Skip to main content

Emerging Materials for Energy Harvesting

  • Chapter
  • First Online:
Introduction to Materials for Advanced Energy Systems

Abstract

Energy harvesting is emerging as a viable method for electronic devices to pull ambient energy from their surrounding environment (e.g., solar power, thermal energy, wind energy, salinity gradients, and kinetic energy, also known as ambient energy) and convert it into electrical energy for stored power. This coveted technology has the potential to serve as an alternative power supply for batteries that are ubiquitous in small, mobile, and autonomous wireless electronic devices, like those used in wearable electronics and wireless sensor networks. The discipline of energy harvesting is a broad topic that includes established methods and materials such as photovoltaics, and thermoelectrics, as well as emerging technologies that convert mechanical energy, magnetic energy, and waste heat to electricity. Innovative materials are vital to the development of all these energy-harvesting technologies. There are several promising micro- and nano-scale energy-harvesting materials (including ceramics, single crystals, polymers, and composites) and technologies currently being developed, such as thermoelectric materials, piezoelectric materials, pyroelectric materials, and magnetic materials. This chapter will review various state-of-the-art materials and enabled devices for direct energy harvesting and conversion, and also highlight the nanostructured materials underlying energy-harvesting principles and devices, in addition to traditional bulk processes and devices as appropriate and synergistic; innovative device-design and fabrication that leads to higher efficiency energy-harvesting or conversion technologies ranging from the cm/mm scale down to MEMS/NEMS (micro- and nano-electromechanical systems) devices; new developments in experimental methods, and device performance measurement techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn, C.-W., Maurya, D., Park, C.-S., Nahm, S., Priya, S.: A generalized rule for large piezoelectric response in perovskite oxide ceramics and its application for design of lead-free compositions. J. Appl. Phys. 105, 114108 (2009)

    Article  CAS  Google Scholar 

  • Andrew, J.S., Starr, J.D., Budi, M.A.K.: Prospects for nanostructured multiferroic composite materials. Scripta Mater. 74, 38–43 (2014)

    Google Scholar 

  • Andosca, R.A., McDonald, T.G., Genova, V., Rosenberg, S., Keating, J., Benedixen, C., Wu, J.: Experimental and theoretical studies on mems piezoelectric vibrational energy harvesters with mass loading. Sens. Actuat. A: Phys. 178, 76–87 (2012)

    Article  CAS  Google Scholar 

  • Apo, D.J.: Low frequency microscale energy harvesting. Ph.D. Disseration. Virginia Tech, Blacksburg (2014)

    Google Scholar 

  • Aswal, D.K., Basu, R., Singh, A.: Key issues in development of thermoelectric power generators: high figure-of-merit materials and their highly conducting interfaces with metallic interconnects. Energy Convers. Manag. 114, 50–67 (2016)

    Article  Google Scholar 

  • Bae, J., Lee, J., Kim, S., Ha, J., Lee, B.-S., Park, Y., Choong, C., Kim, J.-B., Wang, Z.L., Kim, H.-Y., Park, J.-J., UI, C.: Flutter-driven triboelectrification for harvesting wind energy. Nat. Commun. 5, 4929 (2014)

    Article  CAS  Google Scholar 

  • Biswas, K., He, J., Zhang, Q., Wang, G., Uher, C., Dravid, V.P., Kanatzidis, M.G.: Strained endotaxial nanostructure with high thermoelectric figure of merit. Nat. Chem. 3(2), 160–166 (2011)

    Article  CAS  Google Scholar 

  • Bowen, C.R., Taylor, J., LeBoulbar, E., Zabek, D., Chauhanc, A., Vaishc, R.: Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 7, 3836–3856 (2014)

    Article  Google Scholar 

  • Bykhovski A., Kaminski V., Shur M., Chen Q., Khan M.: Pyroelectricity in gallium nitride thin films. Appl. Phys. Lett. 69, 3254–3256 (1996)

    Google Scholar 

  • Casian, A.I., Sanduleac, I.I.: Organic thermoelectric materials: new opportunities. J. Thermoelectr. 3, 11–20 (2013)

    Google Scholar 

  • Chen, J., Zhu, G., Yang, J., Jing, Q., Bai, P., Yang, W., Qi, X., Su, Y., Wang, Z.L.: Personalized keystroke dynamics for self-powered human–machine interfacing. ACS Nano. 9, 105–116 (2015)

