Skip to main content

A Propositional Logical Encoding of Enriched Interactions in Abstract Argumentation Graphs

  • Chapter
  • First Online:
  • 215 Accesses

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 17))

Abstract

This chapter aims at providing logical encodings for translating interactions in an argumentation graph themselves into propositional knowledge bases. This translation will be used for identifying or redefining some properties of argumentation graphs. The graphs we consider are used to formalize abstract argumentation with at least two different kinds of interaction (attack and support) and also recursive interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Deductive support (Villata et al. 2012), and evidential support (Oren and Norman 2008; Oren et al. 2010; Polberg and Oren 2014) will not be discussed here.

  2. 2.

    An extension of this work is presented in (Nouioua 2013) but it is not discussed here.

  3. 3.

    Related to a given semantics, whatever this semantics.

  4. 4.

    The notation \({\texttt {n+attack}}\) means that necessary supports (n) are combined with (+) attacks (attack).

  5. 5.

    In a context of preferences, it is a way for choosing between two conflicting positions.

  6. 6.

    This assumption is done only for a simplification of the presentation. Nevertheless, it can be easily removed and the definition extended in order to take into account several supports and attacks to a given interaction by replacing \((c \wedge A\beta )\) (resp. \((\lnot d \vee \lnot A\delta )\)) by \(\bigwedge _i(c_i \wedge A\beta _i)\) (resp. \(\bigwedge _j(\lnot d_j \vee \lnot A\delta _j)\)).

  7. 7.

    In case of a Case 2-\({\texttt {n+attack}}\) from a to b, such as \(a {\mathbf{R}}_{\text {att}}c\) and \(c {\mathbf{R}}_{\text {sup}}b\), \(\varSigma \) contains the formulas \(a \rightarrow {\mathtt{Att}}c\), \({\mathtt{Att}}c \rightarrow \lnot c\), \(b \rightarrow {\mathtt{Sup}}c\) and \({\mathtt{Sup}}c \rightarrow c\). So \(\varSigma \) infers \(a \rightarrow {\mathtt{Att}}c\) and \(b \rightarrow \lnot {\mathtt{Att}}c\), but \(\varSigma \) does not infer \(a \rightarrow {\mathtt{Att}}b\) since the propositional variable \({\mathtt{Att}}b\) does not appear in \(\varSigma \).

  8. 8.

    Indeed, Case 2-\({\texttt {n+attacks}}\) cannot be detected using our language (see the footnote on Proposition 18.2).

  9. 9.

    Transitivity: the relation \({\mathtt{support}}\) is transitive.

  10. 10.

    Closure: if \(c {\mathbf{R}}_{\text {sup}}b\), then “the acceptance of b implies the acceptance of c”.

  11. 11.

    Conflicting sets: from a logical point of view, from “the acceptance of a implies the non-acceptance of b” using contrapositives, we obtain a symmetric conflict involving a and b; however this kind of conflict is not equivalent to the existence of an attack.

  12. 12.

    Addition of new attacks: a stronger constraint that CFS as it enables to add new attacks which are \({\texttt {n+attacks}}\).

References

  • Alliot, J., Demolombe, R., Fariñas del Cerro, L., Dièguez, L., & Obeid, N. (2015). Reasoning on molecular interaction maps. In L. Kóczy & J. Medina (Eds.), Proceedings of the 7th European Symposium on Computational Intelligence and Mathematics, ESCIM 2015 (pp. 263–269). Cádiz, Spain: University of Cádiz.

    Google Scholar 

  • Amgoud, L., Besnard, P., & Hunter, A. (2015). Logical representation and analysis for RC-arguments. In Proceedings of the 27th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2015 (pp. 104–110). Vietri sul Mare, Italy: IEEE Computer Society.

    Google Scholar 

  • Amgoud, L. & Cayrol, C. (2002). A reasoning model based on the production of acceptable arguments. Annals of Mathematics and Artificial Intelligence, 34(1–3), 197–215.

    Article  Google Scholar 

  • Amgoud, L., Maudet, N., & Parsons, S. (2000). Modeling dialogues using argumentation. In Proceedings of the 4th International Conference on Multi-agent Systems, ICMAS 2000 (pp. 31–38). Boston, USA: IEEE Computer Society.

    Google Scholar 

  • Arieli, O. & Caminada, M. W. A. (2013). A QBF-based formalization of abstract argumentation semantics. Journal of Applied Logic, 11(2), 229–252.

    Article  Google Scholar 

  • Baroni, P., Cerutti, F., Giacomin, M., & Guida, G. (2011). AFRA: Argumentation framework with recursive attacks. International Journal of Approximate Reasoning, 52(1), 19–37.

    Article  Google Scholar 

  • Beierle, C., Brons, F., & Potyka, N. (2015). A software system using a SAT solver for reasoning under complete, stable, preferred, and grounded argumentation semantics. In S. Hölldobler, M. Krötzsch, R. Peñaloza, & S. Rudolph (Eds.), Proceedings of KI 2015: Advances in Artificial Intelligence – 38th Annual German Conference on AI (Vol. 9324, pp. 241–248). Lecture Notes in Computer Science. Dresden, Germany: Springer.

    Chapter  Google Scholar 

  • Besnard, P., Doutre, S., & Herzig, A. (2014). Encoding argument graphs in logic. In A. Laurent, O. Strauss, B. Bouchon-Meunier, & R. R. Yager (Eds.), Information Processing and Management of Uncertainty in Knowledge-Based Systems – Proceedings of the 15th International Conference, IPMU 2014, part II (Vol. 443, pp. 345–354). Communications in Computer and Information Science. Montpellier, France: Springer.

    Google Scholar 

  • Bogaerts, B., Janhunen, T., & Tasharrofi, S. (2016). Declarative solver development: Case studies. In C. Baral, J. P. Delgrande, & F. Wolter (Eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the 15th International Conference, KR 2016 (pp. 74–83). Cape Town, South Africa: AAAI Press.

    Google Scholar 

  • Brewka, G. & Woltran, S. (2010). Abstract dialectical frameworks. In F. Lin, U. Sattler, & M. Truszczyński (Eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the 12th International Conference, KR 2010. Toronto, Canada: AAAI Press.

    Google Scholar 

  • Cayrol, C., Cohen, A., & Lagasquie-Schiex, M.-C. (2016). Towards a new framework for recursive interactions in abstract bipolar argumentation. In P. Baroni, T. F. Gordon, T. Scheffler, & M. Stede (Eds.), Computational Models of Argument – Proceedings of COMMA 2016 (Vol. 287, pp. 191–198). Frontiers in Artificial Intelligence and Applications. Potsdam, Germany: IOS Press.

    Google Scholar 

  • Cayrol, C. & Lagasquie-Schiex, M. -C. (2010). Coalitions of arguments: A tool for handling bipolar argumentation frameworks. International Journal of Intelligent Systems, 25(1), 83–109.

    Article  Google Scholar 

  • Cayrol, C. & Lagasquie-Schiex, M.-C. (2013). Bipolarity in argumentation graphs: Towards a better understanding. International Journal of Approximate Reasoning, 54(7), 876–899.

    Article  Google Scholar 

  • Cayrol, C. & Lagasquie-Schiex, M. -C. (2015). An axiomatic approach to support in argumentation. In E. Black, S. Modgil, & N. Oren (Eds.), Theory and Applications of Formal Argumentation – 3rd International Workshop, TAFA 2015, Revised Selected Papers (Vol. 9524, pp. 74–91). Lecture Notes in Computer Science. Buenos Aires, Argentina: Springer.

    Chapter  Google Scholar 

  • Cerutti, F., Dunne, P. E., Giacomin, M., & Vallati, M. (2013). Computing preferred extensions in abstract argumentation: A SAT-based approach. In E. Black, S. Modgil, & N. Oren (Eds.), Theory and Applications of Formal Argumentation - 2nd International Workshop, TAFA 2013, Revised Selected Papers (Vol. 8306, pp. 176–193). Lecture Notes in Computer Science. Beijing, China: Springer.

    Chapter  Google Scholar 

  • Cohen, A., Gottifredi, S., García, A. J., & Simari, G. R. (2015). An approach to abstract argumentation with recursive attack and support. Journal of Applied Logic, 13(4), 509–533.

    Article  Google Scholar 

  • Demolombe, R., Fariñas del Cerro, L., & Obeid, N. (2013). Automated reasoning in metabolic networks with inhibition. In M. Baldoni, C. Baroglio, G. Boella, & R. Micalizio (Eds.), Proceedings of AI\(\ast \)IA 2013: Advances in Artificial Intelligence – XIIIth International Conference of the Italian Association for Artificial Intelligence (Vol. 8249, pp. 37-47). Lecture Notes in Computer Science. Turin, Italy: Springer.

    Google Scholar 

  • Demolombe, R., Fariñas del Cerro, L., & Obeid, N. (2016). Translation of first order formulas into ground formulas via a completion theory. Journal of Applied Logic, 15, 130–149.

    Article  Google Scholar 

  • Dupin de Saint-Cyr, F., Bisquert, P., Cayrol, C., & Lagasquie-Schiex, M.-C. (2016). Argumentation update in YALLA (yet another logic language for argumentation). International Journal of Approximate Reasoning, 75, 57–92.

    Article  Google Scholar 

  • Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and \(n\)-person games. Artificial Intelligence, 77(2), 321–358.

    Article  Google Scholar 

  • Gabbay, D. M. (2013). Meta-logical Investigations in Argumentation Networks. Studies in Logic. College Publications.

    Google Scholar 

  • Grossi, D. (2010). On the logic of argumentation theory. In W. van der Hoek, G. A. Kaminka, Y. Lespérance, M. Luck, & S. Sen (Eds.), 9th International Conference on Autonomous Agents and Multiagent systems (AAMAS 2010) (Vol. 1–3, pp. 409–416). Toronto, Canada: IFAAMAS.

    Google Scholar 

  • Karacapilidis, N. I. & Papadias, D. (2001). Computer supported argumentation and collaborative decision making: The HERMES system. Information Systems, 26(4), 259–277.

    Article  Google Scholar 

  • Lagniez, J.-M., Lonca, E., & Mailly, J. (2015). CoQuiAAS: A constraint-based quick abstract argumentation solver. In 27th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2015 (pp. 928–935). Vietri sul Mare: IEEE Computer Society.

    Google Scholar 

  • Marquis, P. (2000). Consequence finding algorithms. In D. M. Gabbay & P. Smets (Eds.), Handbook of Defeasible Reasoning and Uncertainty Management Systems: Algorithms for Defeasible and Uncertain Reasoning (Vol. 5, pp. 41–145).

    Chapter  Google Scholar 

  • Modgil, S. (2009). Reasoning about preferences in argumentation frameworks. Artificial Intelligence, 173(9–10), 901–934.

    Article  Google Scholar 

  • Nouioua, F. (2013). AFs with necessities: Further semantics and labelling characterization. In W. Liu, V. S. Subrahmanian, & J. Wijsen (Eds.), Proceedings of Scalable Uncertainty Management – 7th International Conference, SUM 2013 (Vol. 8078, pp. 120–133). Lecture Notes in Computer Science. Washington D.C., USA: Springer.

    Google Scholar 

  • Nouioua, F. & Risch, V. (2010). Bipolar argumentation frameworks with specialized supports. In 22nd IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2010 (Vol. 1, pp. 215–218). Arras, France: IEEE Computer Society.

    Google Scholar 

  • Nouioua, F. & Risch, V. (2011). Argumentation frameworks with necessities. In S. Benferhat & J. Grant (Eds.), Proceedings of Scalable Uncertainty Management – 5th International Conference, SUM 2011 (Vol. 6929, pp. 163–176). Lecture Notes in Computer Science. Dayton, USA: Springer.

    Google Scholar 

  • Oren, N. & Norman, T. J. (2008). Semantics for evidence-based argumentation. In P. Besnard, S. Doutre, & A. Hunter (Eds.), Computational Models of Argument: Proceedings of COMMA 2008 (Vol. 172, pp. 276–284). Frontiers in Artificial Intelligence and Applications. Toulouse, France: IOS Press.

    Google Scholar 

  • Oren, N., Reed, C., & Luck, M. (2010). Moving between argumentation frameworks. In P. Baroni, F. Cerutti, M. Giacomin, & G. R. Simari (Eds.), Computational Models of Argument: Proceedings of COMMA 2010 (Vol. 216, pp. 379–390). Frontiers in Artificial Intelligence and Applications. Desenzano del Garda, Italy: IOS Press.

    Google Scholar 

  • Polberg, S. & Oren, N. (2014). Revisiting support in abstract argumentation systems. In S. Parsons, N. Oren, C. Reed, & F. Cerutti (Eds.), Computational Models of Argument: Proceedings of COMMA 2014 (Vol. 266, pp. 369–376). Frontiers in Artificial Intelligence and Applications. Atholl Palace Hotel, Scottish Highlands, UK: IOS Press.

    Google Scholar 

  • Prakken, H. (2014). On support relations in abstract argumentation as abstractions of inferential relations. In T. Schaub, G. Friedrich, & B. O’Sullivan (Eds.), ECAI 2014 – 21st European Conference on Artificial Intelligence, Including Prestigious Applications of Intelligent Systems (PAIS 2014) (Vol. 263, pp. 735–740). Frontiers in Artificial Intelligence and Applications. Prague, Czech Republic: IOS Press.

    Google Scholar 

  • Verheij, B. (2003). Deflog: On the logical interpretation of prima facie justified assumptions. Journal of Logic and Computation, 13(3), 319–346.

    Article  Google Scholar 

  • Villata, S., Boella, G., Gabbay, D. M., & van der Torre, L. W. N. (2012). Modelling defeasible and prioritized support in bipolar argumentation. Annals of Mathematics and Artificial Intelligence, 66(1–4), 163–197.

    Article  Google Scholar 

  • Wallner, J. P., Weissenbacher, G., & Woltran, S. (2013). Advanced SAT techniques for abstract argumentation. In J. Leite, T. C. Son, P. Torroni, L. van der Torre, & S.Woltran (Eds.), Proceedings of Computational Logic in Multi-agent Systems – 14th International Workshop, CLIMA XIV (Vol. 8143, pp. 138–154). Lecture Notes in Computer Science. Corunna, Spain: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Christine Lagasquie-Schiex .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cayrol, C., Fariñas del Cerro, L., Lagasquie-Schiex, MC. (2018). A Propositional Logical Encoding of Enriched Interactions in Abstract Argumentation Graphs. In: Golińska-Pilarek, J., Zawidzki, M. (eds) Ewa Orłowska on Relational Methods in Logic and Computer Science. Outstanding Contributions to Logic, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-97879-6_18

Download citation

Publish with us

Policies and ethics