Skip to main content

Processing Thermoset-Based Nanocomposites

  • Chapter
  • First Online:
Book cover Processing of Polymer-based Nanocomposites

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 278))

Abstract

High-performance thermoset nanocomposites are advanced materials with applications in various industries, including aerospace, electronics, and automotive. Recent research and development have been focused on both two-phase systems consisting of a thermoset matrix and nanoscale filler and multiscale composites consisting of a matrix, nanoscale filler, and microscale continuous fiber fabric. This chapter discusses the various techniques used for fabrication of both the two-phase and multiscale composites, with an emphasis on epoxy-based systems. We also focus on only three nanoparticles: clays, carbon nanotubes (CNTs), and carbon nanofiber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ratna D (2009) Handbook of thermoset resins. Smithers Shawbury

    Google Scholar 

  2. Dodiuk H, Goodman SH (2013) Handbook of thermoset plastics. William Andrew

    Google Scholar 

  3. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press

    Google Scholar 

  4. Qi B, Zhang Q, Bannister M, Mai Y-W (2006) Investigation of the mechanical properties of DGEBA-based epoxy resin with nanoclay additives. Compos Struct 75:514–519

    Article  Google Scholar 

  5. Becker O, Varley R, Simon G (2002) Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins. Polymer 43:4365–4373

    Article  Google Scholar 

  6. Kornmann X, Lindberg H, Berglund LA (2001) Synthesis of epoxy–clay nanocomposites: influence of the nature of the clay on structure. Polymer 42:1303–1310

    Article  Google Scholar 

  7. Wang K, Chen L, Wu J, Toh ML, He C, Yee AF (2005) Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms. Macromolecules 38:788–800

    Article  ADS  Google Scholar 

  8. Azeez AA, Rhee KY, Park SJ, Hui D (2013) Epoxy clay nanocomposites–processing, properties and applications: a review. Compos B Eng 45:308–320

    Article  Google Scholar 

  9. Messersmith PB, Giannelis EP (1994) Synthesis and characterization of layered silicate-epoxy nanocomposites. Chem Mater 6:1719–1725

    Article  Google Scholar 

  10. Ratna D, Becker O, Krishnamurthy R, Simon G, Varley RJ (2003) Nanocomposites based on a combination of epoxy resin, hyperbranched epoxy and a layered silicate. Polymer 44:7449–7457

    Article  Google Scholar 

  11. Haddadi SA, Kardar P, Abbasi F, Mahdavian M (2017) Effects of nano-silica and boron carbide on the curing kinetics of resole resin. J Therm Anal Calorim 128:1217–1226

    Article  Google Scholar 

  12. Baller J, Becker N, Ziehmer M, Thomassey M, Zielinski B, Müller U et al (2009) Interactions between silica nanoparticles and an epoxy resin before and during network formation. Polymer 50:3211–3219

    Article  Google Scholar 

  13. Rashti A, Yahyaei H, Firoozi S, Ramezani S, Rahiminejad A, Karimi R et al (2016) Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process. Mater Sci Eng C 69:1248–1255

    Article  Google Scholar 

  14. Luo P, Xu M, Wang S, Xu Y (2017) Structural, dynamic mechanical and dielectric properties of mesoporous silica/epoxy resin nanocomposites. IEEE Trans Dielectr Electr Insul 24:1685–1697

    Article  Google Scholar 

  15. Noparvar-Qarebagh A, Roghani-Mamaqani H, Salami-Kalajahi M, Kariminejad B (2017) Nanohybrids of novolac phenolic resin and carbon nanotube-containing silica network: Two different approaches for improving thermal properties of resin. J Therm Anal Calorim Int Forum Therm Stud 128:1027–1037

    Article  Google Scholar 

  16. Abdalla M, Dean D, Robinson P, Nyairo E (2008) Cure behavior of epoxy/MWCNT nanocomposites: the effect of nanotube surface modification. Polymer 49:3310–3317

    Article  Google Scholar 

  17. Thostenson ET, Chou T-W (2006) Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 44:3022–3029

    Article  Google Scholar 

  18. Battisti A, Skordos AA, Partridge IK (2010) Percolation threshold of carbon nanotubes filled unsaturated polyesters. Compos Sci Technol 70:633–637

