Skip to main content

Building Blocks of Life

  • Chapter
  • First Online:
Life in the Universe

Part of the book series: Springer Praxis Books ((ASTRONOMY))

Abstract

Life is based on complex chemistry yet only a few of all the available elements participate in most life-supporting reactions on Earth: carbon, nitrogen, oxygen, hydrogen, phosphorous, and sulfur. Of these, the most characteristic element of biological systems is carbon. In this chapter we will discuss why carbon is so favored by life on Earth and whether other elements could replace carbon in its dominant role on other worlds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo-Rocha, C.G. and D. Schulze-Makuch. 2015. How many biochemistries are available to build a cell. ChemBioChem 16: 2137-2139.

    Article  Google Scholar 

  • Air-Liquide. 2003. www.airliquide.com/en/business/products/gases/gasdata.

  • Amend, J.P., and E.L. Shock. 2001. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria. FEMS Microbiol. Rev. 25: 175-243.

    Article  Google Scholar 

  • Azam, F., B.B. Hemmingsen, and B.E. Volcani. 1974. Role of silicon in diatom metabolism. V. Silicic acid transport and metabolism in the heterotrophic diatom. Nitzschia alba. Arch. Microbiol. 97: 103-114.

    Article  Google Scholar 

  • Bain, J.D., E.S. Diala, C.G. Glabe, et al. 1989. Biosynthetic site-specific incorporation of a non-natural amino acid into a polypeptide. J. Am. Chem. Soc. 111: 8013-8014.

    Article  Google Scholar 

  • Bains, W. 2004. Many chemistries could be used to build living systems. Astrobiology 4: 137-167.

    Article  ADS  Google Scholar 

  • Bains, W. and S. Seager. 2012. A combinatorial approach to biochemical space: description and application to the redox distribution of metabolism. Astrobiology 12: 271-281.

    Article  ADS  Google Scholar 

  • Bastian, H.C. 1914. Experimental data in evidence of the present-day occurrence of spontaneous generation Nature 92: 579-583.

    Article  Google Scholar 

  • Benner, S.A., A. Ricardo and M.A. Carrigan. 2004. Is there a common chemical model for life in the universe? Curr. Opin. Chem. Biol. 8: 672-689.

    Article  Google Scholar 

  • Benner, S.A., W. Bains, and S. Seager. 2013. Models and standards of proof in cross-disciplinary science: the case of arsenic DNA. Astrobiology 13: 510-513.

    Article  ADS  Google Scholar 

  • Benner, S.A. 2017. Detecting Darwinism from molecules in the Enceladus plumes, Jupiter´s moons, and other planetary water lagoons. Astrobiology 17: 840-851.

    ADS  Google Scholar 

  • Birchall, J.D. 1995. The essentiality of silicon in biology. Chem. Soc. Rev. 24: 351-357.

    Article  Google Scholar 

  • Bowen, T.C., R.D. Noble, and J.L. Falconer. 2004. Fundamentals and applications of pervaporation through zeolite membranes. J. Memb. Sci. 245: 1-33.

    Article  Google Scholar 

  • Cairns-Smith, A.G. 1982. Genetic Takeover. Cambridge University Press, London.

    Google Scholar 

  • Cairns-Smith, A.G. 1985. Seven clues to the origin of life. Cambridge University Press, Cambridge.

    Google Scholar 

  • Cairns-Smith, A.G., and H. Hartman. 1986. Clay minerals and the origin of life Cambridge University Press, UK.

    Google Scholar 

  • Carlisle, E.M. 1981. Silicon in bone formation. pp. 383-408. in Simpson and Volcani, eds. Silicon and Siliceous Structures in Biological Systems Springer Verlag, New York.

    Chapter  Google Scholar 

  • Chakrabarty, A.N., S. Das and K. Mukherjee. 1988. Silicon (Si) utilisation by chemoautotrophic nocardioform bacteria isolated from human and animal tissues infected with leprosy bacillus Indian J. Exp. Biol. 26: 839-844.

    Google Scholar 

  • Chen, C.A., S.M. Sieburth and A.G.e. al. 2001. Drug design with a new transition state analog of the hydrated carbonyl: silicon-based inhibitors of the HIV protease. Chemistry and Biology 8: 1161-1166.

    Article  Google Scholar 

  • Chièze, J.P. 1994. The interstellar medium. in J. Audouze and G. Israël, eds. The Cambridge Atlas of Astronomy. Cambridge University Press., UK.

    Google Scholar 

  • Christen, H.R. 1984. Chemie Verlag Diesterweg/Salle – Sauerlaender, Frankfurt, Germany.

    Google Scholar 

  • CRC. 2001. Handbook of chemistry and physics. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Cronin, J.R., S. Pizzarello and D.P. Cruikshank. 1988. Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets. pp. 819-857 in K. JF and M. MS, eds. Meteorites and the Early Solar System Univ. of Arizona Press, Tucson.

    Google Scholar 

  • Dahn, J.R., B.M. Way, E. Fuller, et al. 1993. Structure of siloxene and layered polysilane (Si6H6). Phys. Rev. B 48: 17872-17877.

    Article  ADS  Google Scholar 

  • Darley, W.M., and B.E. Volcani. 1969. Role of silicon in diatom metabolism. A silicon requirement for deoxyribonucleic acid synthesis in the diatom Cylindrotheca fusiformis Exp. Cell Res. 58: 334-342.

    Article  Google Scholar 

  • Das, S., S. Mandal, A.N. Chakrabarty, et al. 1992. Metabolism of silicon as a probable pathogenicity factor for Mycobacterium and Nocardia Indian J. Med. Res. 95: 59-65.

    Google Scholar 

  • DeLeeuw, B.J., R.S. Grev and H.F. Schaefer. 1992. A comparison and contrast of selected and unsaturated hydrides of group 14 elements. J. Chem. Ed., 69: 441-444.

    Article  Google Scholar 

  • Dessey, R. 1998. Posted in Scientific American Ask the Expert.

    Google Scholar 

  • Ehrenfreund, P., and K.M. Menten. 2002. From molecular clouds to the origin of life. pp. 1-23 in G. Horneck and C. Baumstark-Khan, eds. Astrobiology – the Quest for the Conditions of Life Springer Publ., Berlin.

    Chapter  Google Scholar 

  • Elsila, J.E, D.P. Glavin, and J.P. Dworking. 2009. Cometary glycine detected in samples returned by Stardust. Meteoritics Planet. Sci. 44: 1323-1330.

    Article  ADS  Google Scholar 

  • Epstein, E. 1994. The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. USA 91: 11-17.

    Article  ADS  Google Scholar 

  • Erb, T.J., P. Kiefer, B. Hattendorf, D. Gunther, J.A. Vorholt. 2012. FGAJ-1 is an arsenate-resistant, phosphate-dependent organism. Science 337: 467-470

    Article  ADS  Google Scholar 

  • Fegley Jr. B. 1987. Carbon chemistry and organic compound synthesis in the solar nebula. Meteoritics 22: 378.

    ADS  Google Scholar 

  • Feher, F.J. 2000. Polyhedral oligosilsesquioxanes and heterosilsesquioxanes. pp. 43-59. Silicon, Germanium and Tin Compounds, Metal Alkoxides, Metal Diketons and Silicones. Gelest Inc., Tullytown, PA.

    Google Scholar 

  • Feinberg, G., and R. Shapiro. 1980. Life beyond Earth: The Intelligent Earthling’s Guide to Life in the Universe. William Morrow and Company, Inc, New York.

    Google Scholar 

  • Firsoff, V.A. 1963. Life beyond the Earth. Basic Books, Inc., New York.

    Google Scholar 

  • Fujino, M. 1987. Photoconductivity in organopolysilanes. Chem. Phys. Lett. 136: 451-453.

    Article  ADS  Google Scholar 

  • Furusawa, K. 1994. Protection of nucleosides using bifunctional sully reagents. Journal of the National Institute of Materials and Chemical Research 2: 337.

    Google Scholar 

  • George Cooper, Novelle Kimmich, Warren Belisle, Josh Sarinana, Katrina Brabham, Laurence Garrel, (2001) Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 414 (6866):879-883.

    Article  ADS  Google Scholar 

  • Gibard, C., S. Bhowmik, M. Karki, E.-K. Kim and R. Krishnamurthy. 2017. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nature Chem. doi:https://doi.org/10.1038/nchem.2878.

    Article  ADS  Google Scholar 

  • Gladstone, G.R., K.M. Towe and J.F. Kasting. 1993. Photochemistry in the primitive solar nebula; discussions and reply Science 261: 5124.

    Google Scholar 

  • Goldsmith, D., and T. Owen. 2003. The Search for Life in the Universe University Science Books, Sausalito.

    Google Scholar 

  • Greenwood, N.N., and A. Earnshaw. 1984. Chemistry of the Elements Pergamon Press, Oxford, Great Britain.

    Google Scholar 

  • Hanon, P., M. Chaussidon and F. Robert. 1996. The redox state of the solar nebula; C and H concentrations in chondrules. Meteoritics & Planetary Science 31: 57.

    Google Scholar 

  • Harrison, P.G. 1977. Silicate cages: precursors to new materials. J. Organometal. Chem. 542: 141-184.

    Article  Google Scholar 

  • Henderson, M.E.K. and R.B. Duff. 1965. The release of metallic and silicate ions from mineral rocks and soils by fungal activity. J. Soil Sci. 14: 236-246.

    Article  Google Scholar 

  • Heron, N. 1989. Toward Si-based life: zeolites as enzyme mimics Chemtech Sept. September: 542-548.

    Google Scholar 

  • Hoesl, M.G., Oehm, S., Durkin, P., Darmon, E., Peil, L., et al. 2015. Chemical evolution of a bacterial proteome. Ang. Chem.: doi:https://doi.org/10.1002/anie.201502868.

    Google Scholar 

  • Hohsaka, T., and S.M. Masahiko. 2002. Incorporation of non-natural amino acids into proteins. Curr. Opin. Chem. Biol. 6: 809-815.

    Article  Google Scholar 

  • Kan, S. B., R. D. Lewis, K. Chen, and F. H. Arnold. 2016. Directed evolution of cytochrome c for carbon-silicon bond formation: Bringing silicon to life. Science 354: 1048-1051.

    Article  ADS  Google Scholar 

  • Koerner, D., and S. LeVay. 2000. Here Be Dragons: The Scientific Quest for Extraterrestrial Life Oxford University Press, New York.

    Google Scholar 

  • Kröger, N., S. Lorenz, E. Brunner, et al. 2002. Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis Science 298: 584-586.

    Article  ADS  Google Scholar 

  • Lauwers, A.M. and W. Heinen. 1974. Biodegradation and utilisation of silica and quartz Arch. Microbiol. 95: 67–78.

    Article  Google Scholar 

  • LeGrand, A.P. 1998. The Surface Properties of Silicas. John Wiley and Sons, New York.

    Google Scholar 

  • Lewin, J.C. 1954. Silicon metabolism in diatoms. I. Evidence for the role of reduced sulfur compounds in silicon utilization J. Gen. Physiol. 37: 589-599.

    Article  Google Scholar 

  • Linn, N. 2001. Molecular visualization using methods of computational chemistry. Summer Ventures in Science and Mathematics. University of North Carolina at Charlotte.

    Google Scholar 

  • Llorca, J. 1998. Gas-grain chemistry of carbon in interplanetary dust particles; kinetics and mechanism of hydrocarbon formation. p. 29. 29th Lunar and Planetary Science Conference.

    Google Scholar 

  • Matson, D.L., and D.L. Blaney. 1999. Io. pp. 357-376 in P.R. Weissman, McFadden L.-A. and T.V. Johnson, eds. Encyclopedia of the Solar System. Academic Press, New York.

    Google Scholar 

  • Maxka, J., L.M. Huang and R. West. 1991. Synthesis and NMR spectroscopy of per-methylpolysilane oligomers Me(SiMe2)10Me, Me(SiMe2)16Me, and Me(Me2Si)22. Organimetallics 10: 656-659.

    Article  Google Scholar 

  • Mehard, C.W., C.W. Sullivan, F. Azam, and B.E. Volcani. 1974. Role of silicon in diatom metabolism. IV. subcellular localization of silicon and germanium in Nitzschia alba and Cylindrotheca fusiformis. Physiol. Plant. 30: 265-272. 30: 265-272.

    Article  Google Scholar 

  • Miller, P.S., K.B. McParland, K. Jayaraman, et al. 1981. Biochemical and biological effects of nonionic nucleic acid methylphosphonates. Biochemistry 20: 1874-1880.

    Article  Google Scholar 

  • Muller, T., W. Zilche and N. Auner. 1998. Recent advances in the chemistry of Si-heteroatom multiple bonds. pp. 857-1062 in Z. Rappoport and Y. Apeloig, eds. The Chemistry of Organic Silicon Compounds. John Wiley & Sons, Chichester, UK.

    Chapter  Google Scholar 

  • Noren, C.J., S.J. Anthony-Cahill, M.C. Griffith, et al. 1989. A general method for site-specific incorporation of unnatural amino acids into proteins. Science 244: 182-188.

    Article  ADS  Google Scholar 

  • Parkinson, S.M., M. Wainwright and K. Killham. 1989. Observations on oligotrophic growth of fungi on silica gel. Mycol. Res. 93: 529-534.

    Article  Google Scholar 

  • Pasek, M. A., J. P. Harnmeijer, R. Buick, M. Gull, and Z. Atlas. 2013. Evidence for reactive reduced phosphorus species in the early Archean ocean. Proc. Natl. Acad. Sci. USA 110: 10089-94.

    Article  ADS  Google Scholar 

  • Pawlenko, S. 1986. Organosilicon Chemistry. De Gruyter, Berlin.

    Book  Google Scholar 

  • Pickett-Heaps, J., A.A.A. Schmid and L.A. Edgar. 1990. pp. 1-169 in F.E. Round and D.J. Chapman, eds. Progress in Phycological Research 7. Biopress, Bristol, UK.

    Google Scholar 

  • Reddy, P.M., and T.C. Bruice. 2003. Solid-phase synthesis of positively charged deoxynucleic guanidine (DNG) oligonecleotide mixed sequences. Biorg. Med. Chem. Lett. 13: 1281-1285.

    Article  Google Scholar 

  • Reynolds, J.E. 1906. Recent advances in our knowledge of silicon and its relation to organised structures Proc. R. Inst. GB 19: 642-650.

    Google Scholar 

  • Richter, O. 1906. Zur Physiologie der Diatomeen. Sitzber. Akad. Wiss. Wien, Math.-Naturw. Kl. 115: 27-119.

    Google Scholar 

  • Samuels, A.L., and A.D.M. Glass. 1991. Distribution of silicon in cucumber leaves during infection by powdery mildew fungus (Sphaerotheca fulginea) Can. J. Bot. 69: 140-146.

    Google Scholar 

  • Sangster, A.G., and D.W. Parry. 1981. Ultrastructure of silica deposits in higher plants. pp. 383-408 in Simpson and Volcani, eds. Silicon and Siliceous Structures in Biological Systems. Springer Verlag, New York.

    Chapter  Google Scholar 

  • Schulze-Makuch, D., and D.H. Grinspoon. 2005. Biologically Enhanced Energy and Carbon Cycling on Titan? Astrobiology 5: 560-567.

    Article  ADS  Google Scholar 

  • Schulze-Makuch, D. and L.N. Irwin. 2006. Exotic forms of life in the universe. Naturwissenschaften 93: 155-172.

    Article  ADS  Google Scholar 

  • Sekiguchi, A., R. Kinjo and M. Ichinohe. 2004. A stable compound containing a silicon-silicon triple bind. Science 305: 1755-1757.

    Article  ADS  Google Scholar 

  • Sharma, A., J.H. Scott, G.D. Cody, et al. 2002. Microbial activity at gigapascal pressures. Science 295: 1514-1516.

    ADS  Google Scholar 

  • Sharma, H.K., and K.H. Pannell. 1995. Activation of the Si-Si bond by transition metal complexes. Chem. Rev. 95: 1351-1374.

    Article  Google Scholar 

  • Sharp, T.G., A.E. Goresy, B. Wopenka, et al. 1999. A post-stishovite SiO2 polymorph in the meteorite Shergotty: implications for impact events. Science 284: 1511-1513.

    Article  ADS  Google Scholar 

  • Spencer, J.H. 1940. Life on Other Worlds. Hodder and Stoughton, London, UK.

    Google Scholar 

  • Steinbeck, C., and C. Richert. 1998. The role of ionic backbones in RNA structure: an unusual stable non-Watson-Crick duplex of a nonionic analog in an apolar medium. J. Am. Chem. Soc. 120: 11576-11580.

    Article  Google Scholar 

  • Stone, F.G.A., and R. West. 1994. Advances in organometallic chemistry. Academic Press, New York.

    Google Scholar 

  • Tacke, R., and U. Wannagat. 1979. Syntheses and Properties of Bioactive Organo-Silicon Properties. Springer-Verlag, Berlin.

    Google Scholar 

  • Tokito, N., and R. Okazaki. 1998. Polysilanes: Conformation, chromotropism and conductivity. pp. 1063-1104 in Z. Rappoport and Y. Apeloig, eds. The Chemistry of Organic Silicon. John Wiley and Sons, Chichester, UK.

    Chapter  Google Scholar 

  • Tribe, H.T., and S.A. Mabadje. 1972. Growth of moulds on media prepared without organic nutrients Trans Br. Mycol. Soc. 58: 127-137.

    Article  Google Scholar 

  • Varela, M.E., and N. Metrich. 2000. Carbon in olivines of chondritic meteorites. Geochim. Cosmochim. Acta. 64: 3433-3438.

    Article  ADS  Google Scholar 

  • Wainwright, M. 1997. The neglected microbiology of silicon - from the origin of life to an explanation for what Henry Charlton Bastian saw. Society General Microbiology Quarterly, 24: 83-85.

    Google Scholar 

  • Wainwright, M., K. Al-Wajeeh and S.J. Grayston. 1997. Effect of silicic acid and other silicon compounds on fungal growth in oligotrophic and nutrient-rich media Mycological Research 101: 8.

    Article  Google Scholar 

  • Walsh, R. 1981. Bond dissociation energy values in silicon-containing compounds and some of their implications. Accounts Chem. Res. 14: 246-252.

    Article  Google Scholar 

  • Wang, Q., A.R. Parrish, L.Wang. 2009b. Expanding the genetic code for biological studies. Chemistry & Biology 16: 323-336.

    Google Scholar 

  • Werner, D. 1967. Untersuchungen ueber die Rolle der Kieselsaeure in der Entwicklung hoeherer Pflanzen. I Analyse der Hemmung durch Germaniumsaeure. Planta (Berlin) 76: 25-36.

    Google Scholar 

  • West, R. 1986. The polysilane high polymers. J. Organometallic Chem. 300: 327-346.

    Article  Google Scholar 

  • West, R. 1987. Chemistry of the silicone-silicone double bond. Angew. Chem. Int. Ed., 26: 201-1211.

    Article  Google Scholar 

  • West, R. 2001. Polysilanes: Conformation, chromotropism and conductivity. pp. 541-563 in Z. Rappoport and Y. Apeloig, eds. The Chemistry of Organic Silicon. John Wiley and Sons, Chichester, UK.

    Chapter  Google Scholar 

  • Westheimer, F.H. 1987. Why nature chose phosphates. Science 235: 1173-1178.

    Article  ADS  Google Scholar 

  • Wolfe-Simon, F., J. Switzer Blum, T. R. Kulp, G. W. Gordon, et al. 2011. A bacterium that can grow by using arsenic instead of phosphorus. Science 332: 1163-1166.

    Article  ADS  Google Scholar 

  • Yamamoto, K., Y. Sakata, Y. Nohara, et al. 2003. Organic-inorganic hybrid zeolites containing organic frameworks Science 300: 470-472.

    Google Scholar 

  • Yoshino, T. 1990. Growth accelerating effect of silicon on Pseudomonas aeruginosa. J. Saitama Med. Sch. (in Japanese). 17: 189-198.

    Google Scholar 

  • Zeigler, J.M., and F.W.G. Fearon. 1989. Silicon-based polymer science: a comprehensive resource American Chemical Society, Washington, DC.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schulze-Makuch, D., Irwin, L.N. (2018). Building Blocks of Life. In: Life in the Universe. Springer Praxis Books(). Springer, Cham. https://doi.org/10.1007/978-3-319-97658-7_6

Download citation

Publish with us

Policies and ethics