Skip to main content

Liver Fibrosis: Current Approaches and Future Directions for Diagnosis and Treatment

  • Chapter
  • First Online:
  • 982 Accesses

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

Liver fibrosis, known as cirrhosis in advanced stages, is a dynamic process in which aberrant extracellular matrix accumulates in the liver parenchyma in response to chronic injury. Recent data has shown that liver fibrosis, even in advanced stages, may regress with the cessation of liver injury. In the past two decades, there has been remarkable progress in the understanding of hepatic fibrosis and the identification of therapeutic targets. Here, we review the epidemiology, etiology, pathophysiology, current therapeutic options, and future research directions for the management of cirrhosis. We discuss the molecular mechanisms involved in hepatic fibrogenesis, the role of liver matrix stiffening in disease diagnosis and pathogenesis, and the association between liver fibrosis and tumorigenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mortality GBD, Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385(9963):117–71. https://doi.org/10.1016/S0140-6736(14)61682-2.

    Article  Google Scholar 

  2. Scaglione S, Kliethermes S, Cao G, Shoham D, Durazo R, Luke A, et al. The epidemiology of cirrhosis in the United States: a population-based study. J Clin Gastroenterol. 2015;49(8):690–6. https://doi.org/10.1097/MCG.0000000000000208.

    Article  PubMed  Google Scholar 

  3. Hoyert DL, Xu J. Deaths: preliminary data for 2011. Natl Vital Stat Rep. 2012;61(6):1–51.

    PubMed  Google Scholar 

  4. Asrani SK, Larson JJ, Yawn B, Therneau TM, Kim WR. Underestimation of liver-related mortality in the United States. Gastroenterology. 2013;145(2):375–82 e1-2. https://doi.org/10.1053/j.gastro.2013.04.005.

    Article  PubMed  Google Scholar 

  5. El Khoury AC, Klimack WK, Wallace C, Razavi H. Economic burden of hepatitis C-associated diseases in the United States. J Viral Hepat. 2012;19(3):153–60. https://doi.org/10.1111/j.1365-2893.2011.01563.x.

    Article  PubMed  Google Scholar 

  6. D’Amico G, Garcia-Tsao G, Pagliaro L. Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies. J Hepatol. 2006;44(1):217–31. https://doi.org/10.1016/j.jhep.2005.10.013.

    Article  PubMed  Google Scholar 

  7. Fleming KM, Aithal GP, Card TR, West J. All-cause mortality in people with cirrhosis compared with the general population: a population-based cohort study. Liver Int: Off J Int Assoc Stud Liver. 2012;32(1):79–84. https://doi.org/10.1111/j.1478-3231.2011.02517.x.

    Article  Google Scholar 

  8. Wong RJ, Aguilar M, Cheung R, Perumpail RB, Harrison SA, Younossi ZM, et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology. 2015;148(3):547–55. https://doi.org/10.1053/j.gastro.2014.11.039.

    Article  PubMed  Google Scholar 

  9. Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology. 2018;67(1):123–33. https://doi.org/10.1002/hep.29466.

    Article  CAS  PubMed  Google Scholar 

  10. Loomba R, Sanyal AJ. The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol. 2013;10(11):686–90. https://doi.org/10.1038/nrgastro.2013.171.

    Article  CAS  PubMed  Google Scholar 

  11. Anstee QM, Targher G, Day CP. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol. 2013;10(6):330–44. https://doi.org/10.1038/nrgastro.2013.41.

    Article  CAS  PubMed  Google Scholar 

  12. Agopian VG, Kaldas FM, Hong JC, Whittaker M, Holt C, Rana A, et al. Liver transplantation for nonalcoholic steatohepatitis: the new epidemic. Ann Surg. 2012;256(4):624–33. https://doi.org/10.1097/SLA.0b013e31826b4b7e.

    Article  PubMed  Google Scholar 

  13. Charlton MR, Burns JM, Pedersen RA, Watt KD, Heimbach JK, Dierkhising RA. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology. 2011;141(4):1249–53. https://doi.org/10.1053/j.gastro.2011.06.061.

    Article  PubMed  Google Scholar 

  14. Charlton MR, Kondo M, Roberts SK, Steers JL, Krom RA, Wiesner RH. Liver transplantation for cryptogenic cirrhosis. Liver Transpl Surg. 1997;3(4):359–64.

    Article  CAS  PubMed  Google Scholar 

  15. Gougelet A, Colnot S. MicroRNAs linking cancer and inflammation: focus on liver cancer. In: Babashah S, editor. MicroRNAs: key regulators of oncogenesis. Cham: Springer International Publishing; 2014. p. 183–208.

    Chapter  Google Scholar 

  16. Baloch Z, Klapper J, Buchanan L, Schwartz M, Amenta PS. Ontogenesis of the murine hepatic extracellular matrix: an immunohistochemical study. Differentiation. 1992;51:209–18. https://doi.org/10.1111/j.1432-0436.1992.tb00698.x.

    Article  CAS  PubMed  Google Scholar 

  17. Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. Am Soc Biochem Mol Biol. 2000;275:2247–50.

    CAS  Google Scholar 

  18. Martinez-Hernandez A, Amenta PS. The extracellular matrix in hepatic regeneration. FASEB J. 1995;9(14):1401–10.

    Article  CAS  PubMed  Google Scholar 

  19. Griffiths MR, Keir S, Burt AD. Basement membrane proteins in the space of Disse: a reappraisal. J Clin Pathol. 1991;44(8):646–8. https://doi.org/10.1136/jcp.44.8.646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hahn E, Wick G, Pencev D, Timpl R. Distribution of basement membrane proteins in normal and fibrotic human liver: collagen type IV, laminin, and fibronectin. Gut. 1980;21(1):63–71. https://doi.org/10.1136/gut.21.1.63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bianchi FB, Biagini G, Ballardini G, Cenacchi G, Faccani A, Pisi E, et al. Basement membrane production by hepatocytes in chronic liver disease. Hepatology. 1984;4(6):1167–72.