    Article  CAS  Google Scholar 

  • Dagdeviren, C., Joe, P., Tuzmanc, O.L., Park, K.-I., Lee, K.J., Shi, Y., Huangh, Y., Rogers, J.A.: Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extr. Mechan. Lett. 9, 269–281 (2016)

    Article  Google Scholar 

  • Deterre, M., Lefeuvre, E., Zhu, Y., Woytasik, M., Bosseboeuf, A., Boutaud, B., Dal Molin, R.: Micromachined piezoelectric spirals and ultra-compliant packaging for blood pressure energy harvesters powering medical implants. IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 249–252. IEEE, New York (2013)

    Google Scholar 

  • Dineva, P.S., Cross, D., MÈ•ller, R., Rangelov, T.: Dynamic fracture of piezoelectric materials-solid mechanics and its applications, pp. 7–32. Springer International Publishing, Switzerland (2014)

    Google Scholar 

  • Elsheikh, M.H., et al.: A review on thermoelectric renewable energy: principle parameters that affect their performance. Renew. Sust. Energ. Rev. 30, 337–355 (2014)

    Article  Google Scholar 

  • Falconi, C., Mantini, G., D’Amico, A., Ferrari, V.: Modeling of piezoelectric nanodevices. In: Piezoelectric nanomaterials for biomedical applications. In: Ciofani, G., Menciassi, A. (eds.) Nanomedicine and nanotoxicology, pp. 93–133. Springer, Berlin, Germany (2012)

    Google Scholar 

  • Fang, C., Jiao, J., Ma, J., Lin, D., Xu, H., Zhao, X., Luo, H.: Significant reduction of equivalent magnetic noise by in-plane series connection in magnetoelectric Metglas/Mn-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 laminate composites. J. Phys. D: Appl. Phy. 48, 465002 (2015)

    Article  CAS  Google Scholar 

  • Geuther, J. A., Danon, Y.: Electron and positive ion acceleration with pyroelectric crystals. Journal of Applied Physics 97, 074109 (2005)

    Google Scholar 

  • Gillette, S.M., Fitchorov, T., Obi, O., Jiang, L., Hao, H., Wu, S., Chen, Y., Harris, V.G.: Effects of intrinsic magnetostriction on tube-topology magnetoelectric sensors with high magnetic field sensitivity. J. Appl. Phys. 115, 17C734 (2014)

    Article  CAS  Google Scholar 

  • Guduru, R., Liang, P., Runowicz, C., Nair, M., Atluri, V., Khizroev, S.: Magneto-electric nanoparticles to enable field-controlled high-specificity drug delivery to eradicate ovarian cancer cells. Sci. Rep. 3, 2953 (2013)

    Article  Google Scholar 

  • Hajati, A., Kim, S.-G.: Ultra-wide bandwidth piezoelectric energy harvesting. Appl. Phys. Lett. 99, 083105 (2011)

    Article  CAS  Google Scholar 

  • Han, G., Ryu, J., Yoon, W.-H., Choi, J.-J., Hahn, B.D., Kim, J.-W., Park, D.-S., Ahn, C.-W., Priya, S., Jeong, D.-Y.: Stress-controlled Pb(Zr0. 52Ti0. 48)O3 thick films by thermal expansion mismatch between substrate and Pb(Zr0. 52Ti0. 48)O3 film. J. Appl. Phys. 110, 124101 (2011)

    Article  CAS  Google Scholar 

  • He, J., Liu, Y., Funahashi, R.: Oxide thermoelectrics: the challenges, progress, and outlook. J. Mater. Res. 26(15), 1762–1772 (2011)

    Article  CAS  Google Scholar 

  • Hossain, M.S., Al-Dirini, F., Hossain, F.M., Skafidas, E.: High performance graphene nano-ribbon thermoelectric devices by incorporation and dimensional tuning of nanopores. Sci. Rep. 5, 11297 (2015)

    Article  CAS  Google Scholar 

  • Hunter, S.R., Lavrik, N.V., Bannuru, T., Mostafa, S., Rajic, S., Datskos, P.G.: Development of MEMS based pyroelectric thermal energy harvesters. Proc. SPIE. 8035, 80350V (2011)

    Article  CAS  Google Scholar 

  • Jagadish, C., Pearton, S.J.: Zinc oxide bulk, thin films and nanostructures: processing, properties, and applications. Elsevier, Amsterdam (2011)

    Google Scholar 

  • Jenkins, K., Nguyen, V., Zhu, R., Yang, R.: Piezotronic effect: an emerging mechanism for sensing applications. Sensors. 15, 22914–22940 (2015)

    Article  CAS  Google Scholar 

  • Joshi, G., et al.: Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 8, 4670 (2008)

    Article  CAS  Google Scholar 

  • Kargol, A., Malkinski, L., Caruntu, G.: Biomedical applications of multiferroic nanoparticles. In: Malkinski, L. (ed.) Advanced magnetic materials, pp. 89–118. InTech, Rijeka, Croatia (2012)

    Google Scholar 

  • Kim, S.-G., Priya, S., Kanno, I.: Piezoelectric MEMS for energy harvesting. MRS Bull. 37(11), 1039–1050 (2012)

    Article  CAS  Google Scholar 

  • Koumoto, K., et al.: Thermoelectric ceramics for energy harvesting. J. Am. Ceram. Soc. 96, 1–23 (2013)

    Article  CAS  Google Scholar 

  • Lang, S.B.: Pyroelectricity: from ancient curiosity to modern imaging tool. Phys. Today. 58, 31–36 (2005)

    Article  CAS  Google Scholar 

  • Lee, M., Yang, R., Li, C., Wang, Z.L.: Nanowire−quantum dot hybridized cell for harvesting sound and solar energies. J. Phys. Chem. Lett. 1, 2929–2935 (2010)

    Article  CAS  Google Scholar 

  • Lee, J.H., Lee, K.Y., Gupta, M.K., Kim, T.Y., Lee, D.Y., Oh, J., Ryu, C., Yoo, W.J., Kang, C.Y., Yoon, S.J., Yoo, J.B., Kim, S.W.: Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator. Adv. Mater. 26, 765–769 (2014)

    Article  CAS  Google Scholar 

  • Lee, J., Kim, J., Kim, T., Hossain, M.A., Kim, S., Kim, J.: All-in-one energy harvesting and storage devices. J. Mater. Chem. A. 4(21), 7983–7999 (2016)

    Article  CAS  Google Scholar 

  • Leonov, V.: Energy harvesting for self-powered wearable devices. In: Bonfiglio, A., De Rossi, D. (eds.) Wearable monitoring systems. Springer, New York (2011)

    Google Scholar 

  • Lin, Z.-H., Cheng, G., Lin, L., Lee, S., Wang, Z.L.: Angew. Chem. Int. Ed. 125, 12777–12781 (2013)

    Article  Google Scholar 

  • Lin, Z., Chen, J., Yang, J.: Recent progress in triboelectric nanogenerators as a renewable and sustainable power source. J. Nanomater. 2016, 5651613 (2016)

    Google Scholar 

  • Lingam, D., Parikha, A.R., Huanga, J., Jainb, A., Minary-Jolandana, M.: Nano/microscale pyroelectric energy harvesting: challenges and opportunities. Int. J. Smart. Nano Mater. 4(4), 229–245 (2013)

    Article  CAS  Google Scholar 

  • Morimoto, K., Kanno, I., Wasa, K., Kotera, H.: High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers. Sens. Actuat. A: Phys. 163, 428–432 (2010)

    Article  CAS  Google Scholar 

  • Music, D., Geyer, R.W., Hans, M.: High-throughput exploration of thermoelectric and mechanical properties of amorphous NbO2 with transition metal additions. J. Appl. Phys. 120, 045104 (2016)

    Article  CAS  Google Scholar 

  • Narita, F., Fox, M.: A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications. Adv. Eng. Mater. 20(5), 1700743 (1–22) (2018)

    Google Scholar 

  • Newnham, R.E.: Properties of materials: anisotropy, symmetry, structure. Oxford University Press, Oxford (2005)

    Google Scholar 

  • Palneedi, H., Annapureddy, V., Priya, S., Ryu, J.: Status and perspectives of multiferroic magnetoelectric composite materials and applications. Actuators 5(1), 9 (2016)

    Google Scholar 

  • Paluszek, M., Avirovik, D., Zhou, Y., Kundu, S., Chopra, A., Montague, R., Priya, S.: Magnetoelectric composites for medical application. In: Srinivasan, G., Priya, S., Sun, N.X. (eds.) Composite magnetoelectrics, pp. 297–327. Woodhead Publishing, Cambridge, UK (2015)

    Chapter  Google Scholar 

  • Park, K.-I., Son, J.H., Hwang, G.-T., Jeong, C.K., Ryu, J., Koo, M., Choi, I., Lee, S.H., Byun, M., Wang, Z.L., Lee, K.J.: Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 26(16), 2514–2520 (2014)

    Article  CAS  Google Scholar 

  • Park, T., Na, J., Kim, B., Kim, Y., Shin, H., Kim, E.: Photothermally activated pyroelectric polymer films for harvesting of solar heat with a hybrid energy cell structure. ACS Nano. 9(12), 11830–11839 (2015)

    Article  CAS  Google Scholar 

  • Pillatsch, P.: Piezoelectric energy harvesting from low frequency and random excitation using frequency up-conversion. Ph.D. thesis. Imperial College, London (2013)

    Google Scholar 

  • Priya, S., Song, H.-C., Zhou, Y., Varghese, R., Chopra, A., Kim, S.-G., Kanno, I., Wu, L., Ha, D.S., Ryu, J., Polcawich, R.G.: A review on piezoelectric energy harvesting: materials, methods, and circuits. Energ Harvest Syst. 4(1), 3–39 (2017)

    Google Scholar 

  • Qi, Y., Kim, J., Nguyen, T.D., Lisko, B., Purohit, P.K., McAlpine, M.C.: Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 11(3), 1331–1336 (2011)

    Article  CAS  Google Scholar 

  • Radousky, H.B., Liang, H.: Energy harvesting—an integrated view of materials, devices and applications. Nanotechnology. 23(50), 502001 (2012)

    Article  CAS  Google Scholar 

  • Rowe, D.M.: Thermoelectrics handbook: macro to nano. CRC Press, Boca Raton, FL (2005). ISBN 978-1-4200-3890-3

    Book  Google Scholar 

  • Ryu, J., Kang, J.-E., Zhou, Y., Choi, S.-Y., Yoon, W.-H., Park, D.-S., Choi, J.-J., Hahn, B.-D., Ahn, C.-W., Kim, J.-W., et al.: Ubiquitous magneto-mechano-electric generator. Energy Environ. Sci. 8, 2402–2408 (2015)

    Article  CAS  Google Scholar 

  • Sahraoui, A.H., Longuemart, S., Dadarlat, D., Delenclos, S., Kolinsky, C., Buisine, J.: Analysis of the photopyroelectric signal for investigating thermal parameters of pyroelectric materials. Rev. Sci. Instrum. 74, 618–620 (2003)

    Article  CAS  Google Scholar 

  • Shah, Y.T.: Thermal energy: sources, recovery, and applications. CRC Press, Boca Raton, FL (2018)

    Book  Google Scholar 

  • Shibata, K., Suenaga, K., Watanabe, K., Horikiri, F., Nomoto, A., Mishima, T.: Improvement of piezoelectric properties of (K, Na)NbO3 films deposited by sputtering. Jpn. J. Appl. Phys. 50, 041503 (2011)

    Article  Google Scholar 

  • Snyder, J., Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008)

    Article  CAS  Google Scholar 

  • Sohn, J.I., Hong, W.-K., Choi, S.S., Coles, H.J., Welland, M.E., Cha, S.N., Kim, J.M.: Emerging applications of liquid crystals based on nanotechnology. Materials. 7, 2044–2061 (2014)

    Article  Google Scholar 

  • Song, R., Jin, H., Li, X., Fei, L., Zhao, Y., Huang, H., Chan, H.L.W., Wang, Y., Chai, Y.: A rectification-free piezo-supercapacitor with a polyvinylidene fluoride separator and functionalized carbon cloth electrodes. J. Mater. Chem. A. 3, 14963–14970 (2015)

    Article  CAS  Google Scholar 

  • Stephan, M., Robert, J., Henry, G., Eckhard, Q., Reinhard, K., Bernhard, W.: MEMS magnetic field sensor based on magnetoelectric composites. J. Micromech. Microeng. 22, 065024 (2012)

    Article  CAS  Google Scholar 

  • Szczech, J.R., Higginsa, J.M., Jin, S.: Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J. Mater. Chem. 21, 4037–4055 (2011)

    Article  CAS  Google Scholar 

  • Ting-Ta, Y., Hirasawa, T., Wright, P., Pisano, A., Liwei, L.: Corrugated aluminum nitride energy harvesters for high energy conversion 26. Effectiveness. J. Micromech. Microeng. 21, 085037 (2011)

    Article  CAS  Google Scholar 

  • Varghese, R.P.: MEMS technologies for energy harvesting and sensing. Ph.D. Disseration. Virginia Tech, Blacksburg (2013)

    Google Scholar 

  • Wang, Z.L.: Toward self-powered nanosystems: from nanogenerators to nanopiezotronics. Adv. Funct. Mater. 18(22), 3553–3567 (2008)

    Article  CAS  Google Scholar 

  • Wang, Z.L.: Piezotronic and piezophototronic effects. J. Phys. Chem. Lett. 1(9), 1388–1393 (2010)

    Article  CAS  Google Scholar 

  • Wang, Z.L., Zhu, G., Yang, Y., Wang, S., Pan, C.: Progress in nanogenerators for portable electronics. Mater. Today. 15(12), 532–543 (2012)

    Article  CAS  Google Scholar 

  • Wang, J.-J., Su, H.-J., Hsu, C.-I., Su, Y.-C.: Composite piezoelectric rubber band for energy harvesting from breathing and limb motion. J. Phys. Conf. Ser. 557, 012022 (2014)

    Article  Google Scholar 

  • Wang, Z., Pan, X., He, Y., Hu, Y., Gu, H., Wang, Y.: Piezoelectric nanowires in energy harvesting applications. Adv. Mater. Sci. Eng. 2015, 1–21 (2015a)

    Google Scholar 

  • Wang, Z.L., Chen, J., Lin, L.: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8, 2250–2282 (2015b)

    Article  CAS  Google Scholar 

  • Whatmore, R.: Pyroelectric devices and materials. Rep. Prog. Phys. 49, 1335 (1986)

    Article  CAS  Google Scholar 

  • Wooldridge, J., Blackburn, J.F., McCartney, N.L., Stewart, M., Weaver, P., Cain, M.G.: Small scale piezoelectric devices: pyroelectric contributions to the piezoelectric response. J. Appl. Phys. 107, 104118–104118-6 (2010)

    Article  CAS  Google Scholar 

  • Xu, R.: Energy harvesting for microsystems. Ph.D. dissertation. Technical University of Denmark (DTU), Denmark (2012)

    Google Scholar 

  • Xu, R., Kim, S.-G.: Low-frequency, low-G MEMS piezoelectric energy harvester. J. Phys. Conf. Ser. 660, 012013 (2015)

    Article  CAS  Google Scholar 

  • Xu, C., Wang, X., Wang, Z.L.: Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies. J. Am. Chem. Soc. 131(16), 5866–5872 (2009)

    Article  CAS  Google Scholar 

  • Xue, X., Wang, S., Guo, W., Zhang, Y., Wang, Z.L.: Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell. Nano Lett. 12, 5048–5054 (2012)

    Article  CAS  Google Scholar 

  • Yan, Y., Priya, S.: Multiferroic magnetoelectric composites/hybrids. In: Kim, C.-S., Randow, C., Sano, T. (eds.) Hybrid and hierarchical composite materials, pp. 95–160. Springer International Publishing, Cham, Switzerland (2015)

    Google Scholar 

  • Yang, Y., Wang, Z.L.: Hybrid energy cells for simultaneously harvesting multi-types of energies. Nano Energy. 14, 245–256 (2015)

    Article  CAS  Google Scholar 

  • Yang, Y., Guo, W., Pradel, K.C., Zhu, G., Zhou, Y., Zhang, Y., Hu, Y., Lin, L., ZL, W.: Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 12, 2833–2838 (2012a)

    Article  CAS  Google Scholar 

  • Yang, Y., Jung, J.H., Yun, B.K., Zhang, F., Pradel, K.C., Guo, W., Wang, Z.L.: Flexible pyroelectric nanogenerators using a composite structure of lead-free KNbO3 nanowires. Adv. Mater. 24, 5357–5362 (2012b)

    Article  CAS  Google Scholar 

  • Yang, Y., Zhang, H., Lin, Z.-H., Liu, Y., Chen, J., Lin, Z., Zhou, Y.S., Wong, C.P., Wang, Z.L.: A hybrid energy cell for self-powered water splitting. Energy Environ. Sci. 6, 2429–2434 (2013)

    Article  CAS  Google Scholar 

  • Yoon, G.C., Shin, K.-S., Gupta, M.K., Lee, K.Y., Lee, J.-H., Wang, Z.L., Kim, S.-W.: High-performance hybrid cell based on an organic photovoltaic device and a direct current piezoelectric nanogenerator. Nano Energy. 12, 547–555 (2015)

    Article  CAS  Google Scholar 

  • Yu H., Kang B., Park C., Pi U., Lee C., Choi S.-Y.: The fabrication technique and electrical properties of a free-standing GaN nanowire. Appl. Phys. A 81, 245–247 (2005)

    Google Scholar 

  • Yue, K., Guduru, R., Hong, J., Liang, P., Nair, M., Khizroev, S.: Magneto-electric nano-particles for non-invasive brain stimulation. PLoS One. 7, e44040 (2012)

    Article  CAS  Google Scholar 

  • Zhang, X., Zhao, L.D.: Thermoelectric materials: energy conversion between heat and electricity. J. Mater. 1, 92–105 (2015)

    Google Scholar 

  • Zhang, Y., Mehta, R.J., Belley, M., Han, L., Ramanath, G., Borca-Tasciuc, T.: Lattice thermal conductivity diminution and high thermoelectric power factor retention in nanoporous macroassemblies of sulfur-doped bismuth telluride nanocrystals. Appl. Phys. Lett. 100, 1193113 (2012)

    Google Scholar 

  • Zhou Y., Apo D. J., Priya S.: Dual-phase self-biased magnetoelectric energy harvester. Appl. Phys. Lett. 103, 192909 (2013)

    Google Scholar 

  • Zhou, Q., Lau, S., Wu, D., Shung, K.K.: Piezoelectric films for high frequency ultrasonic transducers in biomedical applications. Prog. Mater. Sci. 56, 139–174 (2011)

    Article  CAS  Google Scholar 

  • Zhou, Y.S., Zhu, G., Niu, S., Liu, Y., Bai, P., Jing, Q., Wang, Z.L.: Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification. Adv. Mater. 26(11), 1719–1724 (2014)

    Google Scholar 

  • Zhu, T., Ertekin, E.: Phonon transport on two-dimensional graphene/boron nitride superlattices. Phys. Rev. B. 90, 195209 (2014)

    Article  CAS  Google Scholar 

  • Zhu, G., Chen, J., Zhang, T., Jing, Q., Wang, Z.L.: Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 5, 3426 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Exercises

Exercises

11.1.1 Part I: General Questions

  1. 11.1.

    Define the energy-harvesting (also known as power harvesting or energy scavenging or ambient power) concept and take an example to explain a generic energy system.

  2. 11.2.

    Address thermoelectric materials characterizations, types, and main applications.

  3. 11.3.

    How to distinguish oxide and ceramic thermoelectric materials? Address their structure characterization and application differences.

  4. 11.4.

    Explain piezoelectric effect, and list piezoelectric materials types and their applications for energy harvesting.

  5. 11.5.

    Explain pyroelectric effect, and list pyroelectric materials types and their applications for energy harvesting.

  6. 11.6.

    List magnetostrictive and multiferroic magnetoelectric materials, and explain their differences and applications for energy harvesting.

  7. 11.7.

    Explain triboelectric effect, and list triboelectric materials types and their applications for energy harvesting.

  8. 11.8.

    Address principle of triboelectric nanogenerators, and list their types and applications.

11.1.2 Part II: Through-Provoking Questions

  1. 11.9.

    List types of hybrid energy harvesters, and their status and future trends.

  2. 11.10.

    Explain piezotronic and piezophototronic effects and their differences, and address their applications for energy harvesting.

  3. 11.11.

    Describe the scope of piezotronics and piezophototronics, and explain their differences. How do they inspire novel device applications?

  4. 11.12.

    Give examples to explain integration of energy harvesting and storage devices.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tong, C. (2019). Emerging Materials for Energy Harvesting. In: Introduction to Materials for Advanced Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-98002-7_11

Download citation

Publish with us

Policies and ethics