    Article  Google Scholar 

  19. Gryshchuk O, Karger-Kocsis J, Thomann R, Konya Z, Kiricsi I (2006) Multiwall carbon nanotube modified vinylester and vinylester–based hybrid resins. Compos A Appl Sci Manuf 37:1252–1259

    Article  Google Scholar 

  20. Li X, Gao H, Scrivens WA, Fei D, Xu X, Sutton MA et al (2004) Nanomechanical characterization of single-walled carbon nanotube reinforced epoxy composites. Nanotechnology 15:1416

    Article  ADS  Google Scholar 

  21. Kim J-W, Sauti G, Siochi EJ, Smith JG, Wincheski RA, Cano RJ et al (2014) Toward high performance thermoset/carbon nanotube sheet nanocomposites via resistive heating assisted infiltration and cure. ACS Appl Mater Interfaces 6:18832–18843

    Article  Google Scholar 

  22. Naebe M, Wang J, Amini A, Khayyam H, Hameed N, Li LH et al (2014) Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Sci Rep 4:4375

    Article  ADS  Google Scholar 

  23. Tang L-C, Wan Y-J, Yan D, Pei Y-B, Zhao L, Li Y-B et al (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27

    Article  Google Scholar 

  24. Teng C-C, Ma C-CM, Lu C-H, Yang S-Y, Lee S-H, Hsiao M-C et al (2011) Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 49:5107–5116

    Article  Google Scholar 

  25. Monti M, Rallini M, Puglia D, Peponi L, Torre L, Kenny J (2013) Morphology and electrical properties of graphene–epoxy nanocomposites obtained by different solvent assisted processing methods. Compos A Appl Sci Manuf 46:166–172

    Article  Google Scholar 

  26. Heid T, Fréchette M, David E (2015) Nanostructured epoxy/POSS composites: enhanced materials for high voltage insulation applications. IEEE Trans Dielectr Electr Insul 22:1594–1604

    Article  Google Scholar 

  27. Huang X, Li Y, Liu F, Jiang P, Iizuka T, Tatsumi K et al (2014) Electrical properties of epoxy/POSS composites with homogeneous nanostructure. IEEE Trans Dielectr Electr Insul 21:1516–1528

    Article  Google Scholar 

  28. Zhang Z, Gu A, Liang G, Ren P, Xie J, Wang X (2007) Thermo-oxygen degradation mechanisms of POSS/epoxy nanocomposites. Polym Degrad Stab 92:1986–1993

    Article  Google Scholar 

  29. Longhi M, Zini LP, Kunst SR, Zattera AJ (2017) Influence of the type of epoxy resin and concentration of glycidylisobutyl-poss in the properties of nanocomposites. Polym Polym Compos 25:593

    Article  Google Scholar 

  30. Xu Y, Chen J, Huang J, Cao J, Gérard J-F, Dai L (2017) Nanostructure of reactive polyhedral oligomeric silsesquioxane-based block copolymer as modifier in an epoxy network. High Perform Polym 29:1148–1157

    Article  Google Scholar 

  31. Mishra K, Pandey G, Singh RP (2017) Enhancing the mechanical properties of an epoxy resin using polyhedral oligomeric silsesquioxane (POSS) as nano-reinforcement. Polym Testing 62:210–218

    Article  Google Scholar 

  32. Covestro AG, Leverkusen (2018) Reaction injection molding. https://www.polyurethanes.covestro.com/Technologies/Processing/RIM.aspx. Acceseed 18 Apr 2018

  33. Potter K (2012) Resin transfer moulding. Springer Science & Business Media

    Google Scholar 

  34. Rudd CD, Long AC, Kendall K, Mangin C (1997) Liquid moulding technologies: resin transfer moulding, structural reaction injection moulding and related processing techniques. Elsevier

    Google Scholar 

  35. Rachmadini Y, Tan VBC, Tay TE (2010) Enhancement of mechanical properties of composites through Incorporation of CNT in VARTM—a review. J Reinf Plast Compos 29:2782–2807

    Article  Google Scholar 

  36. Nguyen QT, Ngo T, Tran P, Mendis P, Zobec M, Aye L (2016) Fire performance of prefabricated modular units using organoclay/glass fibre reinforced polymer composite. Constr Build Mater 129:204–215

    Article  Google Scholar 

  37. Nguyen QT, Ngo TD, Tran P, Mendis P, Bhattacharyya D (2015) Influences of clay and manufacturing on fire resistance of organoclay/thermoset nanocomposites. Compos A Appl Sci Manuf 74:26–37

    Article  Google Scholar 

  38. Chandrasekaran VCS, Advani SG, Santare MH (2010) Role of processing on interlaminar shear strength enhancement of epoxy/glass fiber/multi-walled carbon nanotube hybrid composites. Carbon 48:3692–3699

    Article  Google Scholar 

  39. Tehrani M, Boroujeni AY, Hartman TB, Haugh TP, Case SW, Al-Haik MS (2013) Mechanical characterization and impact damage assessment of a woven carbon fiber reinforced carbon nanotube–epoxy composite. Compos Sci Technol 75:42–48

    Article  Google Scholar 

  40. González-Julián J, Iglesias Y, Caballero AC, Belmonte M, Garzón L, Ocal C et al (2011) Multi-scale electrical response of silicon nitride/multi-walled carbon nanotubes composites. Compos Sci Technol 71:60–66

    Article  Google Scholar 

  41. He D, Salem D, Cinquin J, Piau G-P, Bai J (2017) Impact of the spatial distribution of high content of carbon nanotubes on the electrical conductivity of glass fiber fabrics/epoxy composites fabricated by RTM technique. Compos Sci Technol 147:107–115

    Article  Google Scholar 

  42. Wang B-C, Zhou X, Ma K-M (2013) Fabrication and properties of CNTs/carbon fabric hybrid multiscale composites processed via resin transfer molding technique. Compos B Eng 46:123–129

    Article  Google Scholar 

  43. Chandrasekaran VCS, Advani SG, Santare MH (2011) Influence of resin properties on interlaminar shear strength of glass/epoxy/MWNT hybrid composites. Compos A Appl Sci Manuf 42:1007–1016

    Article  Google Scholar 

  44. Bekyarova E, Thostenson E, Yu A, Kim H, Gao J, Tang J et al (2007) Multiscale carbon nanotube—carbon fiber reinforcement for advanced epoxy composites. Langmuir 23:3970–3974

    Article  Google Scholar 

  45. Green KJ, Dean DR, Vaidya UK, Nyairo E (2009) Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: Synthesis, mechanical, and thermomechanical behavior. Compos A Appl Sci Manuf 40:1470–1475

    Article  Google Scholar 

  46. Chen Q, Wu W, Zhao Y, Xi M, Xu T, Fong H (2014) Nano-epoxy resins containing electrospun carbon nanofibers and the resulting hybrid multi-scale composites. Compos B Eng 58:43–53

    Article  Google Scholar 

  47. Rodriguez AJ, Guzman ME, Lim C-S, Minaie B (2011) Mechanical properties of carbon nanofiber/fiber-reinforced hierarchical polymer composites manufactured with multiscale-reinforcement fabrics. Carbon 49:937–948

    Article  Google Scholar 

  48. Kamar NT, Hossain MM, Khomenko A, Haq M, Drzal LT, Loos A (2015) Interlaminar reinforcement of glass fiber/epoxy composites with graphene nanoplatelets. Compos A Appl Sci Manuf 70:82–92

    Article  Google Scholar 

  49. Qin W, Vautard F, Drzal LT, Yu J (2015) Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber–matrix interphase. Compos B Eng 69:335–341

    Article  Google Scholar 

  50. Lin L-Y, Lee J-H, Hong C-E, Yoo G-H, Advani SG (2006) Preparation and characterization of layered silicate/glass fiber/epoxy hybrid nanocomposites via vacuum-assisted resin transfer molding (VARTM). Compos Sci Technol 66:2116–2125

    Article  Google Scholar 

  51. Sharma B, Mahajan S, Chhibber R, Mehta R (2012) Glass fiber reinforced polymer-clay nanocomposites: processing, structure and hygrothermal effects on mechanical properties. Proc Chem 4:39–46

    Article  Google Scholar 

  52. Dean D, Obore AM, Richmond S, Nyairo E (2006) Multiscale fiber-reinforced nanocomposites: synthesis, processing and properties. Compos Sci Technol 66:2135–2142

    Article  Google Scholar 

  53. Aitomäki Y, Moreno-Rodriguez S, Lundström TS, Oksman K (2016) Vacuum infusion of cellulose nanofibre network composites: Influence of porosity on permeability and impregnation. Mater Des 95:204–211

    Article  Google Scholar 

  54. Barari B, Ellingham TK, Ghamhia II, Pillai KM, El-Hajjar R, Turng L-S et al (2016) Mechanical characterization of scalable cellulose nano-fiber based composites made using liquid composite molding process. Compos B Eng 84:277–284

    Article  Google Scholar 

  55. Rajanish M, Nanjundaradhya NV, Sharma RS (2015) An investigation on ILSS properties of unidirectional glass fibre/alumina nanoparticles filled epoxy nanocomposite at different angles of fibre orientations. Proc Mater Sci 10:555–562

    Article  Google Scholar 

  56. Lundström TS, Gebart BR (1994) Influence from process parameters on void formation in resin transfer molding. Polym Compos 15:25–33

    Article  Google Scholar 

  57. Hmeidat NS, Kemp JW, Compton BG (2018) High-strength epoxy nanocomposites for 3D printing. Compos Sci Technol 160:9–20

    Article  Google Scholar 

  58. Zabihi O, Ahmadi M, Nikafshar S, Chandrakumar Preyeswary K, Naebe M (2018) A technical review on epoxy-clay nanocomposites: structure, properties, and their applications in fiber reinforced composites. Compos B Eng 135:1–24

    Article  Google Scholar 

  59. Azeez AA, Rhee KY, Park SJ, Hui D (2013) Epoxy clay nanocomposites—processing, properties and applications: a review. Compos B Eng 45:308–320

    Article  Google Scholar 

  60. Lan T, Pinnavaia TJ (1994) Clay-reinforced epoxy nanocomposites. Chem Mater 6:2216–2219

    Article  Google Scholar 

  61. Wang D-C, Chang G-W, Chen Y (2008) Preparation and thermal stability of boron-containing phenolic resin/clay nanocomposites. Polym Degrad Stab 93:125–133

    Article  Google Scholar 

  62. Koo J, Stretz H, Bray A, Wootan W, Mulich S, Powell B et al (2002) Phenolic-clay nanocomposites for rocket propulsion system. Int SAMPE Symp Exhib SAMPE 1999:1085–1099

    Google Scholar 

  63. Wu Z, Zhou C, Qi R (2002) The preparation of phenolic resin/montmorillonite nanocomposites by suspension condensation polymerization and their morphology. Polym Compos 23:634–646

    Article  Google Scholar 

  64. Jiang W, Chen SH, Chen Y (2006) Nanocomposites from phenolic resin and various organo-modified montmorillonites: preparation and thermal stability. J Appl Polym Sci 102:5336–5343

    Article  Google Scholar 

  65. Zhang Z, Ye G, Toghiani H, Pittman CU (2010) Morphology and thermal stability of novolac phenolic resin/clay nanocomposites prepared via solution high-shear mixing. Macromol Mater Eng 295:923–933

    Article  Google Scholar 

  66. Pappas J, Patel K, Nauman E (2005) Structure and properties of phenolic resin/nanoclay composites synthesized by in situ polymerization. J Appl Polym Sci 95:1169–1174

    Article  Google Scholar 

  67. Xiong J, Liu Y, Yang X, Wang X (2004) Thermal and mechanical properties of polyurethane/montmorillonite nanocomposites based on a novel reactive modifier. Polym Degrad Stab 86:549–555

    Article  Google Scholar 

  68. Chang JH, An YU (2002) Nanocomposites of polyurethane with various organoclays: thermomechanical properties, morphology, and gas permeability. J Polym Sci Part B Polym Phys 40:670–677

    Article  ADS  Google Scholar 

  69. Ollier R, Rodriguez E, Alvarez V (2013) Unsaturated polyester/bentonite nanocomposites: influence of clay modification on final performance. Compos A Appl Sci Manuf 48:137–143

    Article  Google Scholar 

  70. Mironi-Harpaz I, Narkis M, Siegmann A (2005) Nanocomposite systems based on unsaturated polyester and organo-clay. Polym Eng Sci 45:174–186

    Article  Google Scholar 

  71. Kornmann X, Berglund LA, Sterte J, Giannelis E (1998) Nanocomposites based on montmorillonite and unsaturated polyester. Polym Eng Sci 38:1351–1358

    Article  Google Scholar 

  72. Tsai T-Y, Bunekar N, Yen C-H, Lin Y-B (2016) Synthesis and characterization of vinyl ester/inorganic layered material nanocomposites. RSC Adv 6:102797–102803

    Article  Google Scholar 

  73. Mohaddespour A, Ahmadi SJ, Abolghassemi H, Mahjoub SM, Atashrouz S (2018) Irradiation of poly (vinyl ester)/clay nanocomposites. J Compos Mater 52:17–25

    Article  Google Scholar 

  74. Ryu SH, Reddy MJK, Shanmugharaj A (2017) Role of silane concentration on the structural characteristics and properties of epoxy-/silane-modified montmorillonite clay nanocomposites. J Elastomers Plast 49:665–683

    Article  Google Scholar 

  75. Su L, Zeng X, He H, Tao Q, Komarneni S (2017) Preparation of functionalized kaolinite/epoxy resin nanocomposites with enhanced thermal properties. Appl Clay Sci 148:103–108

    Article  Google Scholar 

  76. Tolle TB, Anderson DP (2004) The role of preconditioning on morphology development in layered silicate thermoset nanocomposites. J Appl Polym Sci 91:89–100

    Article  Google Scholar 

  77. Hutchinson JM, Montserrat S, Román F, Cortés P, Campos L (2006) Intercalation of epoxy resin in organically modified montmorillonite. J Appl Polym Sci 102:3751–3763

    Article  Google Scholar 

  78. Jae-Jun P, Jae-Young L (2010) A new dispersion method for the preparation of polymer/organoclay nanocomposite in the electric fields. IEEE Trans Dielectr Electr Insul:17

    Google Scholar 

  79. Ngo TD, Ton-That MT, Hoa SV, Cole KC (2009) Effect of temperature, duration and speed of pre-mixing on the dispersion of clay/epoxy nanocomposites. Compos Sci Technol 69:1831–1840

    Article  Google Scholar 

  80. Zhao L, Li J, Guo S, Du Q (2006) Ultrasonic oscillations induced morphology and property development of polypropylene/montmorillonite nanocomposites. Polymer 47:2460–2469

    Article  Google Scholar 

  81. Shokrieh MM, Kefayati AR, Chitsazzadeh M (2012) Fabrication and mechanical properties of clay/epoxy nanocomposite and its polymer concrete. Mater Des 40:443–452

    Article  Google Scholar 

  82. Zhou Y, Pervin F, Biswas MA, Rangari VK, Jeelani S (2006) Fabrication and characterization of montmorillonite clay-filled SC-15 epoxy. Mater Lett 60:869–873

    Article  Google Scholar 

  83. C-k Lam, K-t Lau, H-y Cheung, H-y Ling (2005) Effect of ultrasound sonication in nanoclay clusters of nanoclay/epoxy composites. Mater Lett 59:1369–1372

    Article  Google Scholar 

  84. Bharadwaj RK, Mehrabi AR, Hamilton C, Trujillo C, Murga M, Fan R et al (2002) Structure–property relationships in cross-linked polyester–clay nanocomposites. Polymer 43:3699–3705

    Article  Google Scholar 

  85. Yasmin A, Abot JL, Daniel IM (2003) Processing of clay/epoxy nanocomposites by shear mixing. Scripta Mater 49:81–86

    Article  Google Scholar 

  86. Yasmin A, Abot JL, Daniel IM (2002) Processing of clay/epoxy nanocomposites with a three-roll mill machine. MRS Online Proceedings Library Archive:740

    Google Scholar 

  87. Yasmin A, Luo J, Abot J, Daniel I (2006) Mechanical and thermal behavior of clay/epoxy nanocomposites. Compos Sci Technol 66:2415–2422

    Article  Google Scholar 

  88. Deng S, Zhang J, Ye L (2009) Halloysite–epoxy nanocomposites with improved particle dispersion through ball mill homogenisation and chemical treatments. Compos Sci Technol 69:2497–2505

    Article  Google Scholar 

  89. Lu HJ, Liang GZ, Ma XY, Zhang BY, Chen XB (2004) Epoxy/clay nanocomposites: further exfoliation of newly modified clay induced by shearing force of ball milling. Polym Int 53:1545–1553

    Article  Google Scholar 

  90. Liu W, Hoa SV, Pugh M (2005) Organoclay-modified high performance epoxy nanocomposites. Compos Sci Technol 65:307–316

    Article  Google Scholar 

  91. Eesaee M, Shojaei A (2014) Effect of nanoclays on the mechanical properties and durability of novolac phenolic resin/woven glass fiber composite at various chemical environments. Compos A Appl Sci Manuf 63:149–158

    Article  Google Scholar 

  92. Withers GJ, Yu Y, Khabashesku VN, Cercone L, Hadjiev VG, Souza JM et al (2015) Improved mechanical properties of an epoxy glass–fiber composite reinforced with surface organomodified nanoclays. Compos B Eng 72:175–182

    Article  Google Scholar 

  93. Kalali EN, Wang X, Wang D-Y (2015) Functionalized layered double hydroxide-based epoxy nanocomposites with improved flame retardancy and mechanical properties. J Mater Chem A 3:6819–6826

    Article  Google Scholar 

  94. Park J-M, Wang Z-J, Kwon D-J, Gu G-Y, Lee W-I, Park J-K et al (2012) Optimum dispersion conditions and interfacial modification of carbon fiber and CNT–phenolic composites by atmospheric pressure plasma treatment. Compos B Eng 43:2272–2278

    Article  Google Scholar 

  95. Cheng QF, Wang JP, Wen JJ, Liu CH, Jiang KL, Li QQ et al (2010) Carbon nanotube/epoxy composites fabricated by resin transfer molding. Carbon 48:260–266

    Article  Google Scholar 

  96. Ma J, Larsen RM (2014) Effect of concentration and surface modification of single walled carbon nanotubes on mechanical properties of epoxy composites. Fibers Polym 15:2169–2174

    Article  Google Scholar 

  97. Ganguli S, Bhuyan M, Allie L, Aglan H (2005) Effect of multi-walled carbon nanotube reinforcement on the fracture behavior of a tetrafunctional epoxy. J Mater Sci 40:3593–3595

    Article  ADS  Google Scholar 

  98. Abdalla M, Dean D, Adibempe D, Nyairo E, Robinson P, Thompson G (2007) The effect of interfacial chemistry on molecular mobility and morphology of multiwalled carbon nanotubes epoxy nanocomposite. Polymer 48:5662–5670

    Article  Google Scholar 

  99. Mathur R, Chatterjee S, Singh B (2008) Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos Sci Technol 68:1608–1615

    Article  Google Scholar 

  100. Yeh M-K, Tai N-H, Liu J-H (2006) Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes. Carbon 44:1–9

    Article  Google Scholar 

  101. McClory C, McNally T, Brennan GP, Erskine J (2007) Thermosetting polyurethane multiwalled carbon nanotube composites. J Appl Polym Sci 105:1003–1011

    Article  Google Scholar 

  102. Schlea MR, Meree CE, Gerhardt RA, Mintz EA, Shofner ML (2012) Network behavior of thermosetting polyimide/multiwalled carbon nanotube composites. Polymer 53:1020–1027

    Article  Google Scholar 

  103. Beg M, Alam AM, Yunus R, Mina M (2015) Improvement of interaction between pre-dispersed multi-walled carbon nanotubes and unsaturated polyester resin. J Nanopart Res 17:53

    Article  Google Scholar 

  104. Ureña-Benavides EE, Kayatin MJ, Davis VA (2013) Dispersion and rheology of multiwalled carbon nanotubes in unsaturated polyester resin. Macromolecules 46:1642–1650

    Article  ADS  Google Scholar 

  105. Natsuki T, Ni QQ, Wu SH (2008) Temperature dependence of electrical resistivity in carbon nanofiber/unsaturated polyester nanocomposites. Polym Eng Sci 48:1345–1350

    Article  Google Scholar 

  106. Wu Z, Meng L, Liu L, Jiang Z, Xing L, Jiang D et al (2014) Chemically grafting carbon nanotubes onto carbon fibers by poly (acryloyl chloride) for enhancing interfacial strength in carbon fiber/unsaturated polyester composites. Fibers Polym 15:659–663

    Article  Google Scholar 

  107. Makki MS, Abdelaal MY, Bellucci S, Abdel Salam M (2014) Multi-walled carbon nanotubes/unsaturated polyester composites: Mechanical and thermal properties study. Fullerene Nanotubes Carbon Nanostruct 22:820–833

    Article  ADS  Google Scholar 

  108. Bal S (2010) Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites. Mater Des (1980–2015) 31:2406–2413

    Article  Google Scholar 

  109. Sánchez M, Campo M, Jiménez-Suárez A, Ureña A (2013) Effect of the carbon nanotube functionalization on flexural properties of multiscale carbon fiber/epoxy composites manufactured by VARIM. Compos B Eng 45:1613–1619

    Article  Google Scholar 

  110. Sadeghian R, Gangireddy S, Minaie B, Hsiao K-T (2006) Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-I delamination resistance. Compos A Appl Sci Manuf 37:1787–1795

    Article  Google Scholar 

  111. An Q, Rider AN, Thostenson ET (2012) Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties. Carbon 50:4130–4143

    Article  Google Scholar 

  112. Li J, Zhang G, Zhang H, Fan X, Zhou L, Shang Z et al (2018) Electrical conductivity and electromagnetic interference shielding of epoxy nanocomposite foams containing functionalized multi-wall carbon nanotubes. Appl Surf Sci 428:7–16

    Article  ADS  Google Scholar 

  113. Ghosh PK, Kumar K, Chaudhary N (2015) Influence of ultrasonic dual mixing on thermal and tensile properties of MWCNTs-epoxy composite. Compos B Eng 77:139–144

    Article  Google Scholar 

  114. Sun D, Chu C-C, Sue H-J (2010) Simple approach for preparation of epoxy hybrid nanocomposites based on carbon nanotubes and a model clay. Chem Mater 22:3773–3778

    Article  Google Scholar 

  115. Zhang X, Sue H-J, Nishimura R (2013) Acid-mediated isolation of individually dispersed SWCNTs from electrostatically tethered nanoplatelet dispersants. Carbon 56:374–382

    Article  Google Scholar 

  116. Liu K, Sun Y, Chen L, Feng C, Feng X, Jiang K et al (2008) Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett 8:700–705

    Article  ADS  Google Scholar 

  117. Qian H, Greenhalgh ES, Shaffer MS, Bismarck A (2010) Carbon nanotube-based hierarchical composites: a review. J Mater Chem 20:4751–4762

    Article  Google Scholar 

  118. Qiu J, Zhang C, Wang B, Liang R (2007) Carbon nanotube integrated multifunctional multiscale composites. Nanotechnology 18:275708

    Article  ADS  Google Scholar 

  119. Morales G, Barrena M, De Salazar JG, Merino C, Rodríguez D (2010) Conductive CNF-reinforced hybrid composites by injection moulding. Compos Struct 92:1416–1422

    Article  Google Scholar 

  120. Gojny FH, Wichmann MH, Fiedler B, Bauhofer W, Schulte K (2005) Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Compos A Appl Sci Manuf 36:1525–1535

    Article  Google Scholar 

  121. Reia da Costa EF, Skordos AA, Partridge IK, Rezai A (2012) RTM processing and electrical performance of carbon nanotube modified epoxy/fibre composites. Compos Part A Appl Sci Manuf 43:593–602

    Article  Google Scholar 

  122. Thostenson E, Li W, Wang D, Ren Z, Chou T (2002) Carbon nanotube/carbon fiber hybrid multiscale composites. J Appl Phys 91:6034–6037

    Article  ADS  Google Scholar 

  123. Sager R, Klein P, Lagoudas D, Zhang Q, Liu J, Dai L et al (2009) Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Compos Sci Technol 69:898–904

    Article  Google Scholar 

  124. Qian H, Bismarck A, Greenhalgh ES, Shaffer MS (2010) Carbon nanotube grafted carbon fibres: a study of wetting and fibre fragmentation. Compos A Appl Sci Manuf 41:1107–1114

    Article  Google Scholar 

  125. Kepple K, Sanborn G, Lacasse P, Gruenberg K, Ready W (2008) Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes. Carbon 46:2026–2033

    Article  Google Scholar 

  126. Gong Q-J, Li H-J, Wang X, Fu Q-G (2007) Wang Z-w, Li K-Z. In situ catalytic growth of carbon nanotubes on the surface of carbon cloth. Compos Sci Technol 67:2986–2989

    Article  Google Scholar 

  127. Duan H, Liang J, Xia Z (2010) Synthetic hierarchical nanostructures: growth of carbon nanofibers on microfibers by chemical vapor deposition. Mater Sci Eng B 166:190–195

    Article  Google Scholar 

  128. Tzeng S-S, Hung K-H, Ko T-H (2006) Growth of carbon nanofibers on activated carbon fiber fabrics. Carbon 44:859–865

    Article  Google Scholar 

  129. Abot J, Song Y, Schulz M, Shanov V (2008) Novel carbon nanotube array-reinforced laminated composite materials with higher interlaminar elastic properties. Compos Sci Technol 68:2755–2760

    Article  Google Scholar 

  130. Arai M, Noro Y, Sugimoto KI, Endo M (2008) Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer. Compos Sci Technol 68:516–525

    Article  Google Scholar 

  131. Garcia EJ, Wardle BL, Hart AJ (2008) Joining prepreg composite interfaces with aligned carbon nanotubes. Compos A Appl Sci Manuf 39:1065–1070

    Article  Google Scholar 

  132. Wicks SS, de Villoria RG, Wardle BL (2010) Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes. Compos Sci Technol 70:20–28

    Article  Google Scholar 

  133. Li Y, Hori N, Arai M, Hu N, Liu Y, Fukunaga H (2009) Improvement of interlaminar mechanical properties of CFRP laminates using VGCF. Compos A Appl Sci Manuf 40:2004–2012

    Article  Google Scholar 

  134. Zhang J, Zhuang R, Liu J, Mäder E, Heinrich G, Gao S (2010) Functional interphases with multi-walled carbon nanotubes in glass fibre/epoxy composites. Carbon 48:2273–2281

    Article  Google Scholar 

  135. An Q, Rider AN, Thostenson ET (2013) Hierarchical composite structures prepared by electrophoretic deposition of carbon nanotubes onto glass fibers. ACS Appl Mater Interfaces 5:2022–2032

    Article  Google Scholar 

  136. Schaefer JD, Rodriguez AJ, Guzman ME, Lim C-S, Minaie B (2011) Effects of electrophoretically deposited carbon nanofibers on the interface of single carbon fibers embedded in epoxy matrix. Carbon 49:2750–2759

    Article  Google Scholar 

  137. Guo J, Lu C (2012) Continuous preparation of multiscale reinforcement by electrophoretic deposition of carbon nanotubes onto carbon fiber tows. Carbon 50:3101–3103

    Article  Google Scholar 

  138. Guo J, Lu C, An F (2012) Effect of electrophoretically deposited carbon nanotubes on the interface of carbon fiber reinforced epoxy composite. J Mater Sci 47:2831–2836

    Article  ADS  Google Scholar 

  139. Sui X, Shi J, Yao H, Xu Z, Chen L, Li X et al (2017) Interfacial and fatigue-resistant synergetic enhancement of carbon fiber/epoxy hierarchical composites via an electrophoresis deposited carbon nanotube-toughened transition layer. Compos A Appl Sci Manuf 92:134–144

    Article  Google Scholar 

  140. Rodriguez AJ, Guzman ME, Lim C-S, Minaie B (2010) Synthesis of multiscale reinforcement fabric by electrophoretic deposition of amine-functionalized carbon nanofibers onto carbon fiber layers. Carbon 48:3256–3259

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the South African Department of Science and Technology (DST) and the Council for Scientific and Industrial Research (CSIR) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vincent Ojijo or Suprakas Sinha Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ojijo, V., Sinha Ray, S. (2018). Processing Thermoset-Based Nanocomposites. In: Sinha Ray, S. (eds) Processing of Polymer-based Nanocomposites. Springer Series in Materials Science, vol 278. Springer, Cham. https://doi.org/10.1007/978-3-319-97792-8_4

Download citation

Publish with us

Policies and ethics