Skip to main content

Clustering-Based Fuzzy Finite State Machine for Human Activity Recognition

  • Conference paper
  • First Online:
Advances in Computational Intelligence Systems (UKCI 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 840))

Included in the following conference series:

Abstract

In this paper, a clustering-based fuzzy finite state machine approach for human activity modelling and recognition is proposed. It Incorporates the Fuzzy C-means (FCMs) clustering algorithm with a Fuzzy Finite State Machine (FuFSM) in order to generate the state transitions more effectively. This unsupervised approach will overcome the deficiency in identifying the knowledge-base required for FuFSM. To validate the proposed approach, experimental results are presented. The activities of two office workers are modelled/recognised using the proposed method. The approach taken for this research is based on ambient Intelligent sensory data rather than data coming from wearable sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aicha, A.N., Englebienne, G., Kröse, B.: Unsupervised visit detection in smart homes. Pervasive Mob. Comput. 34, 157–167 (2017)

    Article  Google Scholar 

  2. Alvarez-Alvarez, A., Trivino, G., Cordón, O.: Body posture recognition by means of a genetic fuzzy finite state machine. In: 2011 IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS), pp. 60–65. IEEE (2011)

    Google Scholar 

  3. Alvarez-Alvarez, A., Trivino, G., Cordon, O.: Human gait modeling using a genetic fuzzy finite state machine. IEEE Trans. Fuzzy Syst. 20(2), 205–223 (2012)

    Article  Google Scholar 

  4. Atzmueller, M., Hayat, N., Trojahn, M., Kroll, D.: Explicative human activity recognition using adaptive association rule-based classification. In: 2018 IEEE International Conference onFuture IoT Technologies (Future IoT), pp. 1–6. IEEE (2018)

    Google Scholar 

  5. Barsocchi, P., Cimino, M.G., Ferro, E., Lazzeri, A., Palumbo, F., Vaglini, G.: Monitoring elderly behavior via indoor position-based stigmergy. Pervasive Mob Comput 23, 26–42 (2015)

    Article  Google Scholar 

  6. Cook, D.J., Augusto, J.C., Jakkula, V.R.: Ambient intelligence: technologies, applications, and opportunities. Pervasive Mob. Comput. 5(4), 277–298 (2009)

    Article  Google Scholar 

  7. Dawadi, P., Cook, D., Parsey, C., Schmitter-Edgecombe, M., Schneider, M.: An approach to cognitive assessment in smart home. In: Proceedings of the 2011 Workshop on Data Mining for Medicine and Healthcare, pp. 56–59. ACM (2011)

    Google Scholar 

  8. Garcia-Ceja, E., Brena, R.F.: An improved three-stage classifier for activity recognition. Int. J. Pattern Recogn. Artif. Intell. 32(01), 1860003 (2018)

    Article  Google Scholar 

  9. He, H., Tan, Y., Zhang, W.: A wavelet tensor fuzzy clustering scheme for multi-sensor human activity recognition. Eng. Appl. Artif. Intell. 70, 109–122 (2018)

    Article  Google Scholar 

  10. Langensiepen, C., Lotfi, A., Puteh, S.: Activities recognition and worker profiling in the intelligent office environment using a fuzzy finite state machine. In: 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 873–880. IEEE (2014)

    Google Scholar 

  11. Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutor. 15(3), 1192–1209 (2013)

    Article  Google Scholar 

  12. Lotfi, A., Howarth, M.: Industrial application of fuzzy systems: adaptive fuzzy control of solder paste stencil printing. Inf. Sci. 107(1–4), 273–285 (1998)

    Google Scholar 

  13. Lu-An, T., Jiawei, H., Guofei, J.: Mining sensor data in cyberphysical systems. Tsinghua Sci. Technol. 19(1), 225–234 (2015)

    Google Scholar 

  14. Mohmed, G., Lotfi, A., Langensiepen, C., Pourabdollah, A.: Unsupervised learning fuzzy finite state machine for human activities recognition. In: The Pervasive Technologies Related to Assistive Environments (PETRA) Conference Proceedings (2018)

    Google Scholar 

  15. Palumbo, F., Ullberg, J., Štimec, A., Furfari, F., Karlsson, L., Coradeschi, S.: Sensor network infrastructure for a home care monitoring system. Sensors 14(3), 3833–3860 (2014)

    Article  Google Scholar 

  16. Panwar, M., Dyuthi, S.R., Prakash, K.C., Biswas, D., Acharyya, A., Maharatna, K., Gautam, A., Naik, G.R.: CNN based approach for activity recognition using a wrist-worn accelerometer. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2438–2441. IEEE (2017)

    Google Scholar 

  17. Rashidi, P., Mihailidis, A.: A survey on ambient-assisted living tools for older adults. IEEE J. Biomed. Health Inform. 17(3), 579–590 (2013)

    Article  Google Scholar 

  18. Suryadevara, N.K., Mukhopadhyay, S.C., Wang, R., Rayudu, R.: Forecasting the behavior of an elderly using wireless sensors data in a smart home. Eng. Appl. Artif. Intell. 26(10), 2641–2652 (2013)

    Article  Google Scholar 

  19. Wang, Z., Jiang, M., Hu, Y., Li, H.: An incremental learning method based on probabilistic neural networks and adjustable fuzzy clustering for human activity recognition by using wearable sensors. IEEE Trans. Inf Technol. Biomed. 16(4), 691–699 (2012)

    Article  Google Scholar 

  20. Yang, J., Nguyen, M.N., San, P.P., Li, X., Krishnaswamy, S.: Deep convolutional neural networks on multichannel time series for human activity recognition. In: IJCAI, pp. 3995–4001 (2015)

    Google Scholar 

  21. Yin, J., Yang, Q., Pan, J.J.: Sensor-based abnormal human-activity detection. IEEE Trans. Knowl. Data Eng. 20(8), 1082–1090 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gadelhag Mohmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohmed, G., Lotfi, A., Langensiepen, C., Pourabdollah, A. (2019). Clustering-Based Fuzzy Finite State Machine for Human Activity Recognition. In: Lotfi, A., Bouchachia, H., Gegov, A., Langensiepen, C., McGinnity, M. (eds) Advances in Computational Intelligence Systems. UKCI 2018. Advances in Intelligent Systems and Computing, vol 840. Springer, Cham. https://doi.org/10.1007/978-3-319-97982-3_22

Download citation

Publish with us

Policies and ethics