    Article  CAS  PubMed  Google Scholar 

  22. Matsumoto S, Yamamoto K, Nagano T, Okamoto R, Ibuki N, Tagashira M, et al. Immunohistochemical study on phenotypical changes of hepatocytes in liver disease with reference to extracellular matrix composition. Liver. 1999;19(1):32–8. https://doi.org/10.1111/j.1478-3231.1999.tb00006.x.

    Article  CAS  PubMed  Google Scholar 

  23. Schaffner F, Poper H. Capillarization of hepatic sinusoids in man. Gastroenterology. 1963;44(3):239–42. https://doi.org/10.1001/jama.1963.03700140159106.

    Article  CAS  PubMed  Google Scholar 

  24. Vracko R. Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure. Am J Pathol. 1974;77(2):314–46.

    CAS  PubMed  Google Scholar 

  25. Muragaki Y, Timmons S, Griffith CM, Oh SP, Fadel B, Quertermous T, et al. Mouse Col18a1 is expressed in a tissue-specific manner as three alternative variants and is localized in basement membrane zones. Proc Natl Acad Sci U S A. 1995;92(19):8763–7. https://doi.org/10.1073/pnas.92.19.8763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Musso O, Rehn M, Saarela J, Théret N, Liétard J, Hintikka E, et al. Collagen XVIII is localized in sinusoids and basement membrane zones and expressed by hepatocytes and activated stellate cells in fibrotic human liver. Hepatology. 1998;28(1):98–107. https://doi.org/10.1002/hep.510280115.

    Article  CAS  PubMed  Google Scholar 

  27. Rehn M, Pihlajaniemi T. Alpha 1(XVIII), a collagen chain with frequent interruptions in the collagenous sequence, a distinct tissue distribution, and homology with type XV collagen. Proc Natl Acad Sci U S A. 1994;91(10):4234–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Iredale JP, Thompson A, Henderson NC. Extracellular matrix degradation in liver fibrosis: biochemistry and regulation. Biochim Biophys Acta Mol basis Dis. 2013;1832(7):876–83. https://doi.org/10.1016/j.bbadis.2012.11.002.

    Article  CAS  Google Scholar 

  29. Karsdal MA, Manon-Jensen T, Genovese F, Kristensen JH, Nielsen MJ, Sand JMB, et al. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am J Physiol Gastrointest Liver Physiol. 2015 (287); https://doi.org/10.1152/ajpgi.00447.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schuppan D, Ruehl M, Somasundaram R, Hahn EG. Matrix as a modulator of hepatic fibrogenesis. Semin Liver Dis. 2001;21(3):351–72. https://doi.org/10.1055/s-2001-17556.

    Article  CAS  PubMed  Google Scholar 

  31. Friedman SL. The cellular basis of hepatic strategies. N Engl J Med. 1993;328(25):1828–35.

    Article  CAS  PubMed  Google Scholar 

  32. Gallai M, Kovalszky I, Neubauer K, Armbrust T. Expression of extracellular matrix proteoglycans perlecan and decorin. Am J Physiol Gastrointest Liver Physiol. 2007;148(5):1–9.

    Google Scholar 

  33. Roskams T, Rosenbaum J, De Vos R, David G, Desmet V. Heparan sulfate proteoglycan expression in chronic cholestatic human liver diseases. Hepatology. 1996;24(3):524–32. https://doi.org/10.1053/jhep.1996.v24.pm0008781318.

    Article  CAS  PubMed  Google Scholar 

  34. Tátrai P, Dudás J, Batmunkh E, Máthé M, Zalatnai A, Schaff Z, et al. Agrin, a novel basement membrane component in human and rat liver, accumulates in cirrhosis and hepatocellular carcinoma. Lab Inves: J Tech Methods Pathol. 2006;86(11):1149–60. https://doi.org/10.1038/labinvest.3700475.

    Article  CAS  Google Scholar 

  35. McGuire RF, Bissell DM, Boyles J, Roll FJ. Role of extracellular matrix in regulating fenestrations of sinusoidal endothelial cells isolated from normal rat liver. Hepatology. 1992;15(6):989–97. https://doi.org/10.1002/hep.1840150603.

    Article  CAS  PubMed  Google Scholar 

  36. Qureshi M, Forouhar F. Cirrhosis: gastrointestinal features. In: Wu GY, editor. Atlas of dermatological manifestations of gastrointestinal disease. New York: Springer Science and Business Media; 2013. p. 177–8.

    Chapter  Google Scholar 

  37. Clément B, Rescan PY, Baffet G, Loréal O, Lehry D, Campion JP, et al. Hepatocytes may produce laminin in fibrotic liver and in primary culture. Hepatology (Baltimore). 1988;8(4):794–803.

    Article  Google Scholar 

  38. Maher JJ, Friedman SL, Roll FJ, Bissell DM. Immunolocalization of laminin in normal rat liver and biosynthesis of laminin by hepatic lipocytes in primary culture. Gastroenterology. 1988;94(4):1053–62.

    Article  CAS  PubMed  Google Scholar 

  39. Martinez-Hernandez A, Martinez J. The role of capillarization in hepatic failure: studies in carbon tetrachloride-induced cirrhosis. Hepatology. 1991;14:864–74.

    Article  CAS  PubMed  Google Scholar 

  40. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–21. https://doi.org/10.1002/hep.20701.

    Article  PubMed  Google Scholar 

  41. Bedossa P, Carrat F. Liver biopsy: the best, not the gold standard. J Hepatol. 2009;50(1):1–3. https://doi.org/10.1016/j.jhep.2008.10.014.

    Article  PubMed  Google Scholar 

  42. Mendes LC, Stucchi RS, Vigani AG. Diagnosis and staging of fibrosis in patients with chronic hepatitis C: comparison and critical overview of current strategies. Hepatic Med: Evid Res. 2018;10:13–22. https://doi.org/10.2147/HMER.S125234.

    Article  Google Scholar 

  43. Udell JA, Wang CS, Tinmouth J, FitzGerald JM, Ayas NT, Simel DL, et al. Does this patient with liver disease have cirrhosis? JAMA. 2012;307(8):832–42. https://doi.org/10.1001/jama.2012.186.

    Article  CAS  PubMed  Google Scholar 

  44. Poynard T, Morra R, Ingiliz P, Imbert-Bismut F, Thabut D, Messous D, et al. Biomarkers of liver fibrosis. Adv Clin Chem. 2008;46:131–60.

    Article  CAS  PubMed  Google Scholar 

  45. Parkes J, Guha IN, Roderick P, Harris S, Cross R, Manos MM, et al. Enhanced Liver Fibrosis (ELF) test accurately identifies liver fibrosis in patients with chronic hepatitis C. J Viral Hepat. 2011;18(1):23–31. https://doi.org/10.1111/j.1365-2893.2009.01263.x.

    Article  CAS  PubMed  Google Scholar 

  46. Lin ZH, Xin YN, Dong QJ, Wang Q, Jiang XJ, Zhan SH, et al. Performance of the aspartate aminotransferase-to-platelet ratio index for the staging of hepatitis C-related fibrosis: an updated meta-analysis. Hepatology. 2011;53(3):726–36. https://doi.org/10.1002/hep.24105.

    Article  PubMed  Google Scholar 

  47. Leroy V, Hilleret MN, Sturm N, Trocme C, Renversez JC, Faure P, et al. Prospective comparison of six non-invasive scores for the diagnosis of liver fibrosis in chronic hepatitis C. J Hepatol. 2007;46(5):775–82. https://doi.org/10.1016/j.jhep.2006.12.013.

    Article  PubMed  Google Scholar 

  48. Shaheen AA, Wan AF, Myers RP. FibroTest and FibroScan for the prediction of hepatitis C-related fibrosis: a systematic review of diagnostic test accuracy. Am J Gastroenterol. 2007;102(11):2589–600. https://doi.org/10.1111/j.1572-0241.2007.01466.x.

    Article  PubMed  Google Scholar 

  49. Simonovsky V. The diagnosis of cirrhosis by high resolution ultrasound of the liver surface. Br J Radiol. 1999;72(853):29–34. https://doi.org/10.1259/bjr.72.853.10341686.

    Article  CAS  PubMed  Google Scholar 

  50. Reeder SB, Sirlin CB. Quantification of liver fat with magnetic resonance imaging. Magn Reson Imaging Clin N Am. 2010;18(3):337–57, ix. https://doi.org/10.1016/j.mric.2010.08.013.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ernst O, Sergent G, Bonvarlet P, Canva-Delcambre V, Paris JC, L’Hermine C. Hepatic iron overload: diagnosis and quantification with MR imaging. AJR Am J Roentgenol. 1997;168(5):1205–8. https://doi.org/10.2214/ajr.168.5.9129412.

    Article  CAS  PubMed  Google Scholar 

  52. Garcia-Tsao G, Abraldes JG, Berzigotti A, Bosch J. Portal hypertensive bleeding in cirrhosis: risk stratification, diagnosis, and management: 2016 practice guidance by the American Association for the study of liver diseases. Hepatology. 2017;65(1):310–35. https://doi.org/10.1002/hep.28906.

    Article  PubMed  Google Scholar 

  53. Augustin S, Millan L, Gonzalez A, Martell M, Gelabert A, Segarra A, et al. Detection of early portal hypertension with routine data and liver stiffness in patients with asymptomatic liver disease: a prospective study. J Hepatol. 2014;60(3):561–9. https://doi.org/10.1016/j.jhep.2013.10.027.

    Article  PubMed  Google Scholar 

  54. Park CC, Nguyen P, Hernandez C, Bettencourt R, Ramirez K, Fortney L, et al. Magnetic resonance elastography vs transient elastography in detection of fibrosis and noninvasive measurement of steatosis in patients with biopsy-proven nonalcoholic fatty liver disease. Gastroenterology. 2017;152(3):598–607 e2. https://doi.org/10.1053/j.gastro.2016.10.026.

    Article  PubMed  Google Scholar 

  55. Ferraioli G, Tinelli C, Dal Bello B, Zicchetti M, Filice G, Filice C, et al. Accuracy of real-time shear wave elastography for assessing liver fibrosis in chronic hepatitis C: a pilot study. Hepatology. 2012;56(6):2125–33. https://doi.org/10.1002/hep.25936.

    Article  PubMed  Google Scholar 

  56. Venkatesh SK, Ehman RL. Magnetic resonance elastography of liver. Magn Reson Imaging Clin N Am. 2014;22(3):433–46. https://doi.org/10.1016/j.mric.2014.05.001.

    Article  PubMed  Google Scholar 

  57. Yin M, Talwalkar JA, Glaser KJ, Manduca A, Grimm RC, Rossman PJ, et al. Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol. 2007;5(10):1207–13 e2. https://doi.org/10.1016/j.cgh.2007.06.012.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Georges PC, Hui JJ, Gombos Z, McCormick ME, Wang AY, Uemura M, et al. Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am J Physiol Gastrointest Liver Physiol. 2007;293(6):G1147–54. https://doi.org/10.1152/ajpgi.00032.2007.

    Article  CAS  PubMed  Google Scholar 

  59. Yeh WC, Li PC, Jeng YM, Hsu HC, Kuo PL, Li ML, et al. Elastic modulus measurements of human liver and correlation with pathology. Ultrasound Med Biol. 2002;28(4):467–74.

    Article  PubMed  Google Scholar 

  60. Desai SS, Tung JC, Zhou VX, Grenert JP, Malato Y, Rezvani M, et al. Physiological ranges of matrix rigidity modulate primary mouse hepatocyte function in part through hepatocyte nuclear factor 4 alpha. Hepatology. 2016;64(1):261–75. https://doi.org/10.1002/hep.28450.

    Article  CAS  PubMed  Google Scholar 

  61. Tapper EB, Loomba R. Noninvasive imaging biomarker assessment of liver fibrosis by elastography in NAFLD. Nat Rev Gastroenterol Hepatol. 2018; https://doi.org/10.1038/nrgastro.2018.10.

    Article  Google Scholar 

  62. Iwakiri Y, Groszmann RJ. Vascular endothelial dysfunction in cirrhosis. J Hepatol. 2007;46(5):927–34. https://doi.org/10.1016/j.jhep.2007.02.006.

    Article  CAS  PubMed  Google Scholar 

  63. Merkel C, Bolognesi M, Sacerdoti D, Bombonato G, Bellini B, Bighin R, et al. The hemodynamic response to medical treatment of portal hypertension as a predictor of clinical effectiveness in the primary prophylaxis of variceal bleeding in cirrhosis. Hepatology. 2000;32(5):930–4. https://doi.org/10.1053/jhep.2000.19322.

    Article  CAS  PubMed  Google Scholar 

  64. Kovalak M, Lake J, Mattek N, Eisen G, Lieberman D, Zaman A. Endoscopic screening for varices in cirrhotic patients: data from a national endoscopic database. Gastrointest Endosc. 2007;65(1):82–8. https://doi.org/10.1016/j.gie.2006.08.023.

    Article  PubMed  Google Scholar 

  65. Groszmann RJ, Garcia-Tsao G, Bosch J, Grace ND, Burroughs AK, Planas R, et al. Beta-blockers to prevent gastroesophageal varices in patients with cirrhosis. N Engl J Med. 2005;353(21):2254–61. https://doi.org/10.1056/NEJMoa044456.

    Article  CAS  PubMed  Google Scholar 

  66. Merli M, Nicolini G, Angeloni S, Rinaldi V, De Santis A, Merkel C, et al. Incidence and natural history of small esophageal varices in cirrhotic patients. J Hepatol. 2003;38(3):266–72.

    Article  PubMed  Google Scholar 

  67. Amitrano L, Guardascione MA, Manguso F, Bennato R, Bove A, DeNucci C, et al. The effectiveness of current acute variceal bleed treatments in unselected cirrhotic patients: refining short-term prognosis and risk factors. Am J Gastroenterol. 2012;107(12):1872–8. https://doi.org/10.1038/ajg.2012.313.

    Article  PubMed  Google Scholar 

  68. Ding NS, Nguyen T, Iser DM, Hong T, Flanagan E, Wong A, et al. Liver stiffness plus platelet count can be used to exclude high-risk oesophageal varices. Liver Int. 2016;36(2):240–5. https://doi.org/10.1111/liv.12916.

    Article  PubMed  Google Scholar 

  69. Gluud LL, Krag A. Banding ligation versus beta-blockers for primary prevention in oesophageal varices in adults. Cochrane Database Syst Rev. 2012;8:CD004544. https://doi.org/10.1002/14651858.CD004544.pub2.

    Article  Google Scholar 

  70. Li L, Yu C, Li Y. Endoscopic band ligation versus pharmacological therapy for variceal bleeding in cirrhosis: a meta-analysis. Can J Gastroenterol. 2011;25(3):147–55.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Garcia-Pagan JC, Caca K, Bureau C, Laleman W, Appenrodt B, Luca A, et al. Early use of TIPS in patients with cirrhosis and variceal bleeding. N Engl J Med. 2010;362(25):2370–9. https://doi.org/10.1056/NEJMoa0910102.

    Article  CAS  PubMed  Google Scholar 

  72. Bernard B, Grange JD, Khac EN, Amiot X, Opolon P, Poynard T. Antibiotic prophylaxis for the prevention of bacterial infections in cirrhotic patients with gastrointestinal bleeding: a meta-analysis. Hepatology. 1999;29(6):1655–61. https://doi.org/10.1002/hep.510290608.

    Article  CAS  PubMed  Google Scholar 

  73. Villanueva C, Colomo A, Bosch A, Concepcion M, Hernandez-Gea V, Aracil C, et al. Transfusion strategies for acute upper gastrointestinal bleeding. N Engl J Med. 2013;368(1):11–21. https://doi.org/10.1056/NEJMoa1211801.

    Article  CAS  PubMed  Google Scholar 

  74. Puente A, Hernandez-Gea V, Graupera I, Roque M, Colomo A, Poca M, et al. Drugs plus ligation to prevent rebleeding in cirrhosis: an updated systematic review. Liver Int: Off J Int Assoc Stud Liver. 2014;34(6):823–33. https://doi.org/10.1111/liv.12452.

    Article  Google Scholar 

  75. Singh V, Dhungana SP, Singh B, Vijayverghia R, Nain CK, Sharma N, et al. Midodrine in patients with cirrhosis and refractory or recurrent ascites: a randomized pilot study. J Hepatol. 2012;56(2):348–54. https://doi.org/10.1016/j.jhep.2011.04.027.

    Article  CAS  PubMed  Google Scholar 

  76. Sort P, Navasa M, Arroyo V, Aldeguer X, Planas R, Ruiz-del-Arbol L, et al. Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N Engl J Med. 1999;341(6):403–9. https://doi.org/10.1056/NEJM199908053410603.

    Article  CAS  PubMed  Google Scholar 

  77. Jepsen P, Ott P, Andersen PK, Sorensen HT, Vilstrup H. Clinical course of alcoholic liver cirrhosis: a Danish population-based cohort study. Hepatology. 2010;51(5):1675–82. https://doi.org/10.1002/hep.23500.

    Article  PubMed  Google Scholar 

  78. Laleman W, Simon-Talero M, Maleux G, Perez M, Ameloot K, Soriano G, et al. Embolization of large spontaneous portosystemic shunts for refractory hepatic encephalopathy: a multicenter survey on safety and efficacy. Hepatology. 2013;57(6):2448–57. https://doi.org/10.1002/hep.26314.

    Article  PubMed  Google Scholar 

  79. Sharma BC, Sharma P, Agrawal A, Sarin SK. Secondary prophylaxis of hepatic encephalopathy: an open-label randomized controlled trial of lactulose versus placebo. Gastroenterology. 2009;137(3):885–91, 91 e1. https://doi.org/10.1053/j.gastro.2009.05.056.

    Article  CAS  PubMed  Google Scholar 

  80. Bass NM, Mullen KD, Sanyal A, Poordad F, Neff G, Leevy CB, et al. Rifaximin treatment in hepatic encephalopathy. N Engl J Med. 2010;362(12):1071–81. https://doi.org/10.1056/NEJMoa0907893.

    Article  CAS  PubMed  Google Scholar 

  81. Ramachandran P, Iredale JP. Reversibility of liver fibrosis. Ann Hepatol. 2009;8(4):283–91.

    PubMed  Google Scholar 

  82. Marcellin P, Gane E, Buti M, Afdhal N, Sievert W, Jacobson IM, et al. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet. 2013;381(9865):468–75. https://doi.org/10.1016/S0140-6736(12)61425-1.

    Article  CAS  PubMed  Google Scholar 

  83. Chang TT, Liaw YF, Wu SS, Schiff E, Han KH, Lai CL, et al. Long-term entecavir therapy results in the reversal of fibrosis/cirrhosis and continued histological improvement in patients with chronic hepatitis B. Hepatology. 2010;52(3):886–93. https://doi.org/10.1002/hep.23785.

    Article  CAS  PubMed  Google Scholar 

  84. D’Ambrosio R, Aghemo A, Rumi MG, Ronchi G, Donato MF, Paradis V, et al. A morphometric and immunohistochemical study to assess the benefit of a sustained virological response in hepatitis C virus patients with cirrhosis. Hepatology. 2012;56(2):532–43. https://doi.org/10.1002/hep.25606.

    Article  PubMed  Google Scholar 

  85. Mazzaferro V, Regalia E, Montalto F, Pulvirenti A, Brunetto MR, Bonino F, et al. Risk of HBV reinfection after liver transplantation in HBsAg-positive cirrhosis. Primary hepatocellular carcinoma is not a predictor for HBV recurrence. The European Cooperative Study Group on Liver Cancer and Transplantation. Liver. 1996;16(2):117–22.

    Article  CAS  PubMed  Google Scholar 

  86. Yao FY, Ferrell L, Bass NM, Watson JJ, Bacchetti P, Venook A, et al. Liver transplantation for hepatocellular carcinoma: expansion of the tumor size limits does not adversely impact survival. Hepatology. 2001;33(6):1394–403. https://doi.org/10.1053/jhep.2001.24563.

    Article  CAS  PubMed  Google Scholar 

  87. OPTN. OPTN/SRTR annual data report 2015. Am J Transplant. 2017;17(S1):1–564.

    Google Scholar 

  88. Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88(1):125–72. https://doi.org/10.1152/physrev.00013.2007.

    Article  CAS  PubMed  Google Scholar 

  89. Friedman SL, Roll FJ. Isolation and culture of hepatic lipocytes, Kupffer cells, and sinusoidal endothelial cells by density gradient centrifugation with Stractan. Anal Biochem. 1987;161(1):207–18.

    Article  CAS  PubMed  Google Scholar 

  90. Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun. 2013;4:2823. https://doi.org/10.1038/ncomms3823.

    Article  CAS  PubMed  Google Scholar 

  91. Lemoinne S, Cadoret A, El Mourabit H, Thabut D, Housset C. Origins and functions of liver myofibroblasts. Biochim Biophys Acta. 2013;1832(7):948–54. https://doi.org/10.1016/j.bbadis.2013.02.019.

    Article  CAS  PubMed  Google Scholar 

  92. Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017;14(7):397–411. https://doi.org/10.1038/nrgastro.2017.38.

    Article  CAS  PubMed  Google Scholar 

  93. Canbay A, Higuchi H, Bronk SF, Taniai M, Sebo TJ, Gores GJ. Fas enhances fibrogenesis in the bile duct ligated mouse: a link between apoptosis and fibrosis. Gastroenterology. 2002;123(4):1323–30.

    Article  CAS  PubMed  Google Scholar 

  94. Mehal W, Imaeda A. Cell death and fibrogenesis. Semin Liver Dis. 2010;30(3):226–31. https://doi.org/10.1055/s-0030-1255352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Greenhalgh SN, Conroy KP, Henderson NC. Cre-ativity in the liver: transgenic approaches to targeting hepatic nonparenchymal cells. Hepatology. 2015;61(6):2091–9. https://doi.org/10.1002/hep.27606.

    Article  PubMed  Google Scholar 

  96. Hanafusa H, Ninomiya-Tsuji J, Masuyama N, Nishita M, Fujisawa J, Shibuya H, et al. Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression. J Biol Chem. 1999;274(38):27161–7.

    Article  CAS  PubMed  Google Scholar 

  97. Engel ME, McDonnell MA, Law BK, Moses HL. Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription. J Biol Chem. 1999;274(52):37413–20.

    Article  CAS  PubMed  Google Scholar 

  98. Traber PG, Chou H, Zomer E, Hong F, Klyosov A, Fiel MI, et al. Regression of fibrosis and reversal of cirrhosis in rats by galectin inhibitors in thioacetamide-induced liver disease. PLoS One. 2013;8(10):e75361. https://doi.org/10.1371/journal.pone.0075361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Henderson NC, Arnold TD, Katamura Y, Giacomini MM, Rodriguez JD, McCarty JH, et al. Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med. 2013;19(12):1617–24. https://doi.org/10.1038/nm.3282.

    Article  CAS  PubMed  Google Scholar 

  100. Seki E, De Minicis S, Gwak GY, Kluwe J, Inokuchi S, Bursill CA, et al. CCR1 and CCR5 promote hepatic fibrosis in mice. J Clin Invest. 2009;119(7):1858–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Seki E, de Minicis S, Inokuchi S, Taura K, Miyai K, van Rooijen N, et al. CCR2 promotes hepatic fibrosis in mice. Hepatology. 2009;50(1):185–97. https://doi.org/10.1002/hep.22952.

    Article  CAS  PubMed  Google Scholar 

  102. Berres ML, Koenen RR, Rueland A, Zaldivar MM, Heinrichs D, Sahin H, et al. Antagonism of the chemokine Ccl5 ameliorates experimental liver fibrosis in mice. J Clin Invest. 2010;120(11):4129–40. https://doi.org/10.1172/JCI41732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mitchell C, Couton D, Couty JP, Anson M, Crain AM, Bizet V, et al. Dual role of CCR2 in the constitution and the resolution of liver fibrosis in mice. Am J Pathol. 2009;174(5):1766–75. https://doi.org/10.2353/ajpath.2009.080632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Teixeira-Clerc F, Julien B, Grenard P, Tran Van Nhieu J, Deveaux V, Li L, et al. CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis. Nat Med. 2006;12(6):671–6. https://doi.org/10.1038/nm1421.

    Article  CAS  PubMed  Google Scholar 

  105. Julien B, Grenard P, Teixeira-Clerc F, Van Nhieu JT, Li L, Karsak M, et al. Antifibrogenic role of the cannabinoid receptor CB2 in the liver. Gastroenterology. 2005;128(3):742–55.

    Article  CAS  PubMed  Google Scholar 

  106. Granzow M, Schierwagen R, Klein S, Kowallick B, Huss S, Linhart M, et al. Angiotensin-II type 1 receptor-mediated Janus kinase 2 activation induces liver fibrosis. Hepatology. 2014;60(1):334–48. https://doi.org/10.1002/hep.27117.

    Article  CAS  PubMed  Google Scholar 

  107. Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 2007;13(11):1324–32. https://doi.org/10.1038/nm1663.

    Article  CAS  PubMed  Google Scholar 

  108. Miura K, Yang L, van Rooijen N, Brenner DA, Ohnishi H, Seki E. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology. 2013;57(2):577–89. https://doi.org/10.1002/hep.26081.

    Article  CAS  PubMed  Google Scholar 

  109. Kong B, Luyendyk JP, Tawfik O, Guo GL. Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet. J Pharmacol Exp Ther. 2009;328(1):116–22. https://doi.org/10.1124/jpet.108.144600.

    Article  CAS  PubMed  Google Scholar 

  110. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385(9972):956–65. https://doi.org/10.1016/S0140-6736(14)61933-4.

    Article  CAS  PubMed  Google Scholar 

  111. Hazra S, Xiong S, Wang J, Rippe RA, Krishna V, Chatterjee K, et al. Peroxisome proliferator-activated receptor gamma induces a phenotypic switch from activated to quiescent hepatic stellate cells. J Biol Chem. 2004;279(12):11392–401. https://doi.org/10.1074/jbc.M310284200.

    Article  CAS  PubMed  Google Scholar 

  112. Ratziu V, Harrison SA, Francque S, Bedossa P, Lehert P, Serfaty L, et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-alpha and -delta, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology. 2016;150(5):1147–59 e5. https://doi.org/10.1053/j.gastro.2016.01.038.

    Article  CAS  PubMed  Google Scholar 

  113. Ding N, Yu RT, Subramaniam N, Sherman MH, Wilson C, Rao R, et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell. 2013;153(3):601–13. https://doi.org/10.1016/j.cell.2013.03.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Michelotti GA, Xie G, Swiderska M, Choi SS, Karaca G, Kruger L, et al. Smoothened is a master regulator of adult liver repair. J Clin Invest. 2013;123(6):2380–94. https://doi.org/10.1172/JCI66904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Martin K, Pritchett J, Llewellyn J, Mullan AF, Athwal VS, Dobie R, et al. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nat Commun. 2016;7:12502. https://doi.org/10.1038/ncomms12502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mannaerts I, Leite SB, Verhulst S, Claerhout S, Eysackers N, Thoen LF, et al. The Hippo pathway effector YAP controls mouse hepatic stellate cell activation. J Hepatol. 2015;63(3):679–88. https://doi.org/10.1016/j.jhep.2015.04.011.

    Article  CAS  PubMed  Google Scholar 

  117. Zhang K, Chang Y, Shi Z, Han X, Han Y, Yao Q, et al. Omega-3 PUFAs ameliorate liver fibrosis and inhibit hepatic stellate cells proliferation and activation by promoting YAP/TAZ degradation. Sci Rep. 2016;6:30029. https://doi.org/10.1038/srep30029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Swiderska-Syn M, Xie G, Michelotti GA, Jewell ML, Premont RT, Syn WK, et al. Hedgehog regulates yes-associated protein 1 in regenerating mouse liver. Hepatology. 2016;64(1):232–44. https://doi.org/10.1002/hep.28542.

    Article  CAS  PubMed  Google Scholar 

  119. Zhang Z, Zha Y, Hu W, Huang Z, Gao Z, Zang Y, et al. The autoregulatory feedback loop of microRNA-21/programmed cell death protein 4/activation protein-1 (MiR-21/PDCD4/AP-1) as a driving force for hepatic fibrosis development. J Biol Chem. 2013;288(52):37082–93. https://doi.org/10.1074/jbc.M113.517953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ogawa T, Enomoto M, Fujii H, Sekiya Y, Yoshizato K, Ikeda K, et al. MicroRNA-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis. Gut. 2012;61(11):1600–9. https://doi.org/10.1136/gutjnl-2011-300717.

    Article  CAS  PubMed  Google Scholar 

  121. Tian W, Fan Z, Li J, Hao C, Li M, Xu H, et al. Myocardin-related transcription factor A (MRTF-A) plays an essential role in hepatic stellate cell activation by epigenetically modulating TGF-beta signaling. Int J Biochem Cell Biol. 2016;71:35–43. https://doi.org/10.1016/j.biocel.2015.12.005.

    Article  CAS  PubMed  Google Scholar 

  122. Mann J, Chu DC, Maxwell A, Oakley F, Zhu NL, Tsukamoto H, et al. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology. 2010;138(2):705–14, 14 e1–4. https://doi.org/10.1053/j.gastro.2009.10.002.

    Article  CAS  PubMed  Google Scholar 

  123. Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol. 2014;14(3):181–94. https://doi.org/10.1038/nri3623.

    Article  CAS  PubMed  Google Scholar 

  124. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, et al. Senescence of activated stellate cells limits liver fibrosis. Cell. 2008;134(4):657–67. https://doi.org/10.1016/j.cell.2008.06.049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kisseleva T, Cong M, Paik Y, Scholten D, Jiang C, Benner C, et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci U S A. 2012;109(24):9448–53. https://doi.org/10.1073/pnas.1201840109.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Troeger JS, Mederacke I, Gwak GY, Dapito DH, Mu X, Hsu CC, et al. Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterology. 2012;143(4):1073–83 e22. https://doi.org/10.1053/j.gastro.2012.06.036.

    Article  CAS  PubMed  Google Scholar 

  127. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582–98. https://doi.org/10.1038/nrc.2016.73.

    Article  CAS  PubMed  Google Scholar 

  128. Michalopoulos GK. Liver regeneration. J Cell Physiol. 2007;213(2):286–300. https://doi.org/10.1002/jcp.21172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kang N, Gores GJ, Shah VH. Hepatic stellate cells: partners in crime for liver metastases? Hepatology. 2011;54(2):707–13. https://doi.org/10.1002/hep.24384.

    Article  CAS  PubMed  Google Scholar 

  130. Zhang DY, Friedman SL. Fibrosis-dependent mechanisms of hepatocarcinogenesis. Hepatology. 2012;56(2):769–75. https://doi.org/10.1002/hep.25670.

    Article  CAS  PubMed  Google Scholar 

  131. Shariff MI, Cox IJ, Gomaa AI, Khan SA, Gedroyc W, Taylor-Robinson SD. Hepatocellular carcinoma: current trends in worldwide epidemiology, risk factors, diagnosis and therapeutics. Expert Rev Gastroenterol Hepatol. 2009;3(4):353–67. https://doi.org/10.1586/egh.09.35.

    Article  PubMed  Google Scholar 

  132. Petrick JL, Kelly SP, Altekruse SF, McGlynn KA, Rosenberg PS. Future of hepatocellular carcinoma incidence in the United States forecast through 2030. J Clin Oncol. 2016; https://doi.org/10.1200/jco.2015.64.7412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Seitz HK, Stickel F. Risk factors and mechanisms of hepatocarcinogenesis with special emphasis on alcohol and oxidative stress. Biol Chem. 2006;387(4):349–60. https://doi.org/10.1515/BC.2006.047.

    Article  CAS  PubMed  Google Scholar 

  134. Roskams T, Kojiro M. Pathology of early hepatocellular carcinoma: conventional and molecular diagnosis. Semin Liver Dis. 2010;30:17–25.

    Article  PubMed  Google Scholar 

  135. Nault JC, Calderaro J, Di Tommaso L, Balabaud C, Zafrani ES, Bioulac-Sage P, et al. Telomerase reverse transcriptase promoter mutation is an early somatic genetic alteration in the transformation of premalignant nodules in hepatocellular carcinoma on cirrhosis. Hepatology. 2014;60(6):1983–92. https://doi.org/10.1002/hep.27372.

    Article  CAS  PubMed  Google Scholar 

  136. Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology. 2015;149(5):1226–39. https://doi.org/10.1053/j.gastro.2015.05.061.

    Article  CAS  PubMed  Google Scholar 

  137. Crissien AM, Frenette C. Current management of hepatocellular carcinoma. Gastroenterol Hepatol. 2014;10(3):153–61.

    Google Scholar 

  138. Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology. 2004;127(5 Suppl 1):S35–50.

    Article  PubMed  Google Scholar 

  139. Li Z, Dranoff JA, Chan EP, Uemura M, Sevigny J, Wells RG. Transforming growth factor-beta and substrate stiffness regulate portal fibroblast activation in culture. Hepatology. 2007;46(4):1246–56. https://doi.org/10.1002/hep.21792.

    Article  CAS  PubMed  Google Scholar 

  140. Olsen AL, Bloomer SA, Chan EP, Gaca MD, Georges PC, Sackey B, et al. Hepatic stellate cells require a stiff environment for myofibroblastic differentiation. Am J Physiol Gastrointest Liver Physiol. 2011;301(1):G110–8. https://doi.org/10.1152/ajpgi.00412.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell. 2005;8(3):241–54. https://doi.org/10.1016/j.ccr.2005.08.010.

    Article  CAS  PubMed  Google Scholar 

  142. Fransvea E, Mazzocca A, Antonaci S, Giannelli G. Targeting transforming growth factor (TGF)-betaRI inhibits activation of beta1 integrin and blocks vascular invasion in hepatocellular carcinoma. Hepatology. 2009;49(3):839–50. https://doi.org/10.1002/hep.22731.

    Article  CAS  PubMed  Google Scholar 

  143. Zhang H, Ozaki I, Mizuta T, Matsuhashi S, Yoshimura T, Hisatomi A, et al. Beta 1-integrin protects hepatoma cells from chemotherapy induced apoptosis via a mitogen-activated protein kinase dependent pathway. Cancer. 2002;95(4):896–906. https://doi.org/10.1002/cncr.10751.

    Article  CAS  PubMed  Google Scholar 

  144. Schrader J, Gordon-Walker TT, Aucott RL, van Deemter M, Quaas A, Walsh S, et al. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology. 2011;53(4):1192–205. https://doi.org/10.1002/hep.24108.

    Article  CAS  PubMed  Google Scholar 

  145. Shang N, Arteaga M, Zaidi A, Stauffer J, Cotler SJ, Zeleznik-Le NJ, et al. FAK is required for c-Met/β-catenin-driven hepatocarcinogenesis. Hepatology. 2015;61(1):214–26. https://doi.org/10.1002/hep.27402.

    Article  CAS  PubMed  Google Scholar 

  146. Bonzo Ja FCH, Matsubara T, Kim J-H, Gonzalez FJ. Suppression of hepatocyte proliferation by hepatocyte nuclear factor 4α in adult mice. J Biol Chem. 2012;287(10):7345–56. https://doi.org/10.1074/jbc.M111.334599.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Santangelo L, Marchetti A, Cicchini C, Conigliaro A, Conti B, Mancone C, et al. The stable repression of mesenchymal program is required for hepatocyte identity: a novel role for hepatocyte nuclear factor 4alpha. Hepatology. 2011;53(6):2063–74. https://doi.org/10.1002/hep.24280.

    Article  CAS  PubMed  Google Scholar 

  148. Nishikawa T, Bell A, Brooks JM, Setoyama K, Melis M, Han B, et al. Resetting the transcription factor network reverses terminal chronic hepatic failure. J Clin Invest. 2015;125(4):1533–44. https://doi.org/10.1172/JCI73137.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Yue HY, Yin C, Hou JL, Zeng X, Chen YX, Zhong W, et al. Hepatocyte nuclear factor 4alpha attenuates hepatic fibrosis in rats. Gut. 2010;59(2):236–46. https://doi.org/10.1136/gut.2008.174904.

    Article  CAS  PubMed  Google Scholar 

  150. Lazarevich NL, Cheremnova OA, Varga EV, Ovchinnikov DA, Kudrjavtseva EI, Morozova OV, et al. Progression of HCC in mice is associated with a downregulation in the expression of hepatocyte nuclear factors. Hepatology. 2004;39(4):1038–47. https://doi.org/10.1002/hep.20155.

    Article  CAS  PubMed  Google Scholar 

  151. Lazarevich NL, Shavochkina DA, Fleishman DI, Kustova IF, Morozova OV, Chuchuev ES, et al. Deregulation of hepatocyte nuclear factor 4 (HNF4)as a marker of epithelial tumors progression. Exp Oncol. 2010;32(3):167–71.

    CAS  PubMed  Google Scholar 

  152. Ning BF, Ding J, Yin C, Zhong W, Wu K, Zeng X, et al. Hepatocyte nuclear factor 4 alpha suppresses the development of hepatocellular carcinoma. Cancer Res. 2010;70(19):7640–51. https://doi.org/10.1158/0008-5472.CAN-10-0824.

    Article  CAS  PubMed  Google Scholar 

  153. Späth GF, Weiss MC. Hepatocyte nuclear factor 4 provokes expression of epithelial marker genes, acting as a morphogen in dedifferentiated hepatoma cells. J Cell Biol. 1998;140(4):935–46. https://doi.org/10.1083/jcb.140.4.935.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Yin C, Lin Y, Zhang X, Chen YX, Zeng X, Yue HY, et al. Differentiation therapy of hepatocellular carcinoma in mice with recombinant adenovirus carrying hepatocyte nuclear factor-4alpha gene. Hepatology. 2008;48(5):1528–39. https://doi.org/10.1002/hep.22510.

    Article  CAS  PubMed  Google Scholar 

  155. Vidal-Vanaclocha F. The prometastatic microenvironment of the liver. Cancer Microenviron. 2008;1(1):113–29. https://doi.org/10.1007/s12307-008-0011-6.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3(6):453–8. https://doi.org/10.1038/nrc1098.

    Article  CAS  PubMed  Google Scholar 

  157. Calvo F, Ege N, Grande-garcia A, Hooper S, Jenkins RP, Chaudhry SI, et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol. 2013;15(6):637–46. https://doi.org/10.1038/ncb2756.

    Article  CAS  PubMed  Google Scholar 

  158. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;21(3):418–29. https://doi.org/10.1016/j.ccr.2012.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, et al. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009;324(5933):1457–61. https://doi.org/10.1126/science.1171362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Amakye D, Jagani Z, Dorsch M. Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nat Med. 2013;19(11):1410–22. https://doi.org/10.1038/nm.3389.

    Article  CAS  PubMed  Google Scholar 

  161. Ozdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 2014;25(6):719–34. https://doi.org/10.1016/j.ccr.2014.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014;25(6):735–47. https://doi.org/10.1016/j.ccr.2014.04.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37. https://doi.org/10.1038/nm.3394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Augustin G, Bruketa T, Korolija D, Milosevic M. Lower incidence of hepatic metastases of colorectal cancer in patients with chronic liver diseases: meta-analysis. Hepato-Gastroenterology. 2013;60(125):1164–8. https://doi.org/10.5754/hge11561.

    Article  PubMed  Google Scholar 

  165. Fisher ER, Hellstrom HR, Fisher B. Rarity of hepatic metastases in cirrhosis – a misconception. JAMA. 1960;174:366–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tammy T. Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, J.Y., Thakar, D., Chang, T.T. (2019). Liver Fibrosis: Current Approaches and Future Directions for Diagnosis and Treatment. In: Willis, M., Yates, C., Schisler, J. (eds) Fibrosis in Disease . Molecular and Translational Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-98143-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98143-7_15

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-98142-0

  • Online ISBN: 978-3-319-98143-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics