Skip to main content

A Mathematical Model for Tumor–Immune Dynamics in Multiple Myeloma

  • Chapter
  • First Online:
Understanding Complex Biological Systems with Mathematics

Abstract

We propose a mathematical model that describes the dynamics of multiple myeloma and three distinct populations of the innate and adaptive immune system: cytotoxic T cells, natural killer cells, and regulatory T cells. The model includes significant biologically- and therapeutically-relevant pathways for inhibitory and stimulatory interactions between these populations. Due to the model complexity, we propose a reduced version that captures the principal biological aspects for advanced disease, while still including potential targets for therapeutic interventions. Analysis of the reduced two-dimensional model revealed details about long-term model behavior. In particular, theoretical results describing equilibria and their associated stability are described in detail. Consistent with the theoretical analysis, numerical results reveal parameter regions for which bistability exits. The two stable states in these cases may correspond to long-term disease control or a higher level of disease burden. This initial analysis of the dynamical system provides a foundation for later work, which will consider combination therapies, their expected outcomes, and optimization of regimens.

Hearn Jay Cho and Helen Moore contributed equally to the building of the model and the conceptual framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.K. Abbas, A.H. Lichtman, S. Pillai, Cellular and Molecular Immunology, 8th edn. (Elsevier Saunders, Philadelphia, 2015)

    Google Scholar 

  2. J.C. Arciero, T.L. Jackson, D.E. Kirschner, A mathematical model of tumor-immune evasion and siRNA treatment. Discrete Contin. Dynam. Syst. Ser. B 4(1), 39–58 (2004)

    MathSciNet  MATH  Google Scholar 

  3. J. Baginska, E. Viry, J. Paggetti, S. Medves, G. Berchem, E. Moussay, B. Janji, The critical role of the tumor microenvironment in shaping natural killer cell-mediated anti-tumor immunity. Front. Immunol. 4, 1–13 (2013)

    Article  Google Scholar 

  4. D.M. Benson Jr., C.E. Bakan, A. Mishra, C.C. Hofmeister, Y. Efebera, B. Becknell, R.A. Baiocchi, J. Zhang, J. Yu, M.K. Smith, C.N. Greenfield, P. Porcu, S.M. Devine, R. Rotem-Yehudar, G. Lozanski, J.C. Byrd, M.A. Caligiuri, The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood 116(13), 2286–2294 (2010)

    Article  Google Scholar 

  5. F. Bihl, C. Germain, C. Luci, V.M. Braud, Mechanisms of NK cell activation: CD4+ T cells enter the scene. Cell. Mol. Life Sci. 68, 3457–3467 (2011)

    Article  Google Scholar 

  6. O. Boyman, J. Sprent, The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol. 12(3), 180 (2012)

    Article  Google Scholar 

  7. W.M.T. Braga, D. Atanackovic, G.W.B. Colleoni, The role of regulatory T cells and TH17 cells in multiple myeloma. Clin. Develop. Immunol. 2012, 293479 (2012)

    Article  Google Scholar 

  8. R.D. Brown, B. Pope, E. Yuen, J. Bibson, D.E. Joshua, The expression of T cell related costimulatory molecules in multiple myeloma. Leuk. Lymphoma 31(3–4), 379–384 (1998)

    Article  Google Scholar 

  9. E. Carbone, P. Neri, M. Mesuraca, M.T. Fulciniti, T. Otsuki, D. Pende, V. Groh, T. Spies, G. Pollio, D. Cosman, L. Catalano, P. Tassone, B. Rotoli, S. Venuta, HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells. Immunobiology 105(1), 251–258 (2005)

    Google Scholar 

  10. A. Cerwenka, J. Baron, L. Lanier, Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc. Natl. Acad. Sci. 98(20), 11521–11526 (2001)

    Article  Google Scholar 

  11. M.-L. Chen, M.J. Pittet, L. Gorelik, R.A. Flavell, R. Weissleder, H. von Boehme, K. Khazaie, Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-β signals in vivo. Proc. Nat. Acad. Sci. 102(2), 419–424 (2005)

    Article  Google Scholar 

  12. A.K. Cooper, P.S. Kim, A cellular automata and a partial differential equation model of tumor-immune dynamics and chemotaxis, in Mathematical Models of Tumor-Immune System Dynamics, ed. by A. Eladaddi, P. Kim, D. Mallet. Springer Proceedings in Mathematics and Statistics, vol. 107 (Springer, New York, 2014), pp. 21–46

    Google Scholar 

  13. B. Dankbar, T. Padró, R. Leo, B. Feldmann, M. Kropff, R.M. Mesters, H. Serve, W.E. Berdel, J. Kienast, Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. J. Immunol. Res. 95(8), 2630–2636 (2000)

    Google Scholar 

  14. G. D’Arena, G. Rossi, L. Laurenti, T. Statuto, F. D’Auria, L. Valvano, V. Simeon, A. Giudice, I. Innocenti, V. De Feo, R. Filosa, P. Musto, Circulating regulatory T-cells in monoclonal gammopathies of uncertain significance and multiple myeloma: in search of a role. J. Immunol. Res. 2016, 9271469 (2016)

    Article  Google Scholar 

  15. R.J. de Boer, D. Homann, A.S. Perelson, Different dynamics of CD4+ and CD8+ T cell responses during and after acute lymphocytic choriomeningitis virus infection. J. Immunol. 171(8), 3928–3935 (2003)

    Article  Google Scholar 

  16. L.G. de Pillis, A. Radunskaya, C.L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Res. 65, 7950–7958 (2005)

    Article  Google Scholar 

  17. L. de Pillis, T. Caldwell, E. Sarapata, H. Williams, Mathematical modeling of regulatory T cell effects on renal cell carcinoma treatment. Discrete Contin. Dynam. Syst.-Ser. B 18(4), 915–943 (2013)

    Article  MathSciNet  Google Scholar 

  18. L. de Pillis, A. Gallegos, A. Radunskaya, A model of dendritic cell therapy for melanoma. Front. Oncol. 3, 56 (2013)

    Google Scholar 

  19. H.P. de Vladar, J.A. González, Dynamic response of cancer under the influence of immunological activity and therapy. J. Theor. Biol. 227(3), 335–348 (2004)

    Article  MathSciNet  Google Scholar 

  20. M. Delitalia, T. Lorenzi, M. Melensi, A structured population model of competition between cancer cells and T cells under immunotherapy, in Mathematical Models of Tumor-Immune System Dynamics, ed. by A. Eladaddi, P. Kim, D. Mallet. Springer Proceedings in Mathematics and Statistics, vol. 107 (Springer, New York, 2014), pp. 47–58

    Google Scholar 

  21. M.V. Dhodapkar, M.D. Geller, D.H. Chang, K. Shimizu, S.-I. Fujii, K.M. Dhodapkar, J. Krasovsky, A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J. Exp. Med. 197(12), 1667–1676 (2003)

    Article  Google Scholar 

  22. A. Diefenbach, E.R. Jensen, A.M. Jamieson, D.H. Raulet, Rae1 and H60 ligands of the NKG2D receptor stimulate tumor immunity. Nature 413(6852), 165 (2001)

    Article  Google Scholar 

  23. R.J. DiPaolo, D.D. Glass, K.E. Bijwaard, E.M. Shevach, CD4+ CD25+ T cells prevent the development of organ-specific autoimmune disease by inhibiting the differentiation of autoreactive effector T cells. J. Immunol. 175(11), 7135–7142 (2005)

    Article  Google Scholar 

  24. A. d’Onofrio, A general framework for modelling tumor-immune system competition and immunotherapy: mathematical analysis and biomedical inferences. Physica D 208(3–4), 202–235 (2005)

    MathSciNet  MATH  Google Scholar 

  25. T. Dosani, M. Carlsten, I. Maric, O. Landgren, The cellular immune system in myelomagenesis: NK cells and T cells in the development of MM and their uses in immunotherapies. Blood Cancer J. 5(4), e306 (2015)

    Article  Google Scholar 

  26. B.G.M. Durie, S.E. Salmon, A clinical staging system for multiple myeloma: correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer 36, 842–854 (1975)

    Article  Google Scholar 

  27. A. Eladaddi, P. Kim, D. Mallet (eds.), Mathematical Models of Tumor-Immune System Dynamics. Springer Proceedings in Mathematics and Statistics, vol. 107 (Springer, New York, 2014)

    Google Scholar 

  28. J. Favaloro, R. Brown, E. Aklilu, S. Yang, H. Suen, D. Hart, P. Fromm, J. Gibson, L. Khoo, P.J. Ho, D. Joshua, Myeloma skews regulatory T and pro-inflammatory T helper 17 cell balance in favor of a suppressive state. Leuk. Lymphoma 55(5), 1090–1098 (2014)

    Article  Google Scholar 

  29. S. Feyler, M. von Lilienfeld-Toal, S. Jarmin, L. Marles, A. Rawstron, A.J. Ashcroft, R.G. Owen, P.J. Selby, G. Cook, CD4(+)CD25(+)FoxP3(+) regulatory T cells are increased whilst CD3(+)CD4(−)CD8(−)alphabetaTCR(+) double negative T cells are decreased in the peripheral blood of patients with multiple myeloma which correlates with disease burden. Br. J. Haematol. 144, 686–695 (2009)

    Article  Google Scholar 

  30. S. Feyler, G.B. Scott, C. Parrish, S. Jarmin, P, Evans, M. Short, K. McKinley, P.J. Selby, G. Cook, Tumour cell generation of inducible regulatory T-cells in multiple myeloma is contact-dependent and antigen-presenting cell-independent. PLoS ONE 7(5), e35981 (2012)

    Article  Google Scholar 

  31. F. Frascoli, P.S. Kim, B.D. Hughes, K.A. Landman, A dynamical model of tumour immunotherapy. Math. Biosci. 253, 50–62 (2014)

    Article  MathSciNet  Google Scholar 

  32. C. Frohn, M. Hoppner, P. Schlenke, H. Kirchner, P. Koritke, J. Luhm, Anti-myeloma activity of natural killer lymphocytes. Br. J. Haematol. 119, 660–664 (2002)

    Article  Google Scholar 

  33. D.I. Gabrilovich, H.L. Chen, K.R. Girgis, H.T. Cunningham, G.M. Meny, S. Nadaf, D. Kavanaugh, D.P. Carbone, Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 2(10), 1096–1103 (1996)

    Article  Google Scholar 

  34. M. Gao, L. Gao, G. Yang, Y. Tao, J. Hou, H. Xu, X. Hu, Y. Han, Q. Zhang, F. Zhan, X. Wu, J. Shi, Myeloma cells resistance to NK cell lysis mainly involves an HLA class I-dependent mechanism. Acta Biochim. Biophys. Sin. 46(7), 597–604 (2014)

    Article  Google Scholar 

  35. F. Ghiringhelli, C. Ménard, M. Terme, C. Flament, J. Taieb, N. Chaput, P.E. Puig, S. Novault, B. Escudier, E. Vivier et al. CD4+ CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-β-dependent manner. J. Exp. Med. 202(8), 1075–1085 (2005)

    Article  Google Scholar 

  36. F. Ghiringhelli, C. Ménard, F. Martin, L. Zitvogel, The role of regulatory T cells in the control of natural killer cells: relevance during tumor progression. Immunol. Rev. 214(1), 229–238 (2006)

    Article  Google Scholar 

  37. G. Görgün, M.K. Samur, K.B Cowens, S. Paula, G. Bianchi, J.E. Anderson, R.E. White, A. Singh, H. Ohguchi, R. Suzuki, S. Kikuchi, T. Harada, T. Hideshima, Y.-T. Tai, J.P Laubach, N. Raje, F. Magrangeas, S. Minvielle, H. Avet-Loiseau, N.C. Munshi, D.M. Dorfman, P.G Richardson, K.C. Anderson, Lenalidomide enhances immune checkpoint blockade-induced immune response in multiple myeloma. Clin. Cancer Res. 21(20), 4607–4618 (2015)

    Article  Google Scholar 

  38. C.T. Hansen, P.T. Pedersen, L.C. Nielsen, N. Abildgaard, Evaluation of the serum free light chain (sFLC) analysis in prediction of response in symptomatic multiple myeloma patients: rapid profound reduction in involved FLC predicts achievement of VGPR. Eur. J. Haematol. 93(5), 407–413 (2014)

    Article  Google Scholar 

  39. C.A. Janeway, How the immune system protects the host from infection. Microbes Infect. 3(13), 1167–1171 (2001)

    Article  Google Scholar 

  40. F. Jonsson, Y. Ou, L. Claret, D. Siegel, S. Jagannath, R. Vij, A. Badros, S. Aggarwal, R. Bruno, A tumor growth inhibition model based on M-protein levels in subjects with relapsed/refractory multiple myeloma following single-agent carfilzomib use. CPT: Pharmacometrics Syst. Pharmacol. 4(12), 711–719 (2015)

    Google Scholar 

  41. Y. Kawano, M. Moschetta, S. Manier, S. Glavey, G.T. Görgün, A.M. Roccaro, K.C. Anderson, I.M. Ghobrial, Targeting the bone marrow microenvironment in multiple myeloma. Immunol. Rev. 263(1), 160–172 (2015)

    Article  Google Scholar 

  42. Y. Kawarada, R. Ganss, N. Garbi, T. Sacher, B. Arnold, G.J. Hämmerling, NK-and CD8+ T cell-mediated eradication of established tumors by peritumoral injection of CpG-containing oligodeoxynucleotides. J. Immunol. 167(9), 5247–5253 (2001)

    Article  Google Scholar 

  43. D. Kazandjian, O. Landgren, A look backward and forward in the regulatory and treatment history of multiple myeloma: approval of novel-novel agents, new drug development, and longer patient survival. Semin. Oncol. 43, 682–689 (2016)

    Article  Google Scholar 

  44. J.M. Kim, J.P. Rasmussen, A.Y. Rudensky, Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8(2), 191 (2007)

    Article  Google Scholar 

  45. D. Kirschner, J.C. Panetta, Modeling immunotherapy of the tumor-immune interaction. J. Math. Biol. 37, 235–252 (2007)

    Article  Google Scholar 

  46. M. Kocoglu, A. Badros, The role of immunotherapy in multiple myeloma. Pharmaceuticals 9(1), 3 (2016)

    Article  Google Scholar 

  47. J. Krejcik, T. Casneuf, I.S. Nijhof, B. Verbist, J. Bald, T. Plesner, K. Syed, K. Liu, N.W.C.J. van de Donk, B.M. Weiss, T. Ahmadi, H.M. Lokhorst, T. Mutis, A.K. Sasser, Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood 128(3), 384–394 (2016)

    Article  Google Scholar 

  48. V.A. Kuznetsov, I.A. Makalkin, M.A. Taylor, A.S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull. Math. Biol. 56(2), 295–321 (1994)

    Article  Google Scholar 

  49. R.A. Kyle, T.M. Therneau, S.V. Rajkumar, J.R. Offord, D.R. Larson, M.F. Plevak, L.J. Melton 3rd, A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 346(8), 564–569 (2002)

    Article  Google Scholar 

  50. R.A. Kyle, M.A. Gertz, T.E. Witzig, J.A. Lust, M.Q. Lacy, A. Dispenzieri, R. Fonseca, S.V. Rajkumar, J.R. Offord, D.R. Larson, M.E. Plevak, T.M. Therneau, P.R. Greipp, Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin. Proc. 78, 21–33 (2003)

    Article  Google Scholar 

  51. R.A. Kyle, E.D. Remstein, T.M. Therneau, A. Dispenzieri, P.J. Kurtin, J.M. Hodnefield, D.R. Larson, M.F. Plevak, D.F. Jelinek, R. Fonseca, L.J. Melton 3rd, S.V. Rajkumar, Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N. Engl. J. Med. 356(25), 2582–2590 (2007)

    Article  Google Scholar 

  52. U. Ledzewicz, H. Moore, Dynamical systems properties of a mathematical model for the treatment of CML. Appl. Sci. 6, 291 (2016)

    Article  Google Scholar 

  53. U. Ledzewicz, M. Naghnaeian, H. Schättler, Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics. J. Math. Biol. 64, 557–577 (2012)

    Article  MathSciNet  Google Scholar 

  54. C. Lehman, M. Zeis, L. Uharek, Activation of natural killer cells with interleukin 2 (IL-2) and IL-12 increases perforin binding and subsequent lysis of tumour cells. Br. J. Haematol. 114(3), 660–665 (2001)

    Article  Google Scholar 

  55. K.-L. Liao, X.-F. Bai, A. Friedman, Mathematical modeling of interleukin-27 induction of anti-tumor T cells response. PLoS ONE 9(3), e91844 (2014)

    Article  Google Scholar 

  56. A. Maniatis, Pathophysiology of paraprotein production. Ren. Fail. 20(6), 821–828 (1998)

    Article  Google Scholar 

  57. T.R. Mempel, M.J. Pittet, K. Khazaie, W. Weninger, R. Weissleder, H. von Boehmer, U.H. von Andrian, Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity 25(1), 129–141 (2006)

    Article  Google Scholar 

  58. N.J. Meropol, G.M. Barresi, T.A. Fehniger, J. Hitt, M. Franklin, M.A. Caligiuri, Evaluation of natural killer cell expansion and activation in vivo with daily subcutaneous low-dose interleukin-2 plus periodic intermediate-dose pulsing. Cancer Immunol. Immunother. 46(6), 318–326 (1998)

    Article  Google Scholar 

  59. A.J. Michielsen, A.E. Hogan, J. Marry, M. Tosetto, F. Cox, J.M. Hyland, K.D. Sheahan, D.P. O’Donoghue, H.E. Mulcahy, E.J. Ryan, J.N. O’Sullivan, Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer. PLoS ONE 6(11), e27944 (2011)

    Article  Google Scholar 

  60. J.R. Mills, D.R. Barnidge, A. Dispenzieri, D.L. Murray, High sensitivity blood-based M-protein detection in sCR patients with multiple myeloma. Blood Cancer J. 7(8), e590 (2017)

    Article  Google Scholar 

  61. H. Moore, N.K. Li, A mathematical model for chronic myelogenous leukemia (CML) and T cell interaction. J. Theor. Biol. 227(4), 513–523 (2004)

    Article  MathSciNet  Google Scholar 

  62. S. Nanda, H. Moore, S. Lenhart, Optimal control of treatment in a mathematical model of chronic myelogenous leukemia. Math. Biosci. 210(1), 143–156 (2007)

    Article  MathSciNet  Google Scholar 

  63. T.X. O’Connell, T.J. Horita, B. Kasravi, Understanding and interpreting serum protein electrophoresis. Am. Fam. Physician 71(1), 105–112 (2005)

    Google Scholar 

  64. T.M. Oivanen, Plateau phase in multiple myeloma: an analysis of long-term follow-up of 432 patients. Br. J. Haematol. 92(4), 834–839 (1996)

    Article  Google Scholar 

  65. K. Pallmer, A. Oxenius, Recognition and regulation of T cells by NK cells. Front. Immunol. 7, 251 (2016)

    Article  Google Scholar 

  66. D.M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012)

    Article  Google Scholar 

  67. T. Pazina, A.M. James, A.W. MacFarlane IV, N.A. Bezman, K.A. Henning, C. Bee, R.F. Graziano, M.D. Robbins, A.D Cohen, K.S. Campbell, The anti-SLAMF7 antibody elotuzumab mediates NK cell activation through both CD16-dependent and independent mechanisms. OncoImmunology 6(9), e1339853 (2017)

    Article  Google Scholar 

  68. R.J. Pessoa de Magalhães, M.-B. Vidriales, B. Paiva, C. Fernandez-Gimenez, R. García-Sanz, M.-V. Mateos, N.C. Gutierrez, Q. Lecrevisse, J.F. Blanco, J. Hernández, N. de las Heras, J. Martinez-Lopez, M. Roig, E.S. Costa, E.M. Ocio, M. Perez-Andres, A. Maiolino, M. Nucci, J. De La Rubia, J.-J. Lahuerta, J.F. San-Miguel, A. Orfao, Analysis of the immune system of multiple myeloma patients achieving long-term disease control by multidimensional flow cytometry. Haematologica 98(1), 79–86 (2013)

    Article  Google Scholar 

  69. G. Pratt, O. Goodyear, P. Moss, Immunodeficiency and immunotherapy in multiple myeloma. Br. J. Haematol. 138, 563–579 (2007)

    Article  Google Scholar 

  70. M. Raitakari, R.D. Brown, J. Gibson, D.E. Joshua, T cells in myeloma. Hematol. Oncol. 21(1), 33–42 (2003)

    Article  Google Scholar 

  71. K.R.M. Raja, L. Rihova, L. Zahradova, M. Klincova, M. Penka, R. Hajek, Increased T regulatory cells are associated with adverse clinical features and predict progression in multiple myeloma. PLoS ONE 7(10), e47077 (2012)

    Google Scholar 

  72. M. Ratta, F. Fagnoni, A. Curti, R. Vescovini, P. Sansoni, B. Oliviero, M. Fogli, E. Ferri, G. Robustelli Della Cuna, S. Tura, M. Baccarani, R.M Lemoli, Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood 100(1), 230–237 (2002)

    Article  Google Scholar 

  73. M. Robertson-Tessi, A. El-Kareh, A. Goriely, A mathematical model of tumor-immune interactions. J. Theor. Biol. 294, 56–73 (2012)

    Article  MathSciNet  Google Scholar 

  74. S.E. Salmon, B.A. Smith, Immunoglobulin synthesis and total body tumor cell number in IgG multiple myeloma. J. Clin. Invest. 49, 1114–1121 (1970)

    Article  Google Scholar 

  75. H. Schättler, U. Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies (Springer, New York, 2015)

    Book  Google Scholar 

  76. A. Shanker, G. Verdeil, M. Buferne, E.-M. Inderberg-Suso, D. Puthier, F. Joly, C. Nguyen, L. Leserman, N. Auphan-Anezin, A.-M. Schmitt-Verhulst, CD8 T cell help for innate antitumor immunity. J. Immunol. 179(10), 6651–6662 (2007)

    Article  Google Scholar 

  77. A. Shanker, M. Buferne, A.-M. Schmitt-Verhulst, Cooperative action of CD8 T lymphocytes and natural killer cells controls tumour growth under conditions of restricted T-cell receptor diversity. Immunology 129(1), 41–54 (2010)

    Article  Google Scholar 

  78. E.M. Shevach, R.A. DiPaolo, J. Andersson, D.-M. Zhao, G.L. Stephens, A.M. Thornton, The lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunol. Rev. 212(1), 60–73 (2006)

    Article  Google Scholar 

  79. D.R. Shook, D. Campana, Natural killer cell engineering for cellular therapy of cancer. Tissue Antigens 78(6), 409–415 2011.

    Article  Google Scholar 

  80. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2016. CA: A Cancer J. Clin. 66, 7–30 (2016)

    Google Scholar 

  81. M.J. Smyth, M.W.L. Teng, J. Swann, K. Kyparissoudis, D.I. Godfrey, Y. Hayakawa, CD4+ CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J. Immunol. 176(3), 1582–1587 (2006)

    Article  Google Scholar 

  82. D.K. Sojka, Y.-H. Huang, D.J. Fowell, Mechanisms of regulatory T-cell suppression - a diverse arsenal for a moving target. Immunology 124(1), 13–22 (2008)

    Article  Google Scholar 

  83. E.D. Sontag, A dynamic model of immune responses to antigen presentation predicts different regions of tumor or pathogen elimination. Cell Syst. 4(2), 231–241 (2017)

    Article  Google Scholar 

  84. N.V. Stepanova, Course of the immune reaction during the development of a malignant tumour. Biophysics 24, 917–923 (1980)

    Google Scholar 

  85. H. Suen, R. Brown, S. Yang, C. Weatherburn, P.J. Ho, N. Woodland, N. Nassif, P. Barbaro, C. Bryant, D. Hart, J. Gibson, D. Joshua, Multiple myeloma causes clonal T-cell immunosenescence: identification of potential novel targets for promoting tumour immunity and implications for checkpoint blockade. Leukemia 30(8), 1716–1724 (2016)

    Article  Google Scholar 

  86. P.W. Sullivan, S.E. Salmon, Kinetics of tumor growth and regression in IgG multiple myeloma. J. Clin. Invest. 51, 1697–1708 (1972)

    Article  Google Scholar 

  87. C.M. Sungur, Y.J. Tang-Feldman, E. Ames, M. Alvarez, M. Chen, D.L. Longo, C. Pomeroy, W.J. Murphy, Murine natural killer cell licensing and regulation by T regulatory cells in viral responses. Proc. Natl. Acad. Sci. 110(18), 7401–7406 (2013)

    Article  Google Scholar 

  88. G.W. Swan, T.L. Vincent, Optimal control analysis in the chemotherapy of IgG multiple myeloma. Bull. Math. Biol. 39(3), 317–337 (1977)

    Article  Google Scholar 

  89. M. Tang, R. Zhao, H. van de Velde, J.G. Tross, C. Mitsiades, S. Viselli, R. Neuwirth, D.-L. Esseltine, K. Anderson, I.M. Ghobrial, J.F. San Miguel, P.G. Richardson, M.H. Tomasson, F. Michor, Myeloma cell dynamics in response to treatment supports a model of hierarchical differentiation and clonal evolution. Clin. Cancer Res. 22(16), 4206–4214 (2016)

    Article  Google Scholar 

  90. D.Q. Tran, TGF-β: the sword, the wand, and the shield of FOXP3+ regulatory T cells. J. Mol. Cell Biol. 4(1), 29–37 (2012)

    Article  Google Scholar 

  91. S.W.M. Trisilowati, D.G Mallet, A cellular automata model to investigate immune cell-tumor cell interactions in growing tumors in two spatial dimensions, in Mathematical Models of Tumor-Immune System Dynamics, ed. by A. Eladaddi, P. Kim, D. Mallet. Springer Proceedings in Mathematics and Statistics, vol. 107 (Springer, New York, 2014), pp. 223–251

    Google Scholar 

  92. M. Vukmanovic-Stejic, Y. Zhang, J.E. Cook, J.M. Fletcher, A. McQuaid, J.E. Masters, M.H.A. Rustin, L.S. Taams, P.C.L. Beverley, D.C. Macallan, et al., Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J. Clin. Invest. 116(9), 2423 (2006)

    Article  Google Scholar 

  93. H.S. Warren, NK cell proliferation and inflammation. Immunol. Cell Biol. 74, 473–480 (1996)

    Article  Google Scholar 

  94. Y.-J. Wen, B. Barlogie, Q. Yi, Idiotype-specific cytotoxic t lymphocytes in multiple myeloma: evidence for their capacity to lyse autologous primary tumor cells. Blood 97(6), 1750–1755 (2001)

    Article  Google Scholar 

  95. Y.-J. Wen, R. Min, G. Tricot, B. Barlogie, Q. Yi, Tumor lysate-specific cytotoxic T lymphocytes in multiple myeloma: promising effector cells for immunotherapy. Blood 99(9), 3280–3285 (2002)

    Article  Google Scholar 

  96. Y. Zhang, D.L. Wallace, C.M. De Lara, H. Ghattas, B. Asquith, A. Worth, G.E. Griffin, G.P. Taylor, D.F. Tough, P.C.L. Beverley, et al., In vivo kinetics of human natural killer cells: the effects of ageing and acute and chronic viral infection. Immunology 121(2), 258–265 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was initiated during the Association for Women in Mathematics collaborative workshop Women Advancing Mathematical Biology hosted by the Mathematical Biosciences Institute (MBI) at Ohio State University in April 2017. Funding for the workshop was provided by MBI, NSF ADVANCE “Career Advancement for Women Through Research-Focused Networks” (NSF-HRD 1500481), Society for Mathematical Biology, and Microsoft Research. The authors thank the anonymous reviewers for helpful comments that led to improvements in this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix

Appendix

In this section, we include formal calculations that were omitted in the main text.

1.1 Existence and Uniqueness of Solutions

Here, we discuss an existence and uniqueness result for the full model given by Eqs. (2) through (5), and the reduced model given by system (6).

Proposition 4

Given initial conditions \((M^0,T_C^0,N^0,T_R^0)\) in the closed first quadrant

$$\displaystyle \begin{aligned} Q=\{(M,T_C,N,T_R): M \geq 0, T_C \geq 0, N \geq 0, T_R \geq 0\}, \end{aligned}$$

the differential equations defined by Eqs.(2) through (5) have a unique solution which exists for all times t ≥ 0 and lies in Q.

Proof

The right-hand side of this differential equation is continuously differentiable in a neighborhood of Q and thus for initial conditions in Q locally there exists a unique solution. As T C ≡ 0 and T R ≡ 0 are equilibrium solutions and as \(\left .\frac {dM}{dt}\right |{ }_{M=0}\) and \(\left .\frac {dN}{dt}\right |{ }_{N=0}\) have source terms and thus are positive, it follows that Q is positively invariant, i.e., solutions that start in Q will remain in Q throughout their interval of existence. Finally, since all the Michaelis–Menten type expressions of the form \(\frac {ax}{b+x}\) with x ∈{M, T C, N, T R} are bounded, it follows that there exist constants C 1, C 2, C 3, and C 4 such that

$$\displaystyle \begin{aligned} \left| \frac{dM}{dt} \right| \leq s_M + C_1 M, \qquad \left| \frac{dT_C}{dt} \right| \leq C_3 T_C, \end{aligned}$$

and

$$\displaystyle \begin{aligned} \left| \frac{dN}{dt} \right| \leq s_N + C_2 N, \qquad \left| \frac{dT_R}{dt} \right| \leq C_4 T_R, \end{aligned}$$

hold. Hence each of these quantities grow at most exponentially and thus solutions exist for all times. \(\square \)

Analogous to the full model, we have the following existence and uniqueness result for the reduced system (6):

Proposition 5

Given initial conditions \((M^0,T_C^0)\) in the closed first quadrant Q = {(M, T C) : M ≥ 0, T C ≥ 0}, the differential equations (6) have a unique solution which exists for all times t ≥ 0 and lies in Q.

1.2 Scaled Model

To reduce the number of unknown parameters, we perform the following scaling: M  = MK M, N  = NK N, \(T_C^*= T_C/K_C\), and \(T_R^* = T_R/K_R\).

$$\displaystyle \begin{aligned} \frac{dM^*}{dt} &= \frac{s_M}{K_M} + r_M(1-M^*)M^* - \delta_M\left[1+ \left(\frac{a_{NM} N^*}{b_{NM}/K_N + N^*} + \frac{a_{CM}T_C^*}{b_{CM}/K_C + T_C^*} \right.\right.\\ &\quad \left.\left.+ a_{CNM}\frac{N^*}{b_{NM}/K_N + N^*} \cdot \frac{T_C^*}{b_{CM}/K_C + T_C^*}\right)\right.\\ &\quad \times\left. \left(1-\frac{a_{MM} M^*}{b_{MM}/K_M +M^*}-\frac{a_{RM} T_R^*}{b_{RM}/K_R + T_R^*}\right) \right]M^* \\ \frac{d T_C^*}{dt} &= r_C(1-T_C^*)\left(1-\frac{a_{MC} M^*}{b_{MC}/K_M+M^*}+\frac{a_{NC} N^*}{b_{NC}/K_N + N^*}\right)T_C^* - \delta_C T_C^* \\ \frac{dN^*}{dt} &= \frac{s_N}{K_N} + r_N(1-N^*)\left(1+\frac{a_{CN} T_C^*}{b_{CN}/K_C+T_C^*}\right)N^* - \delta_N N^* \\ \frac{dT_R^*}{dt} &= r_{R}(1-T_R^*)\left(1+\frac{a_{MR} M^*}{b_{MR}/K_M+M^*}\right)T_R^*-\delta_R T_R^* \end{aligned} $$

Dropping asterisks and introducing the notation \(\bar {s}_M = s_M/K_M\), \(\bar {b}_{NM} = b_{NM}/K_N\), \(\bar {b}_{CM} = b_{CM}/K_C\), etc., we obtain

$$\displaystyle \begin{aligned} \frac{dM}{dt} &= \bar{s}_M + r_M(1-M)M - \delta_M\left[1+ \left(\frac{a_{NM} N}{\bar{b}_{NM} + N} + \frac{a_{CM}T_C}{\bar{b}_{CM} + T_C} \right.\right.\\ &\quad \left.\left.+ a_{CNM}\frac{N}{\bar{b}_{NM} + N} \cdot \frac{T_C}{\bar{b}_{CM} + T_C}\right)\left(1-\frac{a_{MM} M}{\bar{b}_{MM} +M}-\frac{a_{RM} T_R}{\bar{b}_{RM} + T_R}\right) \right]M \\ \frac{d T_C}{dt} &= r_C(1-T_C)\left(1-\frac{a_{MC} M}{\bar{b}_{MC}+M}+\frac{a_{NC} N}{\bar{b}_{NC} + N}\right)T_C - \delta_C T_C \\ \frac{dN}{dt} &= \bar{s}_N + r_N(1-N)\left(1+\frac{a_{CN} T_C}{\bar{b}_{CN}+T_C}\right)N - \delta_N N \\ \frac{dT_R}{dt} &= r_R(1-T_R)\left(1+\frac{a_{MR} M}{\bar{b}_{MR}+M}\right)T_R-\delta_R T_R \end{aligned} $$

Based on this scaling, we restrict the values of all scaled threshold parameters \(\bar {b}_{pq}\) (p, q = M, N, C, or R), to be between 0 and 2 (i.e., much smaller or twice the population carrying capacity).

1.3 Stability of Trivial Equilibria for M < M c

Recall that P(M) = (b MM + M)f 1(M, 0) and thus we have that

$$\displaystyle \begin{aligned} P'(M^*) = f_1(M^*,0) + (b_{MM}+M^*) \frac{\partial f_1}{\partial M}(M^*,0) = (b_{MM}+M^*) \frac{\partial f_1}{\partial M}(M^*,0). \end{aligned}$$

Hence the second eigenvalue has the same sign as P′(M ).

If there is only one positive real root, then this equilibrium point is locally asymptotically stable. Ignoring the positive factor \(\frac {r_M}{K_M}\), if the complex roots are α ± , then we have that

$$\displaystyle \begin{aligned} P(M) = - (M - M^*) \left[ (M-\alpha)^2 + \beta^2 \right], \end{aligned}$$

and thus

$$\displaystyle \begin{aligned} P'(M^*) = - \left[ (M^*-\alpha)^2 + \beta^2 \right] < 0 . \end{aligned}$$

If there are three distinct real roots \(0 < M_1^* < M_2^* < M_3^*\),

$$\displaystyle \begin{aligned} P(M) = - (M-M_1^*) (M-M_2^*) (M-M_3^*), \end{aligned}$$

then the low and high equilibrium points are locally asymptotically stable and the intermediate one is unstable. This simply follows from

$$\displaystyle \begin{aligned} \begin{array}{rcl} P'(M_1^*) &\displaystyle = &\displaystyle - (M_1^* - M_2^*) (M_1^* - M_3^*) < 0, \\ P'(M_2^*) &\displaystyle = &\displaystyle - (M_2^* - M_1^*) (M_2^* - M_3^*) > 0, \\ P'(M_3^*) &\displaystyle = &\displaystyle - (M_3^* - M_1^*) (M_3^* - M_2^*) < 0. \end{array} \end{aligned} $$

In particular, the trivial equilibrium closest to the critical value M c from below is always locally asymptotically stable except when there exists a double root M . Then the corresponding eigenvalue is 0 and this equilibrium point is a saddle node while the other equilibrium point is locally asymptotically stable.

1.4 Algebraic Simplification for Positive Equilibria

We verify Eq. (14):

$$\displaystyle \begin{aligned} \begin{array}{rcl} &\displaystyle &\displaystyle \frac{K_C \left( 1 - \frac{1}{\frac{r_C}{\delta_C} \left(\eta + \frac{a_{MC}M}{b_{MC} + M} \right) } \right)} {b_{CM}+ K_C \left( 1 - \frac{1}{\frac{r_C}{\delta_C} \left(\eta + \frac{a_{MC}M}{b_{MC} + M} \right) } \right) } = \frac{K_C \left( \frac{r_C}{\delta_C} \left(\eta + \frac{a_{MC}M}{b_{MC} + M} \right) -1 \right)} {(b_{CM}+K_C) \frac{r_C}{\delta_C} \left(\eta + \frac{a_{MC}M}{b_{MC} + M} \right) - K_C} \\ &\displaystyle &\displaystyle \qquad = \frac{K_C \left( \frac{r_C}{\delta_C} \left(\eta (b_{MC}+M) + a_{MC}M \right) - (b_{MC}+M) \right)} {(b_{CM}+K_C) \frac{r_C}{\delta_C} \left(\eta (b_{MC}+M) + a_{MC}M \right) - K_C (b_{MC}+M)} \\ &\displaystyle &\displaystyle \qquad = \frac{K_C \left\{ \left[ b_{MC} \left( \frac{r_C}{\delta_C} \eta -1 \right) \right]+ \left[ \frac{r_C}{\delta_C}(\eta +a_{MC}) -1 \right]M \right\}} {b_{MC} \left[ (b_{CM} + K_C) \frac{r_C}{\delta_C} \eta - K_C \right] + \left[ (b_{CM}+K_C) \frac{r_C}{\delta_C} (\eta + a_{MC}) - K_C \right] M} \\ &\displaystyle &\displaystyle \qquad = \frac{\zeta_0 + \zeta_1M}{\alpha_0 + \alpha_1 M} \end{array} \end{aligned} $$

with α 0, α 1, ζ 0, and ζ 1 defined by this relation. It follows that

$$\displaystyle \begin{aligned} a_{NM}\rho + (a_{CM}+a_{CNM}\rho) \frac{K_C \left( 1 - \frac{1}{\frac{r_C}{\delta_C} \left(\eta + \frac{a_{MC}M}{b_{MC} + M} \right) } \right)} {b_{CM}+ K_C \left( 1 - \frac{1}{\frac{r_C}{\delta_C} \left(\eta + \frac{a_{MC}M}{b_{MC} + M} \right) } \right) } = \frac{\beta_0+\beta_1M}{\alpha_0 + \alpha_1 M} \end{aligned} $$
(21)

with

$$\displaystyle \begin{aligned} \begin{array}{rcl} \alpha_0 &\displaystyle = &\displaystyle b_{MC} \left[ (b_{CM} + K_C) \frac{r_C}{\delta_C} \eta - K_C \right], \\ \alpha_1 &\displaystyle = &\displaystyle (b_{CM}+K_C) \frac{r_C}{\delta_C} (\eta + a_{MC}) - K_C , \\ \beta_0 &\displaystyle = &\displaystyle a_{NM} \rho \alpha_0 + (a_{CM}+a_{CNM}\rho) \zeta_0 \\ &\displaystyle = &\displaystyle b_{MC} \left\{ a_{NM} \rho \left[ (b_{CM} + K_C) \frac{r_C}{\delta_C} \eta - K_C \right] + (a_{CM}+a_{CNM}\rho) K_C \left( \frac{r_C}{\delta_C} \eta {-}1 \right) \right\} \\ &\displaystyle = &\displaystyle b_{MC} \left\{ a_{NM} \rho b_{CM} \frac{r_C}{\delta_C} \eta + (a_{NM}\rho + a_{CM}+a_{CNM} \rho) K_C \left( \frac{r_C}{\delta_C} \eta -1 \right) \right\} , \\ \beta_1 &\displaystyle = &\displaystyle a_{NM} \rho \alpha_1 + (a_{CM}+a_{CNM}\rho) \zeta_1 \\ &\displaystyle = &\displaystyle a_{NM} \rho \left( (b_{CM}+K_C) \frac{r_C}{\delta_C} (\eta + a_{MC}) - K_C \right)\\ &\displaystyle &\displaystyle + (a_{CM}+a_{CNM}\rho) K_C \left[ \frac{r_C}{\delta_C}(\eta +a_{MC}) -1 \right] \\ &\displaystyle = &\displaystyle a_{NM} b_{CM} \rho \frac{r_C}{\delta_C} (\eta + a_{MC})\\ &\displaystyle &\displaystyle + ( a_{NM}\rho + a_{CM}+a_{CNM}\rho) K_C \left[ \frac{r_C}{\delta_C}(\eta +a_{MC}) -1 \right] . \end{array} \end{aligned} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s) and the Association for Women in Mathematics

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gallaher, J. et al. (2018). A Mathematical Model for Tumor–Immune Dynamics in Multiple Myeloma. In: Radunskaya, A., Segal, R., Shtylla, B. (eds) Understanding Complex Biological Systems with Mathematics. Association for Women in Mathematics Series, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-98083-6_5

Download citation

Publish with us

Policies and ethics