Skip to main content

Cardiovascular Imaging in Global Health Radiology

  • Chapter
  • First Online:
Book cover Radiology in Global Health

Abstract

Cardiovascular disease (CVD) is the number one cause of death globally, and morbidity and mortality are highest in low- and middle-income countries (LMICs) due to unavailability and unaffordability of medical resources for diagnosis and management of CVD. This has led to disastrous economic consequences on the individual, household, and societal level in these regions. Cardiovascular imaging is essential to the care of patients with CVD; however, access to cardiovascular imaging is very limited in low- and middle-income countries due to expense of equipment and challenges in training healthcare personnel to correctly order, acquire, and interpret studies. The state-of-the-art tools for cardiac imaging include echocardiography, coronary angiography and left ventriculography, nuclear imaging, cardiac computed tomography, and cardiac magnetic resonance imaging. Of the available cardiac imaging modalities, echo is the most widely used in LMICs because it is safe, portable, relatively inexpensive, and able to diagnose a variety of CVDs. Additionally, inexperienced practitioners can be trained to perform a focused cardiovascular exam by echo, for example, in screening for rheumatic heart disease, in a relatively short period. Handheld or pocket-sized echo machines are particularly useful, and the images can be interpreted locally or uploaded for remote interpretation by expert cardiologists. Instituting the infrastructure for cardiovascular imaging alone is not sufficient. Clinicians in LMICs must be trained to properly refer patients and interpret the results. Additionally, patients must have access to and be able to afford necessary medicines and surgeries for treatment of CVDs. In the future, the gap to CVD treatment in LMICs may be closed further by use of telemedicine and mobile cardiovascular imaging tools as well as continued international efforts to lower infrastructure costs and train local providers in its use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

AIDS:

Acquired immunodeficiency disease syndrome

CACS:

Coronary artery calcium scores

CAD:

Coronary artery disease

CCTA:

Cardiac computed tomography angiography

CHD:

Congenital heart disease

CMR:

Cardiac magnetic resonance

CT:

Computed tomography

CVD:

Cardiovascular disease

EBCT:

Electron-beam computed tomography

GDP:

Gross domestic product

HCU:

Hand-carried cardiac ultrasound

HF:

Heart failure

HIV:

Human immunodeficiency virus

IAEA:

International Atomic and Energy Agency

IV:

Intravenous

LMICs:

Low- and middle-income countries

LV:

Left ventricle

MDCT:

Multi-detector computed tomography

MPI:

Myocardial perfusion imaging

NCD:

Noncommunicable disease

NGO:

Nongovernmental organization

PCU:

Pocket-sized ultrasound

RHD:

Rheumatic heart disease

RP:

Radiation protection

SPECT:

Single-photon emission computed tomography

TEE:

Transesophageal echo

TTE:

Transthoracic echo

USA:

United States

WHO:

World Health Organization

References

  1. WHO Global status report on noncommunicable diseases, updated 2017. Available from: http://www.who.int/mediacentre/factsheets/fs310/en/. Accessed 8 Apr 2017.

  2. Roth G, Huffman M, Moran A, Feigin V, Mensah G, Naghavi M, Murray C. Global and regional patterns in cardiovascular mortality from 1990 to 2013. Circulation. 2015;132:1667–78.

    Article  PubMed  Google Scholar 

  3. Report on the status of major health risk factors for noncommunicable diseases: WHO African Region, 2015. Available from: http://www.afro.who.int/en/noncommunicable-diseases/npc-publications.html. Accessed 8 Apr 2017.

  4. WHO “Noncommunicable diseases” fact sheet, updated 2017. Available from: http://www.who.int/mediacentre/factsheets/fs355/en/. Accessed 8 Apr 2017.

  5. Khatib R, McKee M, Shannon H, Chow C, Rangarajan S, Teo K, et al. Availability and affordability of cardiovascular disease medicines and their effect on use in high-income, middle-income, and low-income countries: an analysis of the PURE study data. Lancet. 2016;387:61–9.

    Article  PubMed  Google Scholar 

  6. Vedanthan R, Seligman B, Fuster V. Global perspective on acute coronary syndrome: a burden on the young and poor. Circ Res. 2014;114:1959–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yusuf S, Rangarajan S, Teo K, Islam S, Li W, Liu L, et al. Cardiovascular risk and events in 17 low-, middle-, and high-income countries. N Engl J Med. 2014;371:818–27.

    Article  CAS  PubMed  Google Scholar 

  8. Benjamin E, Blaha M, Chiuve S, Cushman M, Das S, Deo R, et al. Heart disease and stroke statistics-2017 Update: a report from the American Heart Association. Circulation. 2017;135:e146–603.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Disability-adjusted life year (DALY) rates by WHO region. Available from: http://www.who.int/gho/mortality_burden_disease/daly_rates/en/. Accessed 10 June 2017.

  10. Reddy KS. India wakes up to the threat of cardiovascular diseases. J Am Coll Cardiol. 2007;50(14):1370–2.

    Article  PubMed  Google Scholar 

  11. Huffman M, Rao K, Pichon-Riviere A, Zhao D, Harikrishnan S, Ramaiya K, et al. A cross-sectional study of the microeconomic impact of cardiovascular disease hospitalization in four low- and middle-income countries. PLoS One. 2011;6:e20821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nugent RA, Feigl AB. Scarce donor funding for non-communicable diseases: will it contribute to a health crisis? Washington, DC: Center for Global Development; 2010. Available at: http://www.cgdev.org/content/publications/detail/1424546. Accessed 10 June 2017.

    Google Scholar 

  13. Sinha S, Barry M. Health technologies and innovation in the global health arena. N Engl J Med. 2011;365:779–82.

    Article  CAS  PubMed  Google Scholar 

  14. Vedanthan R, Choi B, Baber U, Narula J, Fuster V. Bioimaging and subclinical cardiovascular disease in low- and middle-income countries. J Cardiovasc Transl Res. 2014;7:701–10.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Global Burden of Disease: GBD compare data visualization. Available from: https://vizhub.healthdata.org/gbd-compare/. Accessed 10 June 2017.

  16. Carapetis JR, Steer AC, Mulholland EK, Weber M. The global burden of group A streptococcal diseases. Lancet Infect Dis. 2005;5(11):685–94.

    Article  PubMed  Google Scholar 

  17. Sims Sanyahumbi A, Colquhoun S, Wyber R, Carapetis JR. Global disease burden of group A streptococcus. In: Ferretti JJ, Stevens DL, Fischetti VA, editors. Streptococcus pyogenes: basic biology to clinical manifestations. Oklahoma City: University of Oklahoma Health Sciences Center; 2016. Available at: https://www.ncbi.nlm.nih.gov/books/NBK333415/. Accessed 8 Apr 2017.

    Google Scholar 

  18. Zühlke L, Engel M, Karthikeyan G, Rangarajan S, Mackie P, Cupido B, et al. Characteristics, complications, and gaps in evidence-based interventions in rheumatic heart disease: the Global Rheumatic Heart Disease Registry (the REMEDY study). Eur Heart J. 2015;36:1115–22a.

    Article  PubMed  Google Scholar 

  19. van der Linde D, Konings E, Slager M, Witsenburg M, Helbing W, Takkenberg J, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58:2241–7.

    Article  PubMed  Google Scholar 

  20. Stein J, Hsue P. Inflammation, immune activation, and CVD risk in individuals with HIV infection. JAMA. 2012;308:405–6.

    Article  CAS  PubMed  Google Scholar 

  21. Jin C, Yu C, Sun J, Fang F, Wen Y, Liu M, et al. The healthcare burden of hypertension in Asia. Heart Asia. 2013;5:238–43.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Akter S, Rahman MM, Abe SK, Sultana P. Prevalence of diabetes and prediabetes and their risk factors among Bangladeshi adults: a nationwide survey. Bull World Health Organ. 2014;92:204–13A. Available at: http://www.who.int/bulletin/volumes/92/3/13-128371/en/. Accessed: 8 Apr 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  23. International Diabetes Federation – seventh Edition, Regional Fact Sheet. Available at: http://www.diabetesatlas.org/resources/2015-atlas.html. Accessed: 8 Apr 2017.

  24. Mathers C, Stevens G, Mascarenhas M, for World Health Organization. Global health risks: mortality and burden of disease attributable to selected major risks. Geneva: World Health Organization; 2009. Available from: http://www.who.int/entity/healthinfo/global_burden_disease/GlobalHealthRisks_report_full.pdf. Accessed 10 June 2017.

  25. Cheitlin MD, Alpert JS, Armstrong WF, Aurigemma GP, Beller GA, Bierman FZ, et al. ACC/AHA guidelines for the clinical application of echocardiography: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Clinical Application of Echocardiography). Developed in collaboration with the American Society of Echocardiography. J Am Coll Cardiol. 1997;29(4):862–79.

    Article  CAS  PubMed  Google Scholar 

  26. Lang R, Badano L, Mor-Avi V, Afilalo J, Armstrong A, Ernande L. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39.e14.

    Article  PubMed  Google Scholar 

  27. Lang R, Badano L, Tsang W, Adams D, Agricola E, Buck T, et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr. 2012;25:3–46.

    Article  PubMed  Google Scholar 

  28. De Maria AN, Blanchard DG. Echocardiography. In: WR FV, Harrington RA, editors. Hurst’s the heart. 13th ed. New York: McGraw Hill; 2011. p. 411–89.

    Google Scholar 

  29. Blessberger H, Binder T. Two dimensional speckle tracking echocardiography: clinical applications. Heart. 2010;96(24):2032–40.

    Article  PubMed  Google Scholar 

  30. Hahn R, Abraham T, Adams M, Bruce C, Glas K, Lang R, et al. Guidelines for performing a comprehensive transesophageal echocardiographic examination: recommendations from the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. J Am Soc Echocardiogr. 2013;26:921–64.

    Article  PubMed  Google Scholar 

  31. Goldstein S, Evangelista A, Abbara S, Arai A, Asch F, Badano L, et al. Multimodality imaging of diseases of the thoracic aorta in adults: from the American Society of Echocardiography and the European Association of Cardiovascular Imaging: endorsed by the Society of Cardiovascular Computed Tomography and Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr. 2015;28:119–82.

    Article  PubMed  Google Scholar 

  32. Bruun N, Habib G, Thuny F, Sogaard P. Cardiac imaging in infectious endocarditis. Eur Heart J. 2014;35:624–32.

    Article  PubMed  Google Scholar 

  33. Kern MJ, King SB. Cardiac catheterization, cardiac angiography, and coronary blood flow and pressure measurements. In: Fuster V, Walsh R, Harrington RA, editors. Hurst’s the heart. New York: McGraw Hill; 2011. p. 490–536.

    Google Scholar 

  34. Berman DS, Hayes SW, Hachamovitch R, Shaw LJ, Germano G. Nuclear Cardiology. In: WR FV, Harrington RA, editors. Hurst’s the heart. 13th ed. New York: McGraw Hill; 2011. p. 562–98.

    Google Scholar 

  35. Alexiou S, Georgoulias P, Angelidis G, Valotassiou V, Tsougos I, Psimadas D, et al. Myocardial perfusion and left ventricular quantitative parameters obtained using gated myocardial SPECT: comparison of three software packages. J Nucl Cardiol. 2016;25:911–24.

    Article  PubMed  Google Scholar 

  36. Mark DB, Berman DS, Budoff MJ, Carr JJ, Gerber TC, Hecht HS, et al. ACCF/ACR/AHA/NASCI/SAIP/SCAI/SCCT 2010 expert consensus document on coronary computed tomographic angiography: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol. 2010;55(23):2663–99.

    Article  PubMed  Google Scholar 

  37. Taylor AJ, Cerqueira M, Hodgson JM, Mark D, Min J, O’Gara P, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 Appropriate Use Criteria for Cardiac Computed Tomography. A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. Circulation. 2010;122(21):e525–55.

    PubMed  Google Scholar 

  38. Mao SS, Pal RS, McKay CR, Gao YG, Gopal A, Ahmadi N, et al. Comparison of coronary artery calcium scores between electron beam computed tomography and 64-multidetector computed tomographic scanner. J Comput Assist Tomogr. 2009;33(2):175–8.

    Article  PubMed  Google Scholar 

  39. Gepner A, Young R, Delaney J, Budoff M, Polak J, Blaha M, et al. Comparison of Carotid Plaque Score and Coronary Artery Calcium Score for Predicting Cardiovascular Disease Events: The Multi-Ethnic Study of Atherosclerosis. J Am Heart Assoc. 2017;6:e005179.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Taylor AJ, Bindeman J, Feuerstein I, Cao F, Brazaitis M, O’Malley PG. Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors: mean three-year outcomes in the Prospective Army Coronary Calcium (PACC) project. J Am Coll Cardiol. 2005;46(5):807–14.

    Article  CAS  PubMed  Google Scholar 

  41. Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–45.

    Article  CAS  PubMed  Google Scholar 

  42. Kim HW, Farzaneh-Far A, Klem I, Rehwald W, Kim RJ. Magnetic Resonance of the Heart. In: Fuster V, Walsh R, Harrington RA, editors. Hurst’s the heart. 13th ed. New York: McGraw Hill; 2011. p. 631–66.

    Google Scholar 

  43. Captur G, Manisty C, Moon J. Cardiac MRI evaluation of myocardial disease. Heart Asia. 2016;102:1429–35.

    Article  Google Scholar 

  44. Bruder O, Wagner A, Lombardi M, Schwitter J, van Rossum A, Pilz G, et al. European Cardiovascular Magnetic Resonance (EuroCMR) registry – multi national results from 57 centers in 15 countries. J Cardiovasc Magn Reson. 2013;15:9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schwitter J, Wacker C, van Rossum A, Lombardi M, Al-Saadi N, Ahlstrom H, et al. MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J. 2008;29:480–9.

    Article  PubMed  Google Scholar 

  46. Schwitter J, Wacker C, Wilke N, Al-Saadi N, Sauer E, Huettle K, et al. MR-IMPACT II: Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary artery disease Trial: perfusion-cardiac magnetic resonance vs. single-photon emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial. Eur Heart J. 2013;34:775–81.

    Article  PubMed  Google Scholar 

  47. Vincenti G, Masci P, Monney P, Rutz T, Hugelshofer S, Gaxherri M, et al. Stress perfusion CMR in patients with known and suspected CAD: prognostic value and optimal ischemic threshold for revascularization. JACC Cardiovasc Imaging. 2017;10:526–37.

    Article  PubMed  Google Scholar 

  48. Richter J, Dengler A, Mohammed EG, Ali GM, Abdel-Rahim I, Kaiser C, et al. Results of echocardiographic examinations in a regional hospital of central Sudan. Trans R Soc Trop Med Hyg. 1990;84(5):749–52.

    Article  CAS  PubMed  Google Scholar 

  49. Anabwani GM, Bonhoeffer P. Prevalence of heart disease in school children in rural Kenya using colour-flow echocardiography. East Afr Med J. 1996;73(4):215–7.

    CAS  PubMed  Google Scholar 

  50. Marijon E, Ou P, Celermajer DS, Ferreira B, Mocumbi AO, Jani D, et al. Prevalence of rheumatic heart disease detected by echocardiographic screening. N Engl J Med. 2007;357(5):470–6.

    Article  CAS  PubMed  Google Scholar 

  51. Carapetis JR, Hardy M, Fakakovikaetau T, Taib R, Wilkinson L, Penny DJ, et al. Evaluation of a screening protocol using auscultation and portable echocardiography to detect asymptomatic rheumatic heart disease in Tongan schoolchildren. Nat Clin Pract Cardiovasc Med. 2008;5(7):411–7.

    Article  PubMed  Google Scholar 

  52. Saxena A, Ramakrishnan S, Roy A, Seth S, Krishnan A, Misra P, et al. Prevalence and outcome of subclinical rheumatic heart disease in India: the RHEUMATIC (Rheumatic Heart Echo Utilisation and Monitoring Actuarial Trends in Indian Children) study. Heart. 2011;97(24):2018–22.

    Article  PubMed  Google Scholar 

  53. Reeves BM, Kado J, Brook M. High prevalence of rheumatic heart disease in Fiji detected by echocardiography screening. J Paediatr Child Health. 2011;47(7):473–8.

    Article  PubMed  Google Scholar 

  54. Remenyi B, Wilson N, Steer A, Ferreira B, Kado J, Kumar K, et al. World Heart Federation criteria for echocardiographic diagnosis of rheumatic heart disease – an evidence-based guideline. Nat Rev Cardiol. 2012;9:297–309.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lu J, Sable C, Ensing G, Webb C, Scheel J, Aliku T, et al. Simplified rheumatic heart disease screening criteria for handheld echocardiography. Am J Soc Echocardiogr. 2015;28:463–9.

    Article  Google Scholar 

  56. Engelman D, Kado JH, Reményi B, Colquhoun SM, Carapetis JR, Donath S, et al. Focused cardiac ultrasound screening for rheumatic heart disease by briefly trained health workers: a study of diagnostic accuracy. Lancet Glob Health. 2016;4:e386–94.

    Article  PubMed  Google Scholar 

  57. Beaton A, Nascimento B, Diamantino A, Pereira G, Lopes E, Miri C, et al. Efficacy of a Standardized Computer-Based Training Curriculum to Teach Echocardiographic Identification of Rheumatic Heart Disease to Nonexpert Users. Am J Cardiol. 2016;117:1783–9.

    Article  PubMed  Google Scholar 

  58. Spitzer E, Mercado J, Islas F, Rothenbühler M, Kurmann R, Zürcher F, et al. Screening for Rheumatic Heart Disease among Peruvian Children: A Two-Stage Sampling Observational Study. PLoS One. 2015;10:e0133004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Yacoub S, Lang HJ, Shebbe M, Timbwa M, Ohuma E, Tulloh R, et al. Cardiac function and hemodynamics in Kenyan children with severe malaria. Crit Care Med. 2010;38(3):940–5.

    Article  PubMed  Google Scholar 

  60. Kobal SL, Lee SS, Willner R, Aguilar Vargas FE, Luo H, Watanabe C, et al. Hand-carried cardiac ultrasound enhances healthcare delivery in developing countries. Am J Cardiol. 2004;94(4):539–41.

    Article  PubMed  Google Scholar 

  61. Sicari R, Galderisi M, Voigt JU, Habib G, Zamorano JL, Lancellotti P, et al. The use of pocket-size imaging devices: a position statement of the European Association of Echocardiography. Eur J Echocardiogr. 2011;12(2):85–7.

    Article  PubMed  Google Scholar 

  62. Liebo MJ, Israel RL, Lillie EO, Smith MR, Rubenson DS, Topol EJ. Is pocket mobile echocardiography the next-generation stethoscope? A cross-sectional comparison of rapidly acquired images with standard transthoracic echocardiography. Ann Int Med. 2011;155(1):33–8.

    Article  PubMed  Google Scholar 

  63. Prinz C, Voigt JU. Diagnostic accuracy of a hand-held ultrasound scanner in routine patients referred for echocardiography. J Am Soc Echocardiogr. 2011;24(2):111–6.

    Article  PubMed  Google Scholar 

  64. Choi BG, Mukherjee M, Dala P, Young HA, Tracy CM, Katz RJ, et al. Interpretation of remotely downloaded pocket-size cardiac ultrasound images on a web-enabled smartphone: validation against workstation evaluation. J Am Soc Echocardiogr. 2011;24(12):1325–30.

    Article  PubMed  Google Scholar 

  65. Singh S, Bansal M, Maheshwari P, Adams D, Sengupta S, Price R, et al. American Society of Echocardiography: Remote Echocardiography with Web-Based Assessments for Referrals at a Distance (ASE-REWARD) study. J Am Soc Echocardiogr. 2013;26:221–33.

    Article  PubMed  Google Scholar 

  66. Babalola RO, Ajayi AA. A cross-sectional study of echocardiographic indices, treadmill exercise capacity and microvascular complications in Nigerian patients with hypertension associated with diabetes mellitus. Diabetic Med. 1992;9(10):899–903.

    Article  CAS  PubMed  Google Scholar 

  67. Ajayi AA, Balogun MO, Ajayi AT. Correlation among radiologic, echocardiographic indices and self paced-exercise capacity in heart failure. Int J Cardiol. 1990;27(1):135–7.

    Article  CAS  PubMed  Google Scholar 

  68. Oyati IA, Danbauchi SS, Alhassan MA, Isa MS. Diastolic dysfunction in persons with hypertensive heart failure. J Nat Med Assoc. 2004;96(7):968–73.

    Google Scholar 

  69. Jaiyesimi F, Antia AU. Childhood rheumatic heart disease in Nigeria. Trop Geograph Med. 1981;33(1):8–13.

    CAS  Google Scholar 

  70. Adesanya CO. M-mode echocardiography in the diagnosis of mitral stenosis. Niger Med J. 1979;9(5–6):533–7.

    CAS  PubMed  Google Scholar 

  71. Muddu M, Mutebi E, Mondo C. Prevalence, types and factors associated with echocardiographic abnormalities among newly diagnosed diabetic patients at Mulago Hospital. Afr Health Sci. 2016;16:183–93.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chelo D, Nguefack F, Menanga A, Ngo Um S, Gody J, Tatah S, et al. Spectrum of heart diseases in children: an echocardiographic study of 1666 subjects in a pediatric hospital, Yaounde, Cameroon. Cardiovasc Diagn Ther. 2016;6:10–9.

    PubMed  PubMed Central  Google Scholar 

  73. Ogah OS, Adebanjo AT, Otukoya AS, Jagusa TJ. Echocardiography in Nigeria: use, problems, reproducibility and potentials. Cardiovasc Ultrasound. 2006;4:13.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zaidi H. Medical physics in developing countries: looking for a better world. Biomed Imaging Intervent J. 2008;4(1):e29.

    CAS  Google Scholar 

  75. Lele VR, Soman P. Nuclear cardiology in India and the developing world: opportunities...and challenges! J Nucl Cardiol. 2009;16(3):348–50.

    Article  PubMed  Google Scholar 

  76. Vitola JV, Shaw LJ, Allam AH, Orellana P, Peix A, Ellmann A, et al. Assessing the need for nuclear cardiology and other advanced cardiac imaging modalities in the developing world. J Nucl Cardiol. 2009;16(6):956–61.

    Article  PubMed  Google Scholar 

  77. Cerci J, Trinidade E, Preto D, Cerci R, Lemos P, Cesar L, et al. Investigation route of the coronary patient in the public health system in Curitiba, São Paulo and in InCor – IMPACT study. Arq Bras Cardiol. 2014;103:192–200.

    PubMed  PubMed Central  Google Scholar 

  78. Rehani M. The IAEA’s activities on radiation protection in interventional cardiology. Biomed Imaging Interv J. 2007;3(2):e31.

    PubMed  PubMed Central  Google Scholar 

  79. Vitola J, Mut F, Alexánderson E, Pascual T, Mercuri M, Karthikeyan G, et al. INCAPS Investigators Group. Opportunities for improvement on current nuclear cardiology practices and radiation exposure in Latin America: Findings from the 65-country IAEA Nuclear Cardiology Protocols cross-sectional Study (INCAPS). J Nucl Cardiol. 2017;24(3):851–9.

    Article  PubMed  Google Scholar 

  80. SonoWorld Website. Available at: http://www.sonoworld.com/. Accessed 10 June 2017.

  81. Vitola J. Nuclear cardiology and CVD in the developing world: Are we applying our scarce resources appropriately? Why is our mortality rate so high? J Nucl Cardiol. 2016;23:1166–70.

    Article  PubMed  Google Scholar 

  82. Dos Santos M, Santos M, Tura B, Félix R, Brito A, De Lorenzo A. Budget impact of applying appropriateness criteria for myocardial perfusion scintigraphy: The perspective of a developing country. J Nucl Cardiol. 2016;23:1160–5.

    Article  PubMed  Google Scholar 

  83. Ladapo J, Blecker S, O’Donnell M, Jumkhawala S, Douglas P. Appropriate use of cardiac stress testing with imaging: a systematic review and meta-analysis. PLoS One. 2016;11:e0161153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Rashid U, Qureshi A, Hyder S, Sadiq M. Pattern of congenital heart disease in a developing country tertiary care center: factors associated with delayed diagnosis. Ann Pediatr Cardiol. 2016;9:210–5.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mocumbi AO, Lameira E, Yaksh A, Paul L, Ferreira MB, Sidi D. Challenges on the management of congenital heart disease in developing countries. Int J Cardiol. 2011;148(3):285–8.

    Article  PubMed  Google Scholar 

  86. Sliwa K, Wilkinson D, Hansen C, Ntyintyane L, Tibazarwa K, Becker A, et al. Spectrum of heart disease and risk factors in a black urban population in South Africa (the Heart of Soweto Study): a cohort study. Lancet. 2008;371(9616):915–22.

    Article  PubMed  Google Scholar 

  87. Kwan G, Bukhman A, Miller A, Ngoga G, Mucumbitsi J, Bavuma C, et al. A simplified echocardiographic strategy for heart failure diagnosis and management within an integrated noncommunicable disease clinic at district hospital level for sub-Saharan Africa. JACC Heart Fail. 2013;1:230–6.

    Article  PubMed  Google Scholar 

  88. Yankah C, Fynn-Thompson F, Antunes M, Edwin F, Yuko-Jowi C, Mendis S, et al. Cardiac surgery capacity in sub-Saharan Africa: quo vadis? Thorac Cardiovasc Surg. 2014;62:393–401.

    Article  PubMed  Google Scholar 

  89. Tantchou Tchoumi JC, Ambassa JC, Chelo D, Djimegne FK, Giamberti A, Cirri S, et al. Pattern and clinical aspects of congenital heart diseases and their management in Cameroon. Bull Soc Pathol Exot. 2011;104(1):25–8.

    Article  CAS  PubMed  Google Scholar 

  90. Haddad N, Bittar OJ, Pereira AA, da Silva MB, Amato VL, Farsky PS, et al. Consequences of the prolonged waiting time for patient candidates for heart surgery. Arq Bras Cardiol. 2002;78(5):452–65.

    Article  PubMed  Google Scholar 

  91. Edwin F, Sereboe LA, Tettey MM, Aniteye EA, Kotei DA, Tamatey MM, et al. Experience from a single centre concerning the surgical spectrum and outcome of adolescents and adults with congenitally malformed hearts in West Africa. Cardiol Young. 2010;20(2):159–64.

    Article  PubMed  Google Scholar 

  92. Mirabel M, Lachaud M, Offredo L, Lachaud C, Zuschmidt B, Ferreira B, et al. Cardiac surgery in low-income settings: 10 years of experience from two countries. Arch Cardiovasc Dis. 2017;110:82–90.

    Article  PubMed  Google Scholar 

  93. Cameron A, Ewen M, Ross-Degnan D, Ball D, Laing R. Medicine prices, availability, and affordability in 36 developing and middle-income countries: a secondary analysis. Lancet. 2009;373(9659):240–9.

    Article  CAS  PubMed  Google Scholar 

  94. Mendis S, Fukino K, Cameron A, Laing R, Filipe A Jr, Khatib O, et al. The availability and affordability of selected essential medicines for chronic diseases in six low- and middle-income countries. Bull World Health Organization. 2007;85(4):279–88.

    Article  Google Scholar 

  95. Kishore SP, Vedanthan R, Fuster V. Promoting global cardiovascular health ensuring access to essential cardiovascular medicines in low- and middle-income countries. J Am Coll Cardiol. 2011;57(20):1980–7.

    Article  PubMed  Google Scholar 

  96. Mollura D, Shah N, Mazal J. White paper report of the 2013 RAD-AID conference: improving radiology in resource-limited regions and developing countries. J Am Coll Radiol. 2014;11:913–9.

    Article  PubMed  Google Scholar 

  97. LaBounty TM, Kim RJ, Lin FY, Budoff MJ, Weinsaft JW, Min JK. Diagnostic accuracy of coronary computed tomography angiography as interpreted on a mobile handheld phone device. JACC Cardiovasc Imaging. 2010;3(5):482–90.

    Article  PubMed  Google Scholar 

  98. Finn JP, Saleh R, Thesen S, Ruehm SG, Lee MH, Grinstead J, et al. MR imaging with remote control: feasibility study in cardiovascular disease. Radiology. 2006;241(2):528–37.

    Article  PubMed  Google Scholar 

  99. Sturke R, Vorkoper S, Duncan K, Levintova M, Parascondola M. Addressing NCDs through research and capacity building in LMICs: lessons learned from tobacco control. Glob Health Action. 2016;9:32407.

    Article  PubMed  Google Scholar 

  100. Fuster V, Kelly BB, Vedanthan R. Global cardiovascular health: urgent need for an intersectoral approach. J Am Coll Cardiol. 2011;58(12):1208–10.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian G. Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Michelis, K.C., Narotsky, D.L., Choi, B.G. (2019). Cardiovascular Imaging in Global Health Radiology. In: Mollura, D., Culp, M., Lungren, M. (eds) Radiology in Global Health. Springer, Cham. https://doi.org/10.1007/978-3-319-98485-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98485-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98484-1

  • Online ISBN: 978-3-319-98485-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics