Skip to main content

Glycemic Metrics and Targets in Kidney Disease

  • Chapter
  • First Online:
Endocrine Disorders in Kidney Disease

Abstract

While intensive glycemic management has been shown to delay the onset and progression of kidney disease, optimal glycemic targets in the setting of diabetic kidney disease (DKD) remain controversial. A variety of factors associated with kidney disease and/or the uremic state can impact the accuracy and interpretability of currently available glycemic measures. Alterations in erythrocyte survival time, hemoglobin concentrations, and other factors likely bias glycated hemoglobin (A1C) values to lower levels in people with DKD, yet A1C remains a key monitoring parameter recommended to inform the glycemic management of people with DKD. The optimal A1C target for patients with DKD, however, remains controversial. Evidence suggests that overly aggressive A1C targets in advanced DKD may contribute to increased risk of mortality. Several observational studies have reported a “U-shaped” relationship between A1C and mortality, with current epidemiological data suggesting that relatively conservative A1C targets may be desirable. Patients with DKD are additionally known to be at particular risk for hypoglycemia, and hypoglycemia avoidance is an important priority when establishing glycemic targets. Given the emphasis on individualized glycemic targets in all people with diabetes, and when considering the interpretive difficulties at play in the setting of DKD, patient-derived glucose data obtained via self-monitoring of blood glucose remains a crucial tool to consolidate therapeutic goals. With additional study and experience, other current and evolving methods of glycemic assessment may prove beneficial in the management of overall glycemic control in the setting of kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, Himmelfarb J. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA. 2011;305:2532–9.

    Article  Google Scholar 

  2. U.S. Renal Data System. USRDS 2015 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD. Available at: http://www.usrds.org/adr.aspx. Accessed January 4, 2016.

  3. American Diabetes Association. Standards of medical Care in Diabetes – 2016. Diabetes Care. 2016;39(Suppl. 1):S1–112.

    Google Scholar 

  4. Tuttle KR, Bakris GL, Bilous RW, Chiang JL, de Boer IH, Goldstein-Fuchs J, et al. Diabetic kidney disease: a report from an ADA consensus conference. Diabetes Care. 2014;37:2864–83.

    Article  Google Scholar 

  5. Gerich JE, Meyer C, Woerle HJ, Stumvoll M. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care. 2001;24(2):382–91.

    Article  CAS  Google Scholar 

  6. National Kidney Foundation. KDOQI clinical practice guideline for diabetes and CKD: 2012 update. Am J Kidney Dis. 2012;60(5):850–86.

    Article  Google Scholar 

  7. Speeckaert M, van Biesen W, Delanghe J, Slingerland R, Wiecek A, Heaf J, et al. Are there better alternative than haemoglobin A1c to estimate glycaemic control in the chronic kidney disease population? Nephrol Dial Transplant. 2014;29:2167–77.

    Article  CAS  Google Scholar 

  8. Rhee CM, Leung AM, Kovesdy CP, Lynch KE, Brent GA, Kalantar-Zadeh K. Updates on the Management of Diabetes in Dialysis patients. Semin Dial. 2014;27(2):135–45.

    Article  Google Scholar 

  9. Nathan DM, Kuenen J, Borg R, Zheng H, Schoenfeld D, Heine RJ, et al. Translating the A1C assay into estimated average glucose values. Diabetes Care. 2008;31(8):1473–8.

    Article  CAS  Google Scholar 

  10. Hirsch IB, Amiel SA, Blumer IR, Bode BW, Edelman SV, Seley JJ, et al. Using multiple measures of glycemia to support individualized diabetes management: recommendations for clinicians, patients, and payers. Diabetes Technol Ther. 2012;14(11):973–83.

    Article  Google Scholar 

  11. Vos FE, Schollum JB, Coulter CV, Doyle TC, Duffull SB, Walker RJ. Red blood cell survival in long- term dialysis patients. Am J Kidney Dis. 2011;58(4):591–8.

    Article  Google Scholar 

  12. Nakao T, Matsumoto H, Okada T, Han M, Hidaka H, Yoshino M, et al. Influence of erythropoietin treatment on hemoglobin A1c levels in patients with chronic renal failure on hemodialysis. Intern Med. 1998;37(10):826–30.

    Article  CAS  Google Scholar 

  13. Inaba M, Okuno S, Kumeda Y, Yamada S, Imanishi Y, Tabata T, et al. Glycated albumin is a better glycemic indicator than glycated hemoglobin values in hemodialysis patients with diabetes: effect of anemia and erythropoietin injection. JASN. 2007;18(3):896–903.

    Article  CAS  Google Scholar 

  14. Ng JM, Jennings PE, Laboi P, Jayagopal V. Erythropoetin treatment significantly alters measured glycated haemoglobin (HbA1c). Diabet Med. 2008;25(2):239–40.

    Article  CAS  Google Scholar 

  15. Gallagher EJ, Le Roith D, Bloomgarden Z. Review of hemoglobin A(1c) in the management of diabetes. J Diabetes. 2009;1:9–17.

    Article  CAS  Google Scholar 

  16. Hoshino J, Mehrotra R, Rhee CM, Yamagata K, Ubara Y, Takaichi K, et al. Using hemoglobin A1c to derive mean blood glucose in peritoneal dialysis patients. Am J Nephrol. 2013;37(5):413–20.

    Article  CAS  Google Scholar 

  17. Zhang L, Krzentowski G, Albert A, Lefebvre PJ. Risk of developing retinopathy in diabetes control and complications trial type 1 diabetic patients with good or poor metabolic control. Diabetes Care. 2001;24:1275–9.

    Article  CAS  Google Scholar 

  18. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. NEJM. 1993;329(14):977–86.

    Article  Google Scholar 

  19. Hirsch IB, Brownlee M. Beyond hemoglobin A1c-need for additional markers of risk for diabetic microvascular complications. JAMA. 2010;303:2291–2.

    Article  CAS  Google Scholar 

  20. Lachin JM, Genuth S, Nathan DM, Zinman B, Rutledge BN, DCCT/EDIC Research Group. Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial-revisited. Diabetes. 2008;57:995–1001.

    Article  CAS  Google Scholar 

  21. Okada T, Nakao T, Matsumoto H, Yamanaka T, Nagaoka Y, Tamekuni T. Influence of age and nutritional status on glycated albumin values in hemodialysis patients. Intern Med. 2009;48(17):1495–9.

    Article  Google Scholar 

  22. Freedman BI, Andries L, Shihabi ZK, Rocco MV, Byers JR, Cardona CY, et al. Glycated albumin and risk of death and hospitalizations in diabetic dialysis patients. CJASN. 2011;6(7):1635–43.

    Article  CAS  Google Scholar 

  23. Peacock TP, Shihabi ZK, Bleyer AJ, Dolbare EL, Byers JR, Knovich MA, et al. Comparison of glycated albumin and hemoglobin A(1c) levels in diabetic subjects on hemodialysis. Kidney Int. 2008;73(9):1062–8.

    Article  CAS  Google Scholar 

  24. Kim IY, Kim MJ, Lee DW, Lee SB, Rhee H, Song SH, et al. Glycated albumin is a more accurate glycaemic indicator than haemoglobin A1c in diabetic patients with pre-dialysis chronic kidney disease. Nephrology. 2015;20:715–20.

    Article  CAS  Google Scholar 

  25. Cohen RM, Holmes YR, Chenier TC, Joiner CH. Discordance between HbA1c and fructosamine: evidence for a glycosylation gap and its relation to diabetic nephropathy. Diabetes Care. 2003;26(1):163–7.

    Article  CAS  Google Scholar 

  26. Goldstein DE, Little RR, Lorenz RA, Malone JI, Nathan D, Peterson CM, et al. Tests of glycemia in diabetes. Diabetes Care. 2004;27(7):1761–73.

    Article  Google Scholar 

  27. Chen HS, Wu TE, Lin HD, Jap TS, Hsiao LC, Lee SH, et al. Hemoglobin A(1c) and fructosamine for assessing glycemic control in diabetic patients with CKD stage 3 and 4. Am J Kidney Dis. 2010;55(5):867–74.

    Article  CAS  Google Scholar 

  28. Joy MS, Cefalu WT, Hogan SL, Nachman PH. Long-term glycemic control measurements in diabetic patients receiving hemodialysis. Am J Kidney Dis. 2002;39(2):297–307.

    Article  Google Scholar 

  29. Shafi T, Sozio SM, Plantinga LC, Jaar BG, Kim ET, Parekh RS, et al. Serum fructosamine and glycated albumin and risk of mortality and clinical outcomes in hemodialysis patients. Diabetes Care. 2013;36(6):1522–33.

    Article  CAS  Google Scholar 

  30. Yamanouchi T, Ogata N, Tagaya T, Kawasaki T, Sekino N, Funato H, et al. Clinical usefulness of serum 1,5-anhydroglucitol in monitoring glycaemic control. Lancet. 1996;347(9014):1514–8.

    Article  CAS  Google Scholar 

  31. Monnier L, Wojtusciszyn A, Colette C, Owens D. The contribution of glucose variability to asymptomatic hypoglycemia in persons with type 2 diabetes. Diabetes Technol Ther. 2011;13:813–8.

    Article  CAS  Google Scholar 

  32. Wright L, Hirsch IB, Gooley T, Brown Z. 1, 5-Anhydroglucitol and neonatal complications in pregnancy complicated by diabetes. Endocr Pract. 2015;21(7):725–33.

    Article  Google Scholar 

  33. Fujisawa T, Ikegami H, Tsutsui T, Kawaguchi Y, Ueda H, Shintani M, et al. Renal tubular function affects glycosuria-related urinary excretion of 1,5-anhydroglucitol. Diabetes Care. 1999;22(5):863–4.

    Article  CAS  Google Scholar 

  34. Emoto M, Tabata T, Inoue T, Nishizawa Y, Morii H. Plasma 1,5-anhydroglucitol concentration in patients with end-stage renal disease with and without diabetes mellitus. Nephron. 1992;61(2):181–6.

    Article  CAS  Google Scholar 

  35. Kim WJ, Park C-Y, Lee KB, Park SE, Rhee EJ, Lee WY, et al. Serum 1,5-anhydroglucitol concentrations are a reliable index of glycemic control in type 2 diabetes with mild or moderate renal dysfunction. Diabetes Care. 2012;35(2):281–6.

    Article  CAS  Google Scholar 

  36. GlycoMark, Inc. Clinical Guide: 1,5-anhydroglucitol (1,5-AG) blood test. Available at: http://www.glycomark.com/wp-content/uploads/2015/10/GlycoMark_Clinical_Guide.pdf. Accessed January 4, 2016.

  37. Jung HS, Kim HI, Kim MJ, Yoon JW, Ahn HY, Cho YM, et al. Analysis of hemodialysis-associated hypoglycemia in patients with type 2 diabetes using a continuous glucose monitoring system. Diabetes Tehcnol Ther. 2010;12(10):801–7.

    Article  Google Scholar 

  38. Continuous Glucose Monitoring to Assess Glycemia in Chronic Kidney Disease – Changing Glucose Management (CANDY-CANE). Available at: ClinicialTrials.gov. Accessed January 4, 2016.

  39. U.K. Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352(9131):837–53.

    Article  Google Scholar 

  40. Action to Control Cardiovascular Risk in Diabetes (ACCORD) Study Group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545–59.

    Article  Google Scholar 

  41. ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.

    Article  Google Scholar 

  42. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129–39.

    Article  CAS  Google Scholar 

  43. Hayward RA, Reaven PD, Emanuele VN, VADT Investigators. Follow-up glycemic control and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373(10):978.

    PubMed  Google Scholar 

  44. Moen MJ, Zhan M, Hsu VD, Walker LD, Einhorn LM, Seliger SL, et al. Frequency of hypoglycemia and its significance in chronic kidney disease. Clin J Am Soc Nephrol. 2009;4:1121–7.

    Article  CAS  Google Scholar 

  45. Miller ME, Bonds DE, Gerstein HC, Seaquist ER, Bergenstal RM, Calles-Escandon J, et al. The effects of baseline characteristics, glycaemia treatment approach, and glycated haemoglobin concentration on the risk of severe hypoglycaemia: post hoc epidemiological analysis of the ACCORD study. BMJ. 2010;340:b5444. https://doi.org/10.1136/bmj.b5444.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kalantar-Zadeh K, Block G, Humphreys MH, Kopple JD. Reverse epidemiology of cardiovascular risk factors in maintenance dialysis patients. Kidney Int. 2003;63(3):793–808.

    Article  Google Scholar 

  47. Neumiller JJ, Hirsch IB. Management of hyperglycemia in diabetic kidney disease. Diabetes Spectr. 2015;28(3):214–9.

    Article  Google Scholar 

  48. Shurraw S, Hemmelgarn B, Lin M, Majumdar SR, Klarenbach S, Manns B, et al. Association between glycemic control and adverse outcomes in people with diabetes mellitus and chronic kidney disease: a population-based cohort study. Arch Intern Med. 2011;171(21):1920–7.

    Article  Google Scholar 

  49. Ramirez SP, McCullough KP, Thumma JR, Nelson RG, Morgenstern H, Gillespie BW, et al. Hemoglobin A(1c) levels and mortality in the diabetic hemodialysis population: findings from the Dialysis Outcomes and Practice Patterns Study (DOPPS). Diabetes Care. 2012;35(12):2527–32.

    Article  CAS  Google Scholar 

  50. Ricks J, Molnar MZ, Kovesdy CP, Shah A, Nissenson AR, Williams M, et al. Glycemic control and cardiovascular mortality in hemodialysis patients with diabetes: a 6-year cohort study. Diabetes. 2012;61(3):708–15.

    Article  CAS  Google Scholar 

  51. Duong U, Mehrotra R, Molnar MZ, Noori N, Kovesdy CP, Nissenson AR, et al. Glycemic control and survival in peritoneal dialysis patients with diabetes mellitus. Clin J Am Soc Nephrol (CJASN). 2011;6(5):1041–8.

    Article  CAS  Google Scholar 

  52. Kalantar-Zadeh K. A critical evaluation of glycated protein parameters in advanced nephropathy: a matter of life or death: A1C remains the gold standard outcome predictor in diabetic dialysis patients. Counterpoint. Diabetes Care. 2012;35(7):1625–8.

    Article  Google Scholar 

  53. Chow E, Bernjak A, Williams S, Fawdry RA, Hibbert S, Freeman J, et al. Risk of cardiac arrhythmias during hypoglycemia in patients with type 2 diabetes and cardiovascular risk. Diabetes. 2014;63:1738–47.

    Article  CAS  Google Scholar 

  54. Hill CJ, Maxwell AP, Cardwell CR, Freedman BI, Tonelli M, Emoto M, et al. Glycated hemoglobin and risk of death in diabetic patients treated with hemodialysis: a meta-analysis. Am J Kidney Dis. 2014;63(1):84–94.

    Article  CAS  Google Scholar 

  55. Molnar MZ, Kovesdy CP, Bunnapradist S, Streja E, Mehrotra R, Krishnan M, et al. Associations of pretransplant serum albumin with post-transplant outcomes in kidney transplant recipients. Am J Transplant. 2011;11(5):1006–15.

    Article  CAS  Google Scholar 

  56. Kilpatrick ES, Rigby AS, Goode K, Atkin SL. Relating mean blood glucose and glucose variability to the risk of multiple episodes of hypoglycemia in type 1 diabetes. Diabetologia. 2007;50:2553–61.

    Article  CAS  Google Scholar 

  57. Williams ME, Garg R, Wang W, Lacson R, Maddux F, Lacson E Jr. High hemoglobin A1c levels and glycemic variability increase risk of severe hypoglycemia in diabetic hemodialysis patients. Hemodial Int. 2014;18(2):423–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua J. Neumiller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neumiller, J.J., Hirsch, I.B. (2019). Glycemic Metrics and Targets in Kidney Disease. In: Rhee, C., Kalantar-Zadeh, K., Brent, G. (eds) Endocrine Disorders in Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-97765-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97765-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97763-8

  • Online ISBN: 978-3-319-97765-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics