Skip to main content

Insulin Injection and Blood Glucose Meter Systems

  • Chapter
  • First Online:

Abstract

Please check the hierarchy of the section headings and confirm if correct.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Perez-Nieves M, Jiang D, Eby E. Incidence, prevalence, and trend analysis of the use of insulin delivery systems in the United States (2005 to 2011). Curr Med Res Opin. 2015;31:891–9.

    Article  CAS  Google Scholar 

  2. Pearson TL. Practical aspects of insulin pen devices. J Diabetes Sci Technol. 2010;4:522–31.

    Article  Google Scholar 

  3. Anderson BJ, Redondo MJ. What can we learn from patient-reported outcomes of insulin pen devices? J Diabetes Sci Technol. 2011;5:1563–71.

    Article  Google Scholar 

  4. Perfetti R. Reusable and disposable insulin pens for the treatment of diabetes: understanding the global differences in user preference and an evaluation of inpatient insulin pen use. Diabetes Technol Ther. 2010;12:S79–85.

    Article  Google Scholar 

  5. Rubin RR, Peyrot M. Factors affecting use of insulin pens by patients with type 2 diabetes. Diabetes Care. 2008;31:430–2.

    Article  Google Scholar 

  6. Selam JL. Evolution of diabetes insulin delivery devices. J Diabetes Sci Technol. 2010;4:505–13.

    Article  Google Scholar 

  7. Asche CV, Shane-McWhorter L, Raparla S. Health economics and compliance of vials/syringes versus pen devices: a review of the evidence. Diabetes Technol Ther. 2010;12:S101–8.

    Article  Google Scholar 

  8. International Organization for Standardization. ISO 11608-1: 2014. Needle-based injection systems for medical use—requirements and test methods. http://www.iso.org/iso/home/store/catalogue_ics/catalogue-detail-ics.htm?csnumber=65021. Accessed 15 Dec 2014.

  9. Krzywon M, van der Burg T, Fuhr U, Schubert-Zsilavecz M, Abdel-Tawab M. Study on the dosing accuracy of commonly used disposable insulin pens. Diabetes Technol Ther. 2012;14:804–9.

    Article  CAS  Google Scholar 

  10. Bohnet J, Schmitz M, Kamlot S, Abdel-Tawab M. Dosing accuracy and insulin flow rate characteristics of a new disposable insulin pen, FlexTouch, compared with SoloStar. J Diabetes Sci Technol. 2013;7:1021–6.

    Article  Google Scholar 

  11. Friedrichs A, Basso N, Adler S. Dose accuracy of the ClikStar, NovoPen 4 and Luxura insulin pens: results of laboratory and field studies. J Diabetes Sci Technol. 2011;5:1179–84.

    Article  Google Scholar 

  12. Hänel H, Weise A, Sun W, Pfützner JW, Thomé N, Pfützner A. Differences in the dose accuracy of insulin pens. J Diabetes Sci Technol. 2008;2:478–81.

    Article  Google Scholar 

  13. Asakura T, Seiko H, Kageyama M, Yohkoh N. Dosing accuracy of two insulin pre-filled pens. Curr Med Res Opin. 2008;24:1429–34.

    Article  CAS  Google Scholar 

  14. Asakura T. Comparison of clinically relevant technical attributes of five insulin injection pens. J Diabetes Sci Technol. 2011;5:1203–9.

    Article  Google Scholar 

  15. Friedrichs A, Korger V, Adler S. Injection force of reusable insulin pens: Novopen 4, Lilly Luxura, Berlipen, and ClikStar. J Diabetes Sci Technol. 2011;5:1185–90.

    Article  Google Scholar 

  16. Aronson R, Gibney MA, Oza K, Bérubé J, Kassler-Taub K, Hirsch L. Insulin pen needles: effects of extra-thin wall needle technology on preference, confidence, and other patient ratings. Clin Ther. 2013;35:923–33.

    Article  Google Scholar 

  17. Gibney MA, Arce CH, Byron KJ, Hirsch LJ. Skin and subcutaneous adipose layer thickness in adults with diabetes at sites used for insulin injections: implications for needle length recommendations. Curr Med Res Opin. 2010;26:1519–30.

    Article  CAS  Google Scholar 

  18. Kreugel G, Keers JC, Kerstens MN, Wolffenbuttel BH. Randomized trial on the influence of the length of two insulin pen needles on glycemic control and patient preference in obese patients with diabetes. Diabetes Technol Ther. 2011;13:737–41.

    Article  CAS  Google Scholar 

  19. Hirsch LJ, Gibney MA, Albanese J, Qu S, Kassler-Taub K, Klaff LJ, Bailey TS. Comparative glycemic control, safety and patient ratings for a new 4 mm x 32G insulin pen needle in adults with diabetes. Curr Med Res Opin. 2010;26:1531–41.

    Article  CAS  Google Scholar 

  20. Hirsch LJ, Gibney MA, Bérubé J. Glycemic control, reported pain and leakage with a 4 mm x 32G pen needle in obese and non-obese adults with diabetes: a post hoc analysis. Curr Med Res Opin. 2012;28:1305–11.

    Article  CAS  Google Scholar 

  21. De Coninck C, Frid A, Gaspar R, Hicks D, Hirsch L, Kreugel G, Liersch J, Letondeur C, Sauvanet JP, Tubiana N, Strauss K. Results and analysis of the 2008–2009 insulin injection technique questionnaire survey. J Diabetes. 2010;2:168–79.

    Article  Google Scholar 

  22. Danne T, Forst T, Deinhard J, Rose L, Moennig E, Haupt A. No effect of insulin pen with memory function on glycemic control in a patient cohort with poorly controlled type 1 diabetes: a randomized open-label study. J Diabetes Sci Technol. 2012;6:1392–7.

    Article  Google Scholar 

  23. Olsen BS, LilleØre SK, Korsholm CN, Kracht T. Novopen Echo® for the delivery of insulin: a comparison of usability, functionality and preference among pediatric subjects, their parents, and health care professionals. J Diabetes Sci Technol. 2010;4:1468–75.

    Article  Google Scholar 

  24. Burdick J, Chase HP, Slover RH, Knievel K, Scrimgeour L, Maniatis AK, Klingensmith GJ. Missed insulin meal boluses and elevated hemoglobin A1c levels in children receiving insulin pump therapy. Pediatrics. 2004;113:e221–4.

    Article  Google Scholar 

  25. Engwerda EEC, Abbink EJ, Tack CJ, de Galan BE. Improved pharmacokinetic and pharmacodynamic profile of rapid-acting insulin using needle-free jet injection technology. Diabetes Care. 2011;34:1804–8.

    Article  CAS  Google Scholar 

  26. Hu J, Shi H, Zhao C, Li X, Wang Y, Cheng Q, Goswami R, Zhen Q, Mei M, Song Y, Yang S, Li Q. Lispro administered by the QS-M needle-free jet injector generates an earlier insulin exposure. Expert Opin Drug Deliv. 2016;13:1203–7.

    Article  CAS  Google Scholar 

  27. Reutens AT, Balkau B, Cohen N. A pilot study to examine the tolerability and device preference in type 1 diabetes of insulin aspart administered by InsuJet compared with subcutaneous injection. Diabetes Technol Ther. 2014;16:235–40.

    Article  CAS  Google Scholar 

  28. Al Hayek AA, Robert AA, Braham RB, Al Dawish MA. Frequency of lipohypertrophy and associated risk factors in young patients with type 1 diabetes: a cross-sectional study. Diabetes Ther. 2016;7:259–67.

    Article  Google Scholar 

  29. Joubert M, Haddouche A, Morera J, Rod A, Reznik Y. Potential insulin underdelivery from prefilled and reusable insulin pens in cases of premature needle withdrawal: a laboratory evaluation. Diabetes Technol Ther. 2015;17:712–6.

    Article  CAS  Google Scholar 

  30. Frid A, Ostman J, Linde B. Hypoglycemia risk during exercise after intramuscular injection of insulin in thigh in IDDM. Diabetes Care. 1990;13:473–7.

    Article  CAS  Google Scholar 

  31. Yuan J, Chen Y, Xuan Y, Cao L, Zhu J, Wang F, Zhou X, Ye Q, Liao L, Zheng Y, Zhou Q, Chen X, Chen M, Zhou W. Can the upper inner side of the thigh become a new option for insulin injection? Curr Med Res Opin. 2016;32:1319–24.

    Article  CAS  Google Scholar 

  32. Ziegler R, Heidtmann B, Hilgard D, Hofer S, Rosenbauer J, Holl R. Frequency of SMBG correlates with HbA1c and acute complications in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2011;12:11–7.

    Article  Google Scholar 

  33. Miller KM, Beck RW, Bergenstal RM, Goland RS, Haller MJ, McGill JB, Rodriguez H, Simmons JH, Hirsch IB. Evidence of a strong association between frequency of self-monitoring of blood glucose and hemoglobin A1c levels in T1D exchange clinic registry participants. Diabetes Care. 2013;36:2009–14.

    Article  Google Scholar 

  34. American Diabetes Association. Standards of medical care in diabetes—2016. Diabetes Care. 2016;39(Suppl 1):S1–S112.

    Google Scholar 

  35. International Diabetes Federation. Self-monitoring of blood glucose in non-insulin treated type 2 diabetes. http://www.idf.org/webdata/docs/SMBG_EN2.pdf. Accessed 2009.

  36. Dufaitre-Patouraux L, Vague P, Lassman-Vague V. History, accuracy and precision of SMBG devices. Diabetes Metab. 2003;29:S7–S14.

    Article  CAS  Google Scholar 

  37. Tonyushkina K, Nichols JH. Glucose meters: a review of technical challenges to obtaining accurate results. J Diabetes Sci Technol. 2009;3:971–80.

    Article  Google Scholar 

  38. Moodley N, Ngxamngxa U, Turzyniecka MJ, Pillay TS. Historical perspectives in clinical pathology: a history of glucose measurement. J Clin Pathol. 2015;68:258–64.

    Article  CAS  Google Scholar 

  39. Ginsberg BH. Factors affecting blood glucose monitoring: sources of errors in measurement. J Diabetes Sci Technol. 2009;3:903–13.

    Article  Google Scholar 

  40. Lewandrowski K, Cheek R, Nathan DM, Godine JE, Hurxthal K, Eschenbach K, Laposata M. Implementation of capillary blood glucose monitoring in a teaching hospital and determination of program requirements to maintain quality testing. Am J Med. 1992;93:419–26.

    Article  CAS  Google Scholar 

  41. Clarke WL, Cox D, Gonder-Frederick LA, Carter W, Pohl SL. Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care. 1987;10:622–8.

    Article  CAS  Google Scholar 

  42. Parkes JL, Slatin SL, Pardo S, Ginsberg BH. A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose. Diabetes Care. 2000;23:1143–8.

    Article  CAS  Google Scholar 

  43. International Organization for Standardization. ISO 15197: 2013. In vitro diagnostic test systems—requirements for blood-glucose monitoring systems for self-testing in managing diabetes mellitus. http://www.iso.org/iso/catalogue-detail?csnimber=54976. Accessed 14 May 2013.

  44. Parkin CG, Barnard K, Hinnen DA. Safe and efficacious use of automated bolus advisors in individuals treated with multiple daily insulin injection (MDI) therapy: lessons learned from the Automated Bolus Advisor Control and Usability Study (ABACUS). J Diabetes Sci Technol. 2015;9:1138–42.

    Article  CAS  Google Scholar 

  45. Guerci B, Tubiana-Rufi N, Bauduceau B, Bresson R, Cuperlier A, Delcroix C, Durain D, Fermon C, Le Floch JP, Le Devehat C, Melki V, Monnier L, Mosnier-Pudar H, Taboulet P, Hanaire-Broutin H. Advantages to using capillary blood beta-hydroxybutyrate determination for the detection and treatment of diabetic ketosis. Diabetes Metab. 2005;31:401–6.

    Article  CAS  Google Scholar 

  46. Neylon OM, O’Connell MA, Donath SM, Cameron FJ. Can integrated technology improve self-care behavior in youth with type 1 diabetes? A randomized crossover trial of automated pump function. J Diabetes Sci Technol. 2014;8:998–1004.

    Article  Google Scholar 

  47. Lecomte P, Romon I, Fosse S, Simon D, Fagot-Campagna A. Self-monitoring of blood glucose in people with type 1 and type 2 diabetes living in France: the ENTRED study 2001. Diabetes Metab. 2008;34:219–26.

    Article  CAS  Google Scholar 

  48. Given JE, O’Kane MJ, Bunting BP, Coates VE. Comparing patient-generated blood glucose diary records with meter memory in diabetes: a systematic review. Diabet Med. 2013;30:901–13.

    Article  CAS  Google Scholar 

  49. Bailey T, Bode BW, Christiansen MP, Klaff LJ, Alva S. The performance and usability of a factory-calibrated flash glucose monitoring system. Diabetes Technol Ther. 2015;17:787–94.

    Article  CAS  Google Scholar 

  50. Nishimura A, Harashima S, Honda I, Shimizu Y, Harada N, Nagashima K, Hamasaki A, Hosoda K, Inagaki N. Color record in self-monitoring of blood glucose improves glycemic control by better self-management. Diabetes Technol Ther. 2014;16:447–53.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Morera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morera, J. (2019). Insulin Injection and Blood Glucose Meter Systems. In: Reznik, Y. (eds) Handbook of Diabetes Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-98119-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98119-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98118-5

  • Online ISBN: 978-3-319-98119-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics