Skip to main content

Fine-Tuning the Stem Cell Fate by Autophagy

  • Chapter
  • First Online:
Autophagy in Health and Disease

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 640 Accesses

Abstract

A constant balance is required between the anabolic and catabolic process to maintain cellular homeostasis. The cellular processing of cytoplasmic components by autophagy is the major pathway for intracellular degradation and recycling. Autophagy plays an important role in maintaining cellular homeostasis and tissue remodeling during normal development. Basal level of autophagy is prevalent in most tissues and it adds to the normal turnover of cytoplasmic components in the cell. Autophagy is also associated with health and longevity of dividing and differentiated cells. Dysregulation of autophagic pathways have been linked with the pathogenesis of diseases like cancer and various neurodegenerative disorders. The stem cells are a unique population of cells in the body having a high longevity and differentiation ability; hence autophagy is predicted to play a crucial role in maintenance of cellular homeostasis of these cells. Extensive information elucidating the function of autophagy in somatic cells is available but in contrast, the implication of autophagy in maintenance as well as differentiation of stem cells is being revealed recently. In this chapter, we discuss the recent updates in our knowledge of stem cell differentiation, quiescence, and the role of autophagy in their regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AKT:

Serine/threonine kinase 3

APL:

Acute promyelocytic leukemia

ATG:

Autophagy-related gene

bFGF:

Basic fibroblast growth factor

BMMSC:

Bone marrow-derived mesenchymal stem cells

CSC:

Cancer stem cells

EGF:

Epidermal growth factor

ESC:

Embryonic stem cells

FIP200:

FAK-family interacting protein 200

HGF:

Hepatocyte growth factor

HSC:

Hematopoietic stem cells

IBMX:

Isobutyl methyl xanthine

LC3:

Light chain 3

MAPK:

Mitogen-activated protein kinase

OSM:

Oncostatin M

PDGF:

Platelet-derived growth factor

PI3:

Phosphatidylinositol 3-kinase

PPAR:

Peroxisome proliferator activator receptor

ROS:

Reactive oxygen species

SC:

Stem cell

STAT3:

Signal transducer and activator of transcription

References

  1. Gandia C, Arminan A, Garcia-Verdugo JM, Lledo E, Ruiz A, Minana MD, et al. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells. 2008;26(3):638–45.

    Article  PubMed  Google Scholar 

  2. Nosrat IV, Widenfalk J, Olson L, Nosrat CA. Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol. 2001;238(1):120–32.

    Article  CAS  PubMed  Google Scholar 

  3. Kumar A, Kumar V, Rattan V, Jha V, Bhattacharyya S. Secretome cues modulate the neurogenic potential of bone marrow and dental stem cells. Mol Neurobiol. 2017;54(6):4672–82.

    Article  CAS  PubMed  Google Scholar 

  4. Kumar A, Kumar V, Rattan V, Jha V, Pal A, Bhattacharyya S. Molecular spectrum of secretome regulates the relative hepatogenic potential of mesenchymal stem cells from bone marrow and dental tissue. Sci Rep. 2017;7(1):15015.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bhattacharyya S, Kumar A, Lal Khanduja K. The voyage of stem cell toward terminal differentiation: a brief overview. Acta Biochim Biophys Sin (Shanghai). 2012;44(6):463–75.

    Article  CAS  Google Scholar 

  6. Pera MF, Tam PP. Extrinsic regulation of pluripotent stem cells. Nature. 2010;465(7299):713–20.

    Article  CAS  PubMed  Google Scholar 

  7. Xiao Y, Peperzak V, van Rijn L, Borst J, de Bruijn JD. Dexamethasone treatment during the expansion phase maintains stemness of bone marrow mesenchymal stem cells. J Tissue Eng Regen Med. 2010;4(5):374–86.

    Article  CAS  PubMed  Google Scholar 

  8. Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol. 2006;7(12):885–96.

    Article  CAS  PubMed  Google Scholar 

  9. Scott MA, Nguyen VT, Levi B, James AW. Current methods of adipogenic differentiation of mesenchymal stem cells. Stem Cells Dev. 2011;20(10):1793–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ailhaud G. Adipose cell differentiation in culture. Mol Cell Biochem. 1982;49(1):17–31.

    Article  CAS  PubMed  Google Scholar 

  11. Qiu Z, Wei Y, Chen N, Jiang M, Wu J, Liao K. DNA synthesis and mitotic clonal expansion is not a required step for 3T3-L1 preadipocyte differentiation into adipocytes. J Biol Chem. 2001;276(15):11988–95.

    Article  CAS  PubMed  Google Scholar 

  12. Janderova L, McNeil M, Murrell AN, Mynatt RL, Smith SR. Human mesenchymal stem cells as an in vitro model for human adipogenesis. Obes Res. 2003;11(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  13. Gurriaran-Rodriguez U, Al-Massadi O, Roca-Rivada A, Crujeiras AB, Gallego R, Pardo M, et al. Obestatin as a regulator of adipocyte metabolism and adipogenesis. J Cell Mol Med. 2011;15(9):1927–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim SP, Ha JM, Yun SJ, Kim EK, Chung SW, Hong KW, et al. Transcriptional activation of peroxisome proliferator-activated receptor-gamma requires activation of both protein kinase A and Akt during adipocyte differentiation. Biochem Biophys Res Commun. 2010;399(1):55–9.

    Article  CAS  PubMed  Google Scholar 

  15. Glaser T, Brustle O. Retinoic acid induction of ES-cell-derived neurons: the radial glia connection. Trends Neurosci. 2005;28(8):397–400.

    Article  CAS  PubMed  Google Scholar 

  16. Young JE, Martinez RA, La Spada AR. Nutrient deprivation induces neuronal autophagy and implicates reduced insulin signaling in neuroprotective autophagy activation. J Biol Chem. 2009;284(4):2363–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wobus AM, Grosse R, Schoneich J. Specific effects of nerve growth factor on the differentiation pattern of mouse embryonic stem cells in vitro. Biomed Biochim Acta. 1988;47(12):965–73.

    CAS  PubMed  Google Scholar 

  18. Janesick A, Wu SC, Blumberg B. Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci. 2015;72(8):1559–76.

    Article  CAS  PubMed  Google Scholar 

  19. Ying QL, Smith AG. Defined conditions for neural commitment and differentiation. Methods Enzymol. 2003;365:327–41.

    Article  CAS  PubMed  Google Scholar 

  20. Vollner F, Ernst W, Driemel O, Morsczeck C. A two-step strategy for neuronal differentiation in vitro of human dental follicle cells. Differentiation. 2009;77(5):433–41.

    Article  PubMed  Google Scholar 

  21. Snykers S, De Kock J, Tamara V, Rogiers V. Hepatic differentiation of mesenchymal stem cells: in vitro strategies. Methods Mol Biol. 2011;698:305–14.

    Article  CAS  PubMed  Google Scholar 

  22. Hu Z, Evarts RP, Fujio K, Marsden ER, Thorgeirsson SS. Expression of hepatocyte growth factor and c-met genes during hepatic differentiation and liver development in the rat. Am J Pathol. 1993;142(6):1823–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Kamiya A, Kinoshita T, Miyajima A. Oncostatin M and hepatocyte growth factor induce hepatic maturation via distinct signaling pathways. FEBS Lett. 2001;492(1-2):90–4.

    Article  CAS  PubMed  Google Scholar 

  24. Magner NL, Jung Y, Wu J, Nolta JA, Zern MA, Zhou P. Insulin and IGFs enhance hepatocyte differentiation from human embryonic stem cells via the PI3K/AKT pathway. Stem Cells. 2013;31(10):2095–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Phadwal K, Watson AS, Simon AK. Tightrope act: autophagy in stem cell renewal, differentiation, proliferation, and aging. Cell Mol Life Sci. 2013;70(1):89–103.

    Article  CAS  PubMed  Google Scholar 

  27. Guan JL, Simon AK, Prescott M, Menendez JA, Liu F, Wang F, et al. Autophagy in stem cells. Autophagy. 2013;9(6):830–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Salemi S, Yousefi S, Constantinescu MA, Fey MF, Simon HU. Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell Res. 2012;22(2):432–5.

    Article  CAS  PubMed  Google Scholar 

  29. Pan H, Cai N, Li M, Liu GH, Izpisua Belmonte JC. Autophagic control of cell ‘stemness’. EMBO Mol Med. 2013;5(3):327–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rubinsztein DC, Marino G, Kroemer G. Autophagy and aging. Cell. 2011;146(5):682–95.

    Article  CAS  PubMed  Google Scholar 

  31. Wirawan E, Vanden Berghe T, Lippens S, Agostinis P, Vandenabeele P. Autophagy: for better or for worse. Cell Res. 2012;22(1):43–61.

    Article  CAS  PubMed  Google Scholar 

  32. Garcia-Prat L, Martinez-Vicente M, Perdiguero E, Ortet L, Rodriguez-Ubreva J, Rebollo E, et al. Autophagy maintains stemness by preventing senescence. Nature. 2016;529(7584):37–42.

    Article  CAS  PubMed  Google Scholar 

  33. Ma Y, Qi M, An Y, Zhang L, Yang R, Doro DH, et al. Autophagy controls mesenchymal stem cell properties and senescence during bone aging. Aging Cell. 2017;17(1)

    Article  PubMed Central  Google Scholar 

  34. Carnio S, LoVerso F, Baraibar MA, Longa E, Khan MM, Maffei M, et al. Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep. 2014;8(5):1509–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu F, Lee JY, Wei H, Tanabe O, Engel JD, Morrison SJ, et al. FIP200 is required for the cell-autonomous maintenance of fetal hematopoietic stem cells. Blood. 2010;116(23):4806–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mortensen M, Soilleux EJ, Djordjevic G, Tripp R, Lutteropp M, Sadighi-Akha E, et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med. 2011;208(3):455–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A. 2003;100(25):15077–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jin S. Autophagy, mitochondrial quality control, and oncogenesis. Autophagy. 2006;2(2):80–4.

    Article  CAS  PubMed  Google Scholar 

  39. Revuelta M, Matheu A. Autophagy in stem cell aging. Aging Cell. 2017;16(5):912–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pyo JO, Nah J, Jung YK. Molecules and their functions in autophagy. Exp Mol Med. 2012;44(2):73–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang Q, Yang YJ, Wang H, Dong QT, Wang TJ, Qian HY, et al. Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway. Stem Cells Dev. 2012;21(8):1321–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Oliver L, Hue E, Priault M, Vallette FM. Basal autophagy decreased during the differentiation of human adult mesenchymal stem cells. Stem Cells Dev. 2012;21(15):2779–88.

    Article  CAS  PubMed  Google Scholar 

  43. Vessoni AT, Muotri AR, Okamoto OK. Autophagy in stem cell maintenance and differentiation. Stem Cells Dev. 2012;21(4):513–20.

    Article  CAS  PubMed  Google Scholar 

  44. Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK, et al. Autophagy regulates adipose mass and differentiation in mice. J Clin Invest. 2009;119(11):3329–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Tsukamoto S, Kuma A, Mizushima N. The role of autophagy during the oocyte-to-embryo transition. Autophagy. 2008;4(8):1076–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharyya, S., Kumar, A. (2018). Fine-Tuning the Stem Cell Fate by Autophagy. In: Turksen, K. (eds) Autophagy in Health and Disease. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-98146-8_2

Download citation

Publish with us

Policies and ethics