B., Kutrib, M., Malcher, A., Prigioniero, L. (2018). Reversible Pushdown Transducers. In: Hoshi, M., Seki, S. (eds) Developments in Language Theory. DLT 2018. Lecture Notes in Computer Science(), vol 11088. Springer, Cham. https://doi.org/10.1007/978-3-319-98654-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98654-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98653-1

  • Online ISBN: 978-3-319-98654-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics