Skip to main content

Placental Vessel Extraction with Shearlets, Laplacian Eigenmaps, and a Conditional Generative Adversarial Network

  • Chapter
  • First Online:
Understanding Complex Biological Systems with Mathematics

Abstract

The placenta is the key organ of maternal–fetal interactions, where nutrient, oxygen, and waste transfer take place. Differences in the morphology of the placental chorionic surface vascular network (PCSVN) have been associated with developmental disorders such as autism, hinting that the PCSVN could potentially serve as a biomarker for early diagnosis and treatment of autism. Studying PCSVN features in large cohorts requires a reliable and automated mechanism to extract the vascular networks. This paper presents two distinct methods for PCSVN enhancement and extraction. Our first algorithm, which builds upon a directional multiscale mathematical framework based on a combination of shearlets and Laplacian eigenmaps, is able to intensify the appearance of vessels with high success in high-contrast images such as those produced in CT scans. Our second algorithm, which applies a conditional generative adversarial neural network (cGAN), was trained to simulate a human-traced PCSVN given a digital photograph of the placental chorionic surface. This method surpasses any existing automated PCSVN extraction methods reported on digital photographs of placentas. We hypothesize that a suitable combination of the two methods could further improve PCSVN extraction results and should be studied in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Almoussa, B. Dutra, B. Lampe, P. Getreuer, T. Wittman, C. Salafia, L. Vese, Automated vasculature extraction from placenta images, in Proceedings of SPIE Medical Imaging Conference, vol. 7962, 2011

    Google Scholar 

  2. M. Belkin, P. Niyogi, Laplacian Eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373–1396 (2002)

    Article  Google Scholar 

  3. P. Burt, E. Adelson, The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31, 532–540 (1983)

    Article  Google Scholar 

  4. E. Candès, L. Demanet, D. Donoho, L. Ying, Fast discrete curvelet transforms. Multiscale Model. Simul. 5(3), 861–899 (2006)

    Article  MathSciNet  Google Scholar 

  5. J.-M. Chang, N. Huynh, M. Vasquez, C. Salafia, Vessel enhancement with multi-scale and curvilinear filer matching for placenta images, in Proceeding of the 2013 20th International Conference on Systems, Signals and Image Processing (IWSSIP), 2013, pp. 125–128

    Google Scholar 

  6. J.-M. Chang, H. Zeng, Y.-M. Chang, R. Shah, C. Salafia, C. Newschaffer, R. Miller, P. Katzman, M.-F. Moye, C. Walker, L. Croen, Autism risk classification using placental chorionic surface vascular network features. BMC Med. Inform. Decis. Mak. 17(1), 162 (2017)

    Google Scholar 

  7. F.R.K. Chung, Spectral Graph Theory (American Mathematical Society, Providence, 1997)

    MATH  Google Scholar 

  8. R. Coifman, Y. Meyer, V. Wickerhauser, Adapted wave form analysis, wavelet-packets and applications, in Proceedings of the second International Conference on Industrial and Applied Mathematics, ICIAM 91 (Society for Industrial and Applied Mathematics, Philadelphia, 1992), pp. 41–50

    Google Scholar 

  9. W. Czaja, M. Ehler, Schrödinger Eigenmaps for the analysis of bio-medical data. CoRR, abs/1102.4086, 2011

    Google Scholar 

  10. I. Daubechies, Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41(7), 909–996 (1988)

    Article  MathSciNet  Google Scholar 

  11. M. Do, M. Vetterli, Contourlets: a directional multiresolution image representation, in ICIP (1), 2002, pp. 357–360

    Google Scholar 

  12. M. Egbor, T. Ansari, N. Morris, C.J. Green, P.D. Sibbons, Morphometric placental villous and vascular abnormalities in early- and late-onset pre-eclampsia with and without fetal growth restriction. J. Obstet. Gynecol. 113(5), 580–589 (2006)

    Google Scholar 

  13. E. Farnell, S. Farnell, J.-M. Chang, M. Hoffman, R. Belton, K. Keaty, S. Lederman, C. Salafia, A shape-context model for matching placental chorionic surface vascular networks. Image Anal. Stenogr. 37(1), 55–62 (2018)

    Article  MathSciNet  Google Scholar 

  14. A.F. Frangi, W.J. Niessen, K.L. Vincken, M.A. Viergever, Multiscale Vessel Enhancement Filtering (Springer, Berlin, 1998)

    Book  Google Scholar 

  15. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in Advances in Neural Information Processing Systems, vol. 27, ed. by Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, K.Q. Weinberger (Curran Associates, Inc., Red Hook, 2014), pp. 2672–2680

    Google Scholar 

  16. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT press, Cambridge, 2016)

    MATH  Google Scholar 

  17. K. Guo, D. Labate, Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal. 39(1), 298–318 (2007)

    Article  MathSciNet  Google Scholar 

  18. E. Haeussner, C. Schmitz, H.G. Frank, F.E. von Koch, Novel 3D light microscopic analysis of IUGR placentas points to a morphological correlate of compensated ischemic placental disease in humans. Sci. Rep. 6, 24004 (2016)

    Article  Google Scholar 

  19. J. Ham, D. Lee, S. Mika, B. Schölkopf, A kernel view of the dimensionality reduction of manifolds, in Proceedings of the Twenty-first International Conference on Machine Learning, ICML ’04 (ACM, New York, 2004), pp. 47–55

    Google Scholar 

  20. S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, in International Conference on Machine Learning, 2015, pp. 448–456

    Google Scholar 

  21. P. Isola, J.-Y. Zhu, T. Zhou, A.A. Efros, Image-to-image translation with conditional adversarial networks, in CVPR, 2017

    Google Scholar 

  22. P. Jarmuzek, M. Wielgos, D.A. Bomba-Opon, Placental pathologic changes in gestational diabetes mellitus. Neuroendocrinol. Lett. 36(2), 101–105 (2015)

    Google Scholar 

  23. D. Labate, W.-Q. Lim, G. Kutyniok, G. Weiss, Sparse multidimensional representation using shearlets. Opt. Photon. 2005, 59140U (2005)

    Google Scholar 

  24. T.S. Lee, Image representation using 2D Gabor wavelets. IEEE Trans. Pattern Anal. Mach. Intell. 18(10), 959–971 (1996)

    Article  Google Scholar 

  25. J. Lee, M. Verleysen, Nonlinear Dimensionality Reduction, 1st edn. (Springer, New York, 2007)

    Book  Google Scholar 

  26. S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)

    Article  Google Scholar 

  27. L. Matelski, J. Van de Water, Risk factors in autism: thinking outside the brain. J. Autoimmun. 67, 1–7 (2016)

    Article  Google Scholar 

  28. A. Modabbernia, E. Velthorst, A. Reichenberg, Environmental risk factors for autism: an evidence-based review of systematic reviews and meta-analyses. Mol. Autism 8, 13 (2017)

    Article  Google Scholar 

  29. C.J. Newschaffer, L.A. Croen, M.D. Fallin, I. Hertz-Picciotto, D.V. Nguyen, N.L. Lee, C.A. Berry, H. Farzadegan, H.N. Hess, R.J. Landa, S.E. Levy, M.L. Massolo, S.C. Meyerer, S.M. Mohammed, M.C. Oliver, S. Ozonoff, J. Pandey, A. Schroeder, K.M. Shedd-Wise, Infant siblings and the investigation of autism risk factors. J. Neurodev. Disord. 4, 1–16 (2012)

    Article  Google Scholar 

  30. H.R. Park, J.M. Lee, H.E. Moon, D.S. Lee, B.N. Kim, J. Kim, D.G. Kim, S.H. Paek, A short review on the current understanding of autism spectrum disorders. Exp. Neurobiol. 25(1), 1–13 (2016)

    Article  Google Scholar 

  31. O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical image segmentation, in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, Berlin, 2015), pp. 234–241

    Google Scholar 

  32. C.M. Salafia, C. Platt, T. Girardi, R. Shah, G. Merz, D.P. Misra, Placental structure in ASD: does the placenta mirror the diagnosis? in 2014 International Meeting for Autism Research, page Abstract No. 17578, May 14–17 2014

    Google Scholar 

  33. R.G. Shah, C.M. Salafia, T. Girardi, L. Conrad, K. Keaty, A. Bartleotc, Shape matching algorithm to validate the tracing protocol of placental chorionic surface vessel networks. Placenta 36(8), 944–946 (2015)

    Article  Google Scholar 

  34. C.K. Walker, P. Krakowiak, A. Baker, R.L. Hansen, S. Ozonoff, I. Hertz-Picciotto, Preeclampsia, placental insufficiency, and autism spectrum disorder or developmental delay. JAMA Pediatr. 169(2), 154–162 (2015)

    Article  Google Scholar 

  35. K. Yacoubou Djima, L. Simonelli, D. Cunnigham, W. Czaja, Detection of anomaly in human retina using Laplacian Eigenmaps and vectorized matched filtering, in Proceedings of SPIE, vol. 9413, Mar 2015, pp. 94132F-1–94132F-11

    Google Scholar 

  36. S.K. Zhou, H. Greenspan, D. Shen, Deep Learning for Medical Image Analysis (Elsevier Science, Amsterdam, 2017)

    Google Scholar 

Download references

Acknowledgements

The project was part of the MBI Women Advancing Mathematical Biology: Understanding Complex Biological Systems with Mathematics 2017 Workshop organized by the Association for Women in Mathematics. Funding for the workshop was provided by MBI, NSF ADVANCE “Career Advancement for Women Through Research-Focused Networks” (NSF-HRD 1500481), Society for Mathematical Biology, and Microsoft Research.

Over the course of the project, we received biology expertise and support from Drs. Ruchit Shah, George Merz, and Richard K. Miller.

The authors also wish to thank the following people who contributed to the collection of the placentas in the National Children’s Study Placenta Consortium: C.J. Stodgell, L. Salamone, L.I. Ruffolo, A. Penmetsa, P. Weidenborner (University of Rochester), J. Culhane, S. Wadlinger, M. Pacholski, M.A. Kent, L. Green (University of Pennsylvania), R. Wapner, C. Torres, J. Perou (Columbia University), P. Landrigan, J. Chen, L. Lambertini, L. Littman, P. Sheffield, A. Golden, J. Gilbert, C. Lendor, S. Allen, K. Mantilla, Y. Ma (Ichan School of Medicine), S. Leuthner, S. Szabo (Medical College of Wisconsin), J.L. Dalton, D. Misra (Placental Analytics), N. Thiex, K.Gutzman, A. Martin, B. Specker (South Dakota University), J. Swanson, C. Holliday, J. Butler (University of California at Irvine), A. Li, R.M.A.P.S. Dassanayake, J. Nanes, Y. Xia (University of Illinois at Chicago), J.C. Murray, T.D. Busch, J. Rigdon (University of Iowa), Kjersti Aagaard, A. Harris (Baylor College of Medicine), T.H. Darrah, E. Campbell (Boston University), N. Dole, J. Thorp, B. Eucker, C. Bell (University of North Carolina at Chapel Hill), E.B. Clark, M.W. Varner, E. Taggart, J. Billy, S. Stradling, J. Leavitt, W. Bell, S. Waterfall (University of Utah), B. O’Brien, M. Layton, D. Todd, K. Wilson, M.S. Durkin, M.-N. Sandoval (Westat, Inc).

Most importantly, we thank the study participants who donated their placentas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catalina Anghel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s) and the Association for Women in Mathematics

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anghel, C. et al. (2018). Placental Vessel Extraction with Shearlets, Laplacian Eigenmaps, and a Conditional Generative Adversarial Network. In: Radunskaya, A., Segal, R., Shtylla, B. (eds) Understanding Complex Biological Systems with Mathematics. Association for Women in Mathematics Series, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-98083-6_8

Download citation

Publish with us

Policies and ethics