Skip to main content

Immunosuppression, Including Drug Toxicity, Interactions, New Immunosuppressants in the Pipeline

  • Chapter
  • First Online:

Part of the book series: Cardiovascular Medicine ((CVM))

Abstract

The success of organ transplantation depends on the prevention of the allograft rejection with immunosuppression. The three types of rejections are hyperacute, acute, and chronic and are categorized by when the rejection occurs, and the mechanisms of organ injury. The type of tissue, specificity and memory of the lymphocytes, and the type of organ being transplanted are factors that dictate the risk of the type of rejection that may occur.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Change history

  • 11 April 2019

    The original version of this chapter was revised. This chapter was inadvertently published with incorrect author name “Denise Wanga” instead of “Denise Wang”.

References

  1. Eng HS, Leffell MS. Histocompatibility testing after fifty years of transplantation. J Immunol Methods. 2011;369(1–2):1–21.

    Article  CAS  PubMed  Google Scholar 

  2. Wang D, Matsumoto R, You Y, et al. CD3/CD28 costimulation-induced NF-kappaB activation is mediated by recruitment of protein kinase C-theta, Bcl10, and IkappaB kinase beta to the immunological synapse through CARMA1. Mol Cell Biol. 2004;24:164–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Halloran PF. Immunosuppressive drugs for kidney transplantation. N Engl J Med. 2004;351:2715–29.

    Article  CAS  PubMed  Google Scholar 

  4. Robertson H, Ali S, McDonnell BJ, Burt AD, Kirby JA. Chronic renal allograft dysfunction: the role of T cell-mediated tubular epithelial to mesenchymal cell transition. J Am Soc Nephrol. 2004;15:390–7.

    Article  PubMed  Google Scholar 

  5. Halloran PF, Melk A, Barth C. Rethinking chronic allograft nephropathy: the concept of accelerated senescence. J Am Soc Nephrol. 1999;10:167–81.

    Article  CAS  PubMed  Google Scholar 

  6. Raichlin E, Bae JH, Khalpey Z, et al. Conversion to sirolimus as primary immunosuppression attenuates the progression of allograft vasculopathy after cardiac transplantation. Circulation. 2007;116:2726–33.

    Article  CAS  PubMed  Google Scholar 

  7. Sanchez-Fructuoso AI, Sanchez-Fructuoso AI. Everolimus: an update on the mechanism of action, pharmacokinetics and recent clinical trials. Expert Opin Drug Metab Toxicol. 2008;4:807–19.

    Article  CAS  PubMed  Google Scholar 

  8. Carr SF, Papp E, Wu JC, et al. Characterization of human type I and type II IMP dehydrogenases. J Biol Chem. 1993;268:27286–90.

    Article  CAS  PubMed  Google Scholar 

  9. Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Taylor D, Meiser B, Webber S. The international society of heart and lung transplantation guidelines for the care of heart transplant recipients task force 2: immunosuppression and rejection (Nov. 8, 2010).

    Google Scholar 

  11. Lund LH, Edwards LB, Kucheryavaya AY, et al. The registry of the International Society for Heart and Lung Transplantation: thirty-second official adult heart transplantation report–2015; focus theme: early graft failure. J Heart Lung Transplant. 2015;34:1244.

    Article  PubMed  Google Scholar 

  12. Bourdage JS, Hamlin DM. Comparative polyclonal antithymocyte globulin and antilymphocyte/antilymphoblast globulin anti-CD antigen analysis by flow cytometry. Transplantation. 1995;59(8):1194–200.

    Article  CAS  PubMed  Google Scholar 

  13. Rebellato LM, Gross U, Verbanac KM, Thomas JM. A comprehensive definition of the major antibody specificities in polyclonal rabbit antithymocyte globulin. Transplantation. 1994;57(5):685–94.

    Article  CAS  PubMed  Google Scholar 

  14. Genestier L, Fournel S, Flacher M, Assossou O, Revillard JP, Bonnefoy-Berard N. Induction of Fas (Apo-1, CD95) mediated apoptosis of activated lymphocytes by polyclonal antithymocyte globulins. Blood. 1998;91(7):2360–8.

    Article  CAS  PubMed  Google Scholar 

  15. Crespo-Leiro MG, Alonso-Pulpon L, Arizon JM, et al. Influence of induction therapy, immunosuppressive regimen and anti-viral prophylaxis on development of lymphomas after heart transplantation: data from the Spanish post-heart transplant tumour registry. J Heart Lung Transplant. 2007;26(11):1105–9.

    Article  PubMed  Google Scholar 

  16. Carrier M, White M, Perrault LP, et al. A 10-year experience with intravenous thymoglobuline in induction of immunosuppression following heart transplantation. J Heart Lung Transplant. 1999;18(12):1218–23.

    Article  CAS  PubMed  Google Scholar 

  17. Zuckermann AO, Grimm M, Czerny M, et al. Improved long-term results with thymoglobuline induction therapy after cardiac transplantation: a comparison of two different rabbit-antithymocyte globulines. Transplantation. 2000;69(9):1890–8.

    Article  CAS  PubMed  Google Scholar 

  18. Schnetzler B, Leger P, Volp A, Dorent R, Pavie A, Gandjbakhch I. A prospective randomized controlled study on the efficacy and tolerance of two antilymphocytic globulins in the prevention of rejection in first-heart transplant recipients. Transpl Int. 2002;15(6):317–25.

    Article  CAS  PubMed  Google Scholar 

  19. Koch A, Daniel V, Dengler TJ, Schnabel PA, Hagl S, Sack FU. Effectivity of a T-cell-adapted induction therapy with anti-thymocyte globulin (Sangstat). J Heart Lung Transplant. 2005;24(6):708–13.

    Article  PubMed  Google Scholar 

  20. Delgado DH, Rao V, Hamel J, Miriuka S, Cusimano RJ, Ross HJ. Monitoring of cyclosporine 2-hour post-dose levels in heart transplantation: improvement in clinical outcomes. J Heart Lung Transplant. 2005;24(9):1343–6.

    Article  PubMed  Google Scholar 

  21. Cantarovich M, Giannetti N, Barkun J, Cecere R. Antithymocyte globulin induction allows a prolonged delay in the initiation of cyclosporine in heart transplant patients with postoperative renal dysfunction. Transplantation. 2004;78(5):779–81.

    Article  CAS  PubMed  Google Scholar 

  22. Mattei MF, Redonnet M, Gandjbakhch I, et al. Lower risk of infectious deaths in cardiac transplant patients receiving basiliximab versus anti-thymocyte globulin as induction therapy. J Heart Lung Transplant. 2007;26(7):693–9.

    Article  PubMed  Google Scholar 

  23. Beniaminovitz A, Itescu S, Lietz K, Donovan M, Burke EM, Groff BD, et al. Prevention of rejection in cardiac transplantation by blockade of the interleukin-2 receptor with a monoclonal antibody. N Engl J Med. 2000;342(9):613–9.

    Article  CAS  PubMed  Google Scholar 

  24. Nashan B, Moore R, Amlot P, Schmidt AG, Abeywickrama K, Soulillou JP. Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. CHIB 201 international study group. Lancet. 1997;350(9086):1193–8.

    Article  CAS  PubMed  Google Scholar 

  25. Hershberger RE, Starling RC, Eisen HJ, et al. Daclizumab to prevent rejection after cardiac transplantation. N Engl J Med. 2005;352(26):2705–13.

    Article  CAS  PubMed  Google Scholar 

  26. Mehra MR, Zucker MJ, Wagoner L, et al. A multicenter, prospective, randomized, double-blind trial of basiliximab in heart transplantation. J Heart Lung Transplant. 2005;24(9):1297–304.

    Article  PubMed  Google Scholar 

  27. Rosenberg PB, Vriesendorp AE, Drazner MH, et al. Induction therapy with basiliximab allows delayed initiation of cyclosporine and preserves renal function after cardiac transplantation. J Heart Lung Transplant. 2005;24(9):1327–31.

    Article  PubMed  Google Scholar 

  28. Almenar L, Garcia-Palomar C, Martinez-Dolz L, et al. Influence of induction therapy on rejection and survival in heart transplantation. Transplant Proc. 2005;37(9):4024–7.

    Article  CAS  PubMed  Google Scholar 

  29. Cuppoletti A, Perez-Villa F, Vallejos I, Roig E. Experience with single-dose daclizumab in the prevention of acute rejection in heart transplantation. Transplant Proc. 2005;37(9):4036–8.

    Article  CAS  PubMed  Google Scholar 

  30. Carlsen J, Johansen M, Boesgaard S, et al. Induction therapy after cardiac transplantation: a comparison of antithymocyte globulin and daclizumab in the prevention of acute rejection. J Heart Lung Transplant. 2005;24(3):296–302.

    Article  PubMed  Google Scholar 

  31. Chou NK, Wang SS, Chen YS, et al. Induction immunosuppression with basiliximab in heart transplantation. Transplant Proc. 2008;40(8):2623–5.

    Article  CAS  PubMed  Google Scholar 

  32. Morris PJ, Russell NK. Alemtuzumab (Campath-1H): a systematic review in organ transplantation. Transplantation. 2006;81:1361.

    Article  PubMed  Google Scholar 

  33. Teuteberg J, Shullo M, Zomak R, et al. Alemtuzumab induction facilitates corticosteroid-free maintenance immunosuppression inhuman cardiac transplantation. J Heart Lung Transplant. 2008;27(2):S201–2.

    Article  Google Scholar 

  34. Adamson R, Obispo E, Dychter S, et al. Long-term outcome with the use of OKT3 induction therapy in heart transplant patients: a single-center experience. Transplant Proc. 1998;30(u):1107–9.

    Article  CAS  PubMed  Google Scholar 

  35. Carrier M, Jenicek M, Pelletier LC. Value of monoclonal antibody OKT3 in solid organ transplantation: a metaanalysis. Transplant Proc. 1992;24(6):2586–91.

    CAS  PubMed  Google Scholar 

  36. Swinnen LJ, Costanzo-Nordin MR, Fisher SG, et al. Increased incidence of lymphoproliferative disorder after immunosuppression with the monoclonal antibody OKT3 in cardiac-transplant recipients. N Engl J Med. 1990;323(25):1723–8.

    Article  CAS  PubMed  Google Scholar 

  37. Opelz G, Dohler B. Lymphomas after solid organ transplantation: a collaborative transplant study report. Am J Transplant. 2004;4(2):222–30.

    Article  PubMed  Google Scholar 

  38. Yamashita M, Katsumata M, Iwashima M, Kimura M, Shimizu C, Kamata T, et al. T cell receptor-induced calcineurin activation regulates T helper type 2 cell development by modifying the interleukin 4 receptor signaling complex. J Exp Med. 2000;191(11):1869–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Meiser BM. The best dosing for initial tacrolimus application is trough level adapted! Transplantation. 2005;79(1):10–1.

    Article  CAS  PubMed  Google Scholar 

  40. Borel JF, Feurer C, Gubler HU, Stahelin H. Biological effects of cyclosporin A: a new antilymphocytic agent. Agents Actions. 1976;6(4):468–75.

    Article  CAS  PubMed  Google Scholar 

  41. Nagao T, White DJ, Calne RY. Kinetics of unresponsiveness induced by a short course of cyclosporin a. Transplantation. 1982;33(1):31–5.

    Article  CAS  PubMed  Google Scholar 

  42. Kostakis A. Early experience with cyclosporine: a historic perspective. Transplant Proc. 2004;36(2 Suppl):22S–4S.

    Article  CAS  PubMed  Google Scholar 

  43. Merrill JP. Publications of John P. Merrill. Nephron. 1978;22(1–3):265–80.

    CAS  PubMed  Google Scholar 

  44. Kahan BD. Cyclosporine: nursing and paraprofessional aspects. Transplant Proc. 1983;15(4 Suppl 1–2):3109–83.

    Google Scholar 

  45. Kahan BD. Cyclosporine: a revolution in transplantation. Transplant Procs. 1999;31(1-2A):14S–5S.

    Article  CAS  Google Scholar 

  46. Oyer PE. Heart transplantation in the cyclosporine era. Ann Thorac Surg. 1988;46(5):489–90.

    Article  CAS  PubMed  Google Scholar 

  47. Wallwork J, McGregor CG, Wells FC, Cory-Pearce R, English TA. Cyclosporin and intravenous sulphadimidine and trimethoprim therapy. Lancet. 1983;1(8320):366–7.

    Article  CAS  PubMed  Google Scholar 

  48. Cabrol C, Gandjbakhch I, Guiraudon G, Pavie A, Villemot JP, Viars P, et al. Heart transplantation. Our experience at the Pitie Hospital in Paris. Bull Acad Natl Med. 1982;166(2):235–50.

    CAS  PubMed  Google Scholar 

  49. Cooney GF, Jeevanandam V, Choudhury S, Feutren G, Mueller EA, Eisen HJ. Comparative bioavailability of Neoral and Sandimmune in cardiac transplant recipients over 1 year. Transplant Proc. 1998;30(5):1892–4.

    Article  CAS  PubMed  Google Scholar 

  50. Eisen HJ, Hobbs RE, Davis SF, et al. Safety, tolerability, and efficacy of cyclosporine microemulsion in heart transplant recipients: a randomized, multicenter, doubleblind comparison with the oil-based formulation of cyclosporine–results at 24 months after transplantation. Transplantation. 2001;71(1):70–8.

    Article  CAS  PubMed  Google Scholar 

  51. Cantarovich M, Ross H, Arizon JM, et al. Benefit of Neoral C2 monitoring in de novo cardiac transplant recipients receiving basiliximab induction. Transplantation. 2008;85(7):992–9.

    Article  CAS  PubMed  Google Scholar 

  52. Barnard JB, Thekkudan J, Richardson S, et al. Cyclosporine profiling with C2 and C0 monitoring improves outcomes after heart transplantation. J Heart Lung Transplant. 2006;25(5):564–8.

    Article  CAS  PubMed  Google Scholar 

  53. Oyer P, Stinson E, Jamieson S, et al. CYA in cardiac transplantation: a 2 1/2 year follow-up. Transplant Proc. 1983;15:2546.

    Google Scholar 

  54. Kino T, Hatanaka H, Miyata S, Inamura N, Nishiyama M, Yajima T, et al. FK-506, a novel immunosuppressant isolated from a streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J Antibiot. 1987;40(9):1256–65.

    Article  CAS  Google Scholar 

  55. Ochiai T, Nakajima K, Nagata M, Suzuki T, Asano T, Uematsu T, et al. Effect of a new immunosuppressive agent, FK 506, on heterotopic cardiac allotransplantation in the rat. Transplant Proc. 1987;19(1 Pt 2):1284–6.

    CAS  PubMed  Google Scholar 

  56. Armitage JM, Kormos RL, Morita S, Fung J, Marrone GC, Hardesty RL, et al. Clinical trial of FK 506 immunosuppression in adult cardiac transplantation. Ann Thorac Surg. 1992;54(2):205–10. discussion 10–1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Armitage JM, Kormos RL, Fung J, Starzl TE. The clinical trial of FK 506 as primary and rescue immunosuppression in adult cardiac transplantation. Transplant Proc. 1991;23(6):3054–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Taylor DO, Barr ML, Meiser BM, Pham SM, Mentzer RM, Gass AL. Suggested guidelines for the use of tacrolimus in cardiac transplant recipients. J Heart Lung Transplant. 2001;20(7):734–8.

    Article  CAS  PubMed  Google Scholar 

  59. Park SI, Felipe CR, Pinheiro-Machado PG, Garcia R, Tedesco-Silva H Jr, Medina-Pestana JO. Circadian and time-dependent variability in tacrolimus pharmacokinetics. Fundam Clin Pharmacol. 2007;21(2):191–7.

    Article  CAS  PubMed  Google Scholar 

  60. Langers P, Press RR, den Hartigh J, et al. Flexible limited sampling model for monitoring tacrolimus in stable patients having undergone liver transplantation with samples 4 to 6 hours after dosing is superior to trough concentration. Ther Drug Monit. 2008;30(4):456–61.

    Article  CAS  PubMed  Google Scholar 

  61. Grimm M, Rinaldi M, Yonan NA, et al. Superior prevention of acute rejection by tacrolimus vs. cyclosporine in heart transplant recipients–a large European trial. Am J Transplant. 2006;6:1387.

    Article  CAS  PubMed  Google Scholar 

  62. Groetzner J, Meiser BM, Schirmer J, et al. Tacrolimus or cyclosporine for immunosuppression after cardiac transplantation: which treatment reveals more side effects during long-term follow-up? Transplant Proc. 2001;33:1461.

    Article  PubMed  Google Scholar 

  63. Meiser BM, Uberfuhr P, Fuchs A, et al. Single-center randomized trial comparing tacrolimus (FK506) and cyclosporine in the prevention of acute myocardial rejection. J Heart Lung Transplant. 1998;17:782.

    CAS  PubMed  Google Scholar 

  64. Reichart B, Meiser B, Viganò M, et al. European multicenter Tacrolimus (FK506) heart pilot study: one-year results–European Tacrolimus multicenter heart study group. J Heart Lung Transplant. 1998;17:775.

    CAS  PubMed  Google Scholar 

  65. Taylor DO, Barr ML, Radovancevic B, et al. A randomized, multicenter comparison of tacrolimus and cyclosporine immunosuppressive regimens in cardiac transplantation: decreased hyperlipidemia and hypertension with tacrolimus. J Heart Lung Transplant. 1999;18:336.

    Article  CAS  PubMed  Google Scholar 

  66. Kobashigawa JA, Stevenson LW, Brownfield ED, Gleeson MP, Moriguchi JD, Kawata N, et al. Corticosteroid weaning late after heart transplantation: relation to HLA-DR mismatching and long-term metabolic benefits. J Heart Lung Transplant. 1995;14(5):963–7.

    CAS  PubMed  Google Scholar 

  67. Dipchand AI, Rossano JW, Edwards LB, et al. The registry of the International Society for Heart and Lung Transplantation: eighteenth official pediatric heart transplantation report—2015; focus theme: early graft failure. J Heart Lung Transplant. 2015;34:1233–43.

    Article  PubMed  Google Scholar 

  68. Cross SA, Perry CM. Tacrolimus once-daily formulation: in the prophylaxis of transplant rejection in renal or liver allograft recipients. Drugs. 2007;67(13):1931–43.

    Article  CAS  PubMed  Google Scholar 

  69. Alloway R, Steinberg S, Khalil K, et al. Two years postconversion from a prograf-based regimen to a oncedaily tacrolimus extended-release formulation in stable kidney transplant recipients. Transplantation. 2007;83(12):1648–51.

    Article  CAS  PubMed  Google Scholar 

  70. Florman S, Alloway R, Kalayoglu M, et al. Once-daily tacrolimus extended release formulation: experience at 2 years postconversion from a Prograf-based regimen in stable liver transplant recipients. Transplantation. 2007;83(12):1639–42.

    Article  CAS  PubMed  Google Scholar 

  71. Allison AC, Eugui EM. Purine metabolism and immunosuppressive effects of mycophenolate mofetil (MMF). Clin Transpl. 1996;10:77–84.

    CAS  Google Scholar 

  72. Giblett ER, Anderson JE, Cohen F, Pollara B, Meuwissen HJ. Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet. 1972;2:1067–9.

    Article  CAS  PubMed  Google Scholar 

  73. Allison AC, Hovi T, Watts RWE, Webster ADB. Immunological observations on patients with the Lesch-Nyhan syndrome, and on the role of de-novo purine synthesis in lymphocyte transformation. Lancet. 1975;2:1179–83.

    Article  CAS  PubMed  Google Scholar 

  74. Blaheta RA, Leckel K, Wittig B, et al. Mycophenolate mofetil impairs transendothelial migration of allogeneic CD4 and CD8 T-cells. Transplant Proc. 1999;31:1250–2.

    Article  CAS  PubMed  Google Scholar 

  75. Morath C, Schwenger V, Beimler J, et al. Antifibrotic actions of mycophenolic acid. Clin Transpl. 2006;20:25–9.

    Article  Google Scholar 

  76. Meier-Kriesche HU, Steffen BJ, Hochberg AM, et al. Long-term use of mycophenolate mofetil is associated with a reduction in the incidence and risk of late rejection. Am J Transplant. 2003;3:68–73.

    Article  CAS  PubMed  Google Scholar 

  77. Gourishankar S, Hunsicker LG, Jhangri GS, Cockfield SM, Halloran PF. The stability of the glomerular filtration rate after renal transplantation is improving. J Am Soc Nephrol. 2003;14:2387–94.

    Article  PubMed  Google Scholar 

  78. CellCept [package insert]. South San Francisco: Genentech USA, Inc.; 2015.

    Google Scholar 

  79. Myfortic [package insert]. East Hanover: Novartis Pharmaceutical Corporation; 2016.

    Google Scholar 

  80. Prednisone [package insert]. Columbus: Roxane Laboratories; 2012.

    Google Scholar 

  81. Lindenfeld J, Miller GG, Shakar SF, et al. Drug therapy in the heart transplant recipient: part I: cardiac rejection and immunosuppressive drugs. Circulation. 2004;110:3734–40.

    Article  PubMed  Google Scholar 

  82. Lindenfeld J, Miller GG, Shakar SF, et al. Drug therapy in the heart transplant recipient: part II: immunosuppressive drugs. Circulation. 2004;110:3858–65.

    Article  CAS  PubMed  Google Scholar 

  83. Grad I, Picard D. The glucocorticoid responses are shaped by molecular chaperones. Mol Cell Endocrinol. 2007;275(1–2):2–12.

    Article  CAS  PubMed  Google Scholar 

  84. Lamming DW, Ye L, Katajisto P, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, Davis JG, Salmon AB, Richardson A, Ahima RS, Guertin DA, Sabatini DM, Baur JA, et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science. 2012;335(6076):1638–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rapamune [package insert]. Philadelphia: Wyeth Pharmaceuticals Inc.; 2015.

    Google Scholar 

  86. MacDonald AS. A worldwide, phase III, randomized, controlled, safety and efficacy study of a sirolimus/cyclosporine regimen for prevention of acute rejection in recipients of primary mismatched renal allografts. Transplantation. 2001;71:271–80.

    Article  CAS  PubMed  Google Scholar 

  87. Afinitor [package insert]. East Hanover: Novartis Pharmaceuticals Corp.; 2016.

    Google Scholar 

  88. Rosing K, Fobker M, Kannenberg F, Gunia S, Dell’aquila AM, Kwiecien R, Nofer J. Everolimus therapy is associated with reduced lipoprotein-associated phospholipase A2 (Lp-Pla2) activity and oxidative stress in heart transplant recipients. Atherosclerosis. 2013;230(1):164–70.

    Article  CAS  PubMed  Google Scholar 

  89. Hiemann NE, Wellnhofer E, Lehmkuhl HB, Knosalla C, Hetzer R, Meyer R. Everolimus prevents endomyocardial remodeling after heart transplantation. Transplantation. 2011;92:1165e72.

    Article  CAS  Google Scholar 

  90. Jensen L, Thayssen P, Christiansen E, et al. Safety and efficacy of Everolimus- versus Sirolimus-eluting stents: 5-year results from SORT OUT IV. J Am Coll Cardiol. 2016;67(7):751–62.

    Article  CAS  PubMed  Google Scholar 

  91. Eisen HJ, Tuzcu EM, Dorent R, Kobashigawa J, Mancini D, Valantine-Von Kaeppler HA, Starling RC, Sorensen K, Hummel M, Lind JM, Abeywickrama KH, Bernhardt P. Everolimus for the prevention of allograft rejection and vasculopathy in cardiac transplant recipients. N Engl J Med. 2003;349:847–58.

    Article  CAS  PubMed  Google Scholar 

  92. Eisen HJ, Kobashigawa J, Starling RC, Pauly DF, Kfoury A, Ross H, Wang SS, Cantin B, Van Bakel A, Ewald G, Hirt S, Lehmkuhl H, Keogh A, Rinaldi M, Potena L, Zuckermann A, Dong G, Cornu-Artis C, Lopez P. Everolimus versus mycophenolate mofetil in heart transplantation: a randomized, multicenter trial. Am J Transplant. 2013;13:1203–16.

    Article  CAS  PubMed  Google Scholar 

  93. Kobashigawa JA, Pauly DF, Starling RC, Eisen H, Ross H, Wang SS, Cantin B, Hill JA, Lopez P, Dong G, Nicholls SJ. A2310 IVUS substudy investigators. Cardiac allograft vasculopathy by intravascular ultrasound in heart transplant patients: substudy from the everolimus versus mycophenolate mofetil randomized, multicenter trial. JACC Heart Fail. 2013;5:389–99.

    Article  Google Scholar 

  94. Andreassen AK, Andersson B, Gustafsson F, Eiskjaer H, Rådegran G, Gude E, Jansson K, Solbu D, Karason K, Arora S, Dellgren G, Gullestad L, SCHEDULE investigators. Everolimus initiation with early Calcineurin inhibitor withdrawal in De novo heart transplant recipients: three-year results from the randomized SCHEDULE study. Am J Transplant. 2016;4:1238–47.

    Article  CAS  Google Scholar 

  95. Chandraker A, Kobashigawa J, Stehlik J, Givertz M, Pierson R, Pinney S, Joren M, Nissen S, Guleria I, Morrison Y, Armstrong B, Bridges N, Sayegh M, Starling R. Rituximab induction in cardiac transplantation is associated with accelerated coronary artery vasculopathy: CTOT11. [abstract]. Am J Transplant. 2016; 16 (suppl 3).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard J. Eisen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, D., Meiser, B., Eisen, H.J., Eifert, S. (2019). Immunosuppression, Including Drug Toxicity, Interactions, New Immunosuppressants in the Pipeline. In: Feldman, D., Mohacsi, P. (eds) Heart Failure. Cardiovascular Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-98184-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98184-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98182-6

  • Online ISBN: 978-3-319-98184-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics