Skip to main content

Life Detection: Past and Present

  • Chapter
  • First Online:
Life in the Universe

Part of the book series: Springer Praxis Books ((ASTRONOMY))

  • 1583 Accesses

Abstract

In this chapter we go beyond the search for geoindicators and biosignatures that might point to the presence of life, with the specific aim of detecting and confirming the presence of life. First, we review the results and interpretations of the Viking mission—the only life detection experiment ever conducted on another planetary body to date. We also examine the claim of fossilized life in the Martian meteorite ALH84001, which is instructive for the problematic issue of what evidence constitutes a positive detection of extraterrestrial life. Finally, we will provide a brief overview on the development of current life detection methods and their likely implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bada, J.L. 2001. State-of-the-art instruments for detecting extraterrestrial life. Proc. Natl. Acad. Sci. USA 98: 797-800.

    Article  ADS  Google Scholar 

  • Baker, B.J., G.W. Tyson, R.I. Webb, et al. 2006. Lineages of acidophilic archaea revealed by community genomic analysis. Science 314: 1933-1935.

    Article  ADS  Google Scholar 

  • Ballou, E.V., P.C. Wood, T. Wydeven, et al. 1978. Chemical interpretation of Viking lander 1 life detection experiment. Nature 271: 644-645.

    Article  ADS  Google Scholar 

  • Barber, D.J., and E.R.D. Scott. 2002. Origin of supposedly biogenic magnetite in the martian meteorite Alan Hills 84001. Proc. Natl. Acad. Sci. USA 99: 6556-6561.

    Article  ADS  Google Scholar 

  • Baross, J.A., S.A. Benner, G.D Cody, S.D. Copley, N.R. Pace, and et al. 2007. The Limits of Organic Life in Planetary Systems. Washington, D.C.: National Academies Press.

    Google Scholar 

  • Benner, S.A., K.G. Devine, L.N. Matveeva, et al. 2000. The missing organic molecules on Mars. Proc. Natl. Acad. Sci. USA 97: 2425-2430.

    Article  ADS  Google Scholar 

  • Biemann, K. 1979. The implications and limitations of the findings of the Viking organic analysis experiment. J. Molec. Evol. 14: 65-70.

    Article  ADS  Google Scholar 

  • Bowden, S., R. Wilson, J.M. Cooper, and J. Parnell. 2008. Surface enhanced Raman spectroscopy as a tool for characterizing pigments in the extracts of living organisms and sediments. Astrobiology 8: 302.

    Article  Google Scholar 

  • U. Böttger, J.-P. de Vera, J. Fritz, I. Weber, H.-W. Hübers, D. Schulze-Makuch, (2012) Optimizing the detection of carotene in cyanobacteria in a martian regolith analogue with a Raman spectrometer for the ExoMars mission. Planetary and Space Science 60 (1):356-362.

    Article  ADS  Google Scholar 

  • Bradley, J.P., R.P. Harvey and H.Y. McSween. 1996. Magnetite whiskers and platelets in the ALH84001 martian meteorite: evidence of vapor phase growth. Geochim. Cosmochim. Acta 60: 5149-5155.

    Article  ADS  Google Scholar 

  • Bradley, J.P., R.P. Harvey and H.Y. McSween. 1997. No ‘nannofossils’ in martian meteorite. Nature 390: 454-456.

    Article  ADS  Google Scholar 

  • Brasier, M.D., O.R. Green, A.P. Jepherat, et al. 2002. Questioning the evidence for Earth’s oldest fossils. Nature 416: 76-81.

    Article  ADS  Google Scholar 

  • Chen, B., C. Stoker, N. Cabrol, and C.P. McKay. 2008. Detecting life on Mars: Raman spectra identifications of mineral and organic constituents. Astrobiology 8: 303.

    Google Scholar 

  • Ciftςioglu, N., M. Björklund, K. Kuorikoski, et al. 1999. Nanobacteria: an infectious cause for kidney stone formation. Kidney Intl. 56: 1893-1898.

    Article  Google Scholar 

  • Clark, M.V., J. Heinz, J. Schirmack, S.P. Kounaves, and D. Schulze-Makuch, D. 2017. Unambiguous in-situ life detection using a microbial growth sensing array. Astrobiological Science Conference (AbSciCon), Mesa, Arizona, USA, 24-28 April 2017.

    Google Scholar 

  • Dieter, W.R., R.A. Lodder and J.E. Lumpp. 2005. Scanning for Extinct Astrobi-ological Residues and Current Habitats (SEARCH). pp. 234-245. Aerospace IEEE Conference.

    Google Scholar 

  • Edwards, H.G.M., and E.M. Newton. 1999. Application of Raman spectroscopy to exobiological prospecting. pp. 83-88 in J.A. Hisox, ed. Search for Life on Mars. British Interplanetary Society, London.

    Google Scholar 

  • Eiler, J.M., J.W. Valley, C.M. Graham, et al. 2002. Two populations of carbonate in ALH84001: geochemical evidence for discrimination and genesis. Geochim. Cosmochim. Acta 66: 1285-1303.

    Article  ADS  Google Scholar 

  • Eschenbach, D.A., Davick, P.R., Williams, B.L., Klebanoff, S.J., Young-Smith, K., Critchlow, C.M., and Holmes, K.K. 1989. Prevalence of hydrogen peroxide-producing Lactobacillus species in normal women and women with bacterial vaginosis. J. Clin. Microbiol. 27: 251-256.

    Google Scholar 

  • Fisk, M.R., R. Popa, O.U. Mason, et al. 2006. Iron-magnesium silicate bioweathering on Earth (and Mars?). Astrobiology 6: 48-68.

    Article  ADS  Google Scholar 

  • Folk, R.L. 1993. SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks. J. Sediment. Res. 63: 990-999.

    Google Scholar 

  • Folk, R.L. 1999. Nannobacteria and the precipitation of carbonate in unusual environments. Sedimentary Geology 126: 47-55.

    Article  ADS  Google Scholar 

  • Freissinet, C., D.P. Glavin, P.R. Mahaffy, K.E. Miller, J.L. Eigenbrode, et al. 2015. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars. JGR-Planets 120: 495-514.

    ADS  Google Scholar 

  • Friedmann, E.I., J. Wierzchos, C. Ascaso, et al. 2001. Chains of magnetite crystals in the meteorite ALH84001: evidence of biological origin. Proc. Natl. Acad. Sci. USA 98: 2176-2181.

    Article  ADS  Google Scholar 

  • Furnes, H., N.R. Banerjee, K. Muehlenbachs, et al. 2004. Early life recorded in Archean pillow lavas. Science 304: 578-581.

    Article  ADS  Google Scholar 

  • Gibson, E.K., D.S. McKay, K.L. Thomas-Keprta, et al. 2006. Life on Mars: evaluation of the evidence within martian meteorites ALH84001, Nakhla, and Shergotty. Precambrian Res. 106: 15-34.

    Article  ADS  Google Scholar 

  • Glavin, D.P., J.L. Bada, O. Botta, et al. 2001. Integrated micro-chip amino acid chirality detector for MOD. p. abstract #1442. 32nd Lunar and Planetary Science Conference, Houston, Texas.

    Google Scholar 

  • Glavin, D.P., C. Freissinet, K.E. Miller, J.L. Eigenbrode, A.E. Brunner, et al. 2013. Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. JGR-Planets 118: 1955-1973.

    ADS  Google Scholar 

  • Golden, D.C., D.W. Ming, C.S. Schwandt, et al. 2001. A simple inorganic process for formation of carbonates, magnetite, and sulfides in martian meteorite ALH84001. Amer. Mineralog. 86: 370-375.

    Article  ADS  Google Scholar 

  • Harvey, R.P., and H.Y. McSween. 1996. A possible high-temperature origin for the carbonates in the martian meteorite ALH84001. Nature 382: 49-51.

    Article  ADS  Google Scholar 

  • Hecht, M.H., S.P. Kounaves, R.C. Quinn, S.J. West, S.M.M. Young, et al. 2009. Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander site. Science 325: 64-67.

    Article  ADS  Google Scholar 

  • Hoehn, A., K. Lynch, J. Clawson, J. Freeman, J. Kapit, et al. 2007. Microbial Detection Array (MDA), a novel instrument for unambiguous detection of microbial metabolic activity in astrobiology applications. SAE Technical Paper 2007-01-3190, https://doi.org/10.4271/2007-01-3190.

  • Houtkooper, J.M. and D. Schulze-Makuch. 2007. A possible biogenic origin for hydrogen peroxide on Mars: the Viking results reinterpreted. Int. J. Astrobiol. 6: 147–152.

    Article  Google Scholar 

  • Horowitz, N.H., G.L. Hobby and J.S. Hubbard. 1977. Viking on Mars: The Viking carbon assimilation experiments. J. Geophys. Res. 82: 4659-4662.

    Article  ADS  Google Scholar 

  • Houtkooper, J.M. and D. Schulze-Makuch. 2010. Do perchlorates have a role for Martian life? J. Cosmol. 5: 930-939.

    ADS  Google Scholar 

  • Ishii, Y., and T. Yanagida. 2000. Single molecule detection in life science. Single Mol. 1: 5-16.

    Article  ADS  Google Scholar 

  • Kajander, E.O., I. Kuronen, K. Akerman, et al. 1997. Nanobacteria from blood, the smallest culturable autonomously replicating agent on Earth. Proc. SPIE 3111: 420-428.

    Article  ADS  Google Scholar 

  • Kajander, E.O., and N. Ciftςioglu. 1998. Nanobacteria: an alternative mechanism for pathogenic intra- and extracellular calcification and stone formation. Proc. Natl. Acad. Sci. USA 95: 8274-8279.

    Article  ADS  Google Scholar 

  • Kent, A.J.R., I.D. Hutcheon, F.J. Ryerson, et al. 2001. The temperature of formation of carbonate in martian meteorite ALH84001: constraints from cation diffusion. Geochim. Cosmochim. Acta 65: 311-321.

    Article  ADS  Google Scholar 

  • Keppler, F., D.B. Harper, M. Greule, U. Ott, T. Sattler, et al. 2014. Chloromethane release from carbonaceous meteorite affords new insight into Mars lander findings. Sci. Rept. 4: 7010.

    Article  Google Scholar 

  • Kirkland, B.L., F.L. Lynch, M.A. Rahnis, et al. 1999. Alternative origins for nannobacteria-like objects in calcite. Geology 27: 347-350.

    Article  ADS  Google Scholar 

  • Kirschvink, J.L., A.T. Maine and H. Vali. 1997. Paleomagnetic evidence of a low-temperature origin of carbonate in the martian meteorite ALH84001. Science 275: 1629-1633.

    Article  ADS  Google Scholar 

  • Klein, H.P. 1977. The Viking biological investigation: general aspects. J. Geophys. Res. 82: 4677-4680.

    Article  ADS  Google Scholar 

  • Klein, H.P. 1978. The Viking biological experiments on Mars. Icarus 34: 666-674.

    Article  ADS  Google Scholar 

  • Klein, H.P. 1999. Did Viking discover life on Mars? Orig. Life Evol. Biosph. 29: 625-631.

    Article  ADS  Google Scholar 

  • Kminek, G., and J.L. Bada. 2006. The effect of ionizing radiation on the preserva-tion of amino acids on Mars. Earth Planet. Sci. Lett. 245: 1-5.

    Article  ADS  Google Scholar 

  • Leshin, L.A., K.D. McKeegan, P.K. Carpenter, et al. 1998. Oxygen isotopic constraints on the genesis of carbonates from martian meteorite ALH84001 - evidence from stable isotopes and mineralogy. Geochim. Cosmochim. Acta 62: 3-13.

    Article  ADS  Google Scholar 

  • Levin, G.V. 1998. The future search for life on Mars: an unambiguous Martian life detection experiment. Workshop on the Issue of Martian Meteorites. Lunar and Planetary Institute, Houston, Texas.

    Google Scholar 

  • Levin, G.V., and P.A. Straat. 1977. Recent results from the Viking Labeled Release Experiment on Mars. J. Geophys. Res. 82: 4663-4667.

    Article  ADS  Google Scholar 

  • Levin, G.V., and P.A. Straat. 1981. A search for a nonbiological explanation of the Viking Labeled Release Life Detection Experiment. Icarus 45: 494-516.

    Article  ADS  Google Scholar 

  • Levin, G.V. and P.A. Straat. 2016. The case for extant life on Mars and its possible detection by the Viking Labeled Release Experiment. Astrobiology 16: 798-810.

    Article  ADS  Google Scholar 

  • Lipps, J.H., G. Delory, J. Pitman, and S. Rieboldt. 2004. Astrobiology of Jupiter’s icy moons. SPIE USE 2: 5555-5510.

    Google Scholar 

  • Liu, S., Y. Zhao, J.W. Parks, D. Deamer, A.R. Hawkins, et al. 2014. Correlated electrical and optical analysis of single nanoparticles and biomolecules on a nanopore-gated optofluidic chip. Nano Lett. 14: 4816–4820.

    Article  ADS  Google Scholar 

  • Long, D.A. 2002. The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. John Wiley and Sons Ltd, Chichester, U.K.

    Google Scholar 

  • MacKenzie, A.S., S.C. Brassell, G. Eglinton, et al. 1982. Chemical fossils: the geological fate of steroids. Science 217: 491-504.

    Article  ADS  Google Scholar 

  • Mancinelli, R.L. 1989. Peroxides and the survivability of microorganisms on the surface of Mars. Adv. Space Res. 9: 6191-6195.

    Article  Google Scholar 

  • McKay, D.S., K.G. Everett, K.L. Thomas-Keprta, et al. 1996. Search for past life on Mars: possible relic biogenic activity in Martian Meteorite ALH84001. Science 273: 924-930.

    Article  ADS  Google Scholar 

  • McKay, D.S., S.J. Clemett, K.L. Thoomas-Keprta, et al. 2006. Analysis of in situ carbonaceous matter in martian meteorite Nakhla. Astrobiology 6: 184.

    Google Scholar 

  • Mittlefehldt, D.W. 1994. ALH84001, a cumulate orthopyroxenite member of the Martian meteorite clan. Meteoritics 29: 214-221.

    Article  ADS  Google Scholar 

  • Miura, Y.N., K. Nagao, N. Sugiura, et al. 1995. Orthopyroxenite ALH84001 and shergottite ALH77005: Additional evidence for a martian origin from noble gases. Geochim. Cosmochim. Acta 59: 2105-2113.

    Article  ADS  Google Scholar 

  • Morris, R. V., S. W. Ruff, R. Gellert, D. W. Ming, et al. 2010. Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science 329: 421-424.

    Article  ADS  Google Scholar 

  • Navarro-González, R., K.F. Navarro, J. de la Rosa, E. Iñiguez, P. Molina, et al. 2006. The limitations on organic detection in Mars-like soils by thermal volatilization-gas chromatography-MS and their implications for the Viking results. Proc. Natl. Acad. Sci. USA 103: 16089-16094.

    Article  ADS  Google Scholar 

  • Navarro-González, R., E. Vargas, J. de la Rosa, A.C. Raga, and C.P. McKay. 2010. Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. JGR-Planets 115: E12, doi: https://doi.org/10.1029/2010JE003599.

    Article  Google Scholar 

  • Nussinov, M.D., Y.B. Chernyak and J.L. Ettinger. 1978. Model of the fine-grain component of martian soil based on Viking lander data. Nature 274: 859-861.

    Article  ADS  Google Scholar 

  • Ojha, L., M.-B. Wilhelm, S.L. Murchie, A.S. McEwen, J.J. Wray, et al. 2015. Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nature Geosci. 8: 829-832.

    Article  ADS  Google Scholar 

  • Oyama, V.I. 1972. The gas exchange experiment for life detection: the Viking Mars lander. Icarus 16: 167-184.

    Article  ADS  Google Scholar 

  • Oyama, V.I., and B.J. Berdahl. 1977. The Viking gas exchange experiment results from Chryse and Utopia surface samples. J. Geophys. Res. 82: 4669-4676.

    Article  ADS  Google Scholar 

  • Oyama, V.I., B.J. Berdahl and G.C. Carle. 1977. Preliminary findings of the Viking gas exchange experiment and a model for Martian surface chemistry. Nature 265: 110-114.

    Article  ADS  Google Scholar 

  • Parnell, J., D. Cullen, M.R. Sims, S. Bowden, C.S. Cockell, et al. 2007. Searching for life on Mars: selection of molecular targets for ESA’s Aurora ExoMars mission. Astrobiology 7: 578-604.

    Article  ADS  Google Scholar 

  • Parro, V., G. de Diego-Castilla, J.A. Rodriguez-Manfredi, L.A. Rivas, Y. Blanco-Lopez, et al. 2011. SOLID3: a multiplex antibody microarray-based optical sensor instrument for in situ life detection in planetary exploration. Astrobiology 11: 15-28.

    Article  ADS  Google Scholar 

  • Peters, K.E., C.C. Walters and J.M. Moldowan. 2004. The Biomarker Guide, Vol. 1. Cambridge University Press, Cambridge, U.K.

    Book  Google Scholar 

  • Pitman, J., A. Duncan, D. Stubbs, R. Sigler, R. Kendrick, et al. 2004. Planetary remote sensing science enabled by MIDAS (Multiple Instrument Distributed Aperture Sensor). abstract #1454. 35th Lunar and Planetary Science Conference, Houston, Texas.

    Google Scholar 

  • Quinn, R.C., and A.P. Zent. 1999. Peroxide-modified titanium dioxide: a chemical analog of putative Martian soil oxidants. Orig. Life Evol. Biosph. 29: 59-72.

    Article  ADS  Google Scholar 

  • Romanek, C.S., M.M. Grady, I.P. Wright, et al. 2002. Record of fluid-rock interactions on Mars from meteorite ALH84001. Nature 372: 655-657.

    Article  ADS  Google Scholar 

  • Ryan, C.S., and I. Kleinberg. 1995. Bacteria in human mouths involved in the production and utilization of hydrogen peroxide. Arch. Oral. Biol. 40: 753-763.

    Article  Google Scholar 

  • Schieber, J., and H.J. Arnott. 2003. Nannobacteria as a by-product of enzyme-driven tissue decay Geology 31: 717-720.

    Google Scholar 

  • Schopf, J.W. 1993. Microfossils of the early Archean Apex Chert; new evidence of the antiquity of life. Science 260: 640-645.

    Article  ADS  Google Scholar 

  • Schulze-Makuch, D., C. Turse, J.M. Houtkooper, et al. 2008. Testing the H2O2-H2O hypothesis for life on Mars with the TEGA instrument on the Phoenix Lander. Astrobiology 8: 205-214.

    Article  ADS  Google Scholar 

  • Schulze-Makuch, D., J.N. Head, J.M. Houtkooper, M. Knoblauch, R. Furfaro, et al. 2012b. The Biological Oxidant and Life Detection (BOLD) Mission: a proposal for a mission to Mars. Planet. Space Sci. 67: 57-69.

    Article  ADS  Google Scholar 

  • Schulze-Makuch, D., A.G. Fairén, A. Davila. 2013a. Locally targeted ecosynthesis: a proactive in situ search for extant life on other worlds. Astrobiology 13: 774-778.

    Article  Google Scholar 

  • Schulze-Makuch, D., J. Rummel, S. Benner, G. Levin, V. Parro, et. al. 2015b. Nearly forty years after Viking: Are we ready for a new life detection mission? Astrobiology 15: 413-419.

    Article  ADS  Google Scholar 

  • Steele, A., D.S. McKay, C.C. Allen, K. Thomas-Keprta, D. Warmflash, et al. 2001. Mars Immunoassay Life Detection Instrument for Astrobiology (MILDI). 32nd Lunar and Planetary Science Conference, abstract # 1684, Houston, Texas.

    Google Scholar 

  • Stoker, C.R., and M.A. Bullock. 1997. Organic degradation under simulated Martian conditions. J. Geophys. Res. 102: 10881-10888.

    Article  ADS  Google Scholar 

  • Storm, A.J., C. Storm, J. Chen, H. Zandbergen, J.F. Joanny, et al. 2005. Fast DNA translocation through a solid-state nanopore. Nano Lett. 5: 1193–1197.

    Article  ADS  Google Scholar 

  • Tanenbaum, S.W. 1956. The metabolism of Acetobacter peroxidans. I. Oxidative enzymes. Biochim. Biophys. Acta 21: 335-342.

    Article  Google Scholar 

  • Tang, B.L. 2007. A case for immunological approaches in detection and investigation of alien life. Int. J. of Astrobiology 6: 11-17.

    Article  ADS  Google Scholar 

  • Thomas-Keprta, K.L., D.A. Bazylinski, J.L. Kirschvink, et al. 2000. Elon-gated prismatic magnetite crystals in ALH84001 carbonate globules: potential martian magnetofossils. Geochim. Cosmochim. Acta 64: 4049-4081.

    Article  ADS  Google Scholar 

  • Thomas-Keprta, K.L., S.J. Clemett, D.A. Bazylinski, et al. 2001. Truncated hexa-octahedral magnetite crystals in ALH84001: presumptive biosignatures. Proc. Natl. Acad. Sci. USA 98: 2164-2169.

    Article  ADS  Google Scholar 

  • Thomas-Keprta, K.L., S.J. Clemett, D.A. Bazylinski, et al. 2002. Magnetofossils from ancient Mars: a robust biosignature in the martian meteorite ALH84001. Appl. Environ. Microbiol. 68: 3663-3672.

    Article  Google Scholar 

  • Torrella, F., and R.J. Morita. 1981. Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater. Appl. Environ. Microbiol. 41: 518-527.

    Google Scholar 

  • Valley, J.W., J.M. Eiler, C.M. Graham, et al. 1997. Low-temperature carbonate concretions in the martian meteorite ALH84001: evidence from stable isotopes and mineralogy. Science 275: 1633-1638.

    Article  ADS  Google Scholar 

  • Vercoutere, W., S. Winters-Hilt, H. Olsen, D.W. Deamer, D. Haussler, et al. 2001. Rapid discrimination among individual DNA molecules at single nucleotide resolution using a nanopore instrument. Nature Biotech. 19: 248-250.

    Article  Google Scholar 

  • Wallis, J.N., C. Wickramasinghe, D.H. Wallis, N. Miyake, M.K. Wallis, et al. 2012. Possible biological structures in the Tissint Mars meteorite. Proc. SPIE 8521, Instruments, Methods, and Missions for Astrobiology XV, 852110R.

    Google Scholar 

  • Warren, P.H. 1998. Petrologic evidence for low-temperature, possibly flood-evaporitic origin of carbonates in the ALH84001 meteorite. JGR-Planets 103: 98E01544.

    Article  Google Scholar 

  • Weiss, B.P., S. Sam Kim, J.L. Kirschvink, et al. 2004. Magnetic tests for magnetosome chains in martian meteorite ALH84001. Proc. Natl. Acad. Sci. USA 101: 8281-8284.

    Article  ADS  Google Scholar 

  • Wettergreen, D., N. Cabrol, V. Baskaran, F. Calderón, S. Heys, et al. 2005. Second experiments in the robotic investigation of life in the Atacama desert in Chile. Proceedings of the ISAIRAS Conference, Munich, Germany.

    Google Scholar 

  • Yen, A.S., S.S. Kim, M.H. Hecht, et al. 2000. Evidence that the reactivity of the martian soil is due to superoxide ions. Science 289: 1909-1912.

    Article  ADS  Google Scholar 

  • Zent, A.P., and C.P. McKay. 1994. The chemical reactivity of the martian soil and implications for future missions. Icarus 108: 146-157.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schulze-Makuch, D., Irwin, L.N. (2018). Life Detection: Past and Present. In: Life in the Universe. Springer Praxis Books(). Springer, Cham. https://doi.org/10.1007/978-3-319-97658-7_10

Download citation

Publish with us

Policies and ethics