Skip to main content

Transport Properties of La0.7Sr0.3MnO3/NSTO and La0.7Sr0.3MnO3/ZnO Perovskite Solar Cells

  • Conference paper
  • First Online:
  • 3014 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 215))

Abstract

A comprehensive numerical analysis for a Lead- free perovskite solar cell has been carried out using device simulation software. Enumerated study of two types of configurations La0.7Sr0.3MnO3/ZnO (LSMO/ZnO) and La0.7Sr0.3MnO3/Nb–SrTiO3 (LSMO/NSTO) are simulated which gives power conversion efficiency (PCE) of 6.78 and 0.47% after optimizing different parameters using SCAPS-1D numerical simulation. Bandgap analysis of LSMO/NSTO shows 35 and 65% discontinuity in the conduction band and valence band, which directly affect in the collection of charge carriers. While LSMO/ZnO configuration has continuity in the energy bands so large number of carriers collected as compared to NSTO buffer layer and it also leads to higher PCE. Buffer layer thickness optimization is also carried out.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015)

    Article  ADS  Google Scholar 

  2. O. Grånäs, D. Vinichenko, E. Kaxiras, Establishing the limits of efficiency of perovskite solar cells from first principles modeling. Sci. Rep. 6, 36108(1–6) (2016)

    Google Scholar 

  3. A. Babayigit, D.D. Thanh, A. Ethirajan et al., Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio. Sci. Rep. 6(1–11), 18721 (2016)

    Google Scholar 

  4. M.I. Ahmed, A. Habib, S.S. Javaid, Perovskite solar cells: potentials, challenges, and opportunities. Int. J. Photo Energy 2015(1–13), 592308 (2015)

    Article  Google Scholar 

  5. S.N. Kale, S. Arora, K.R. Bhayani et al., Cerium doping and NSTO stoichiometric control for biomedical use of La0.7Sr0.3MnO3 nanoparticles: microwave absorption and cytotoxicity study. Nanomed. Nanotechnol. Biol. Med. 2, 217–221 (2006)

    Article  Google Scholar 

  6. S.V. Jadhav, D.S. Nikam, V.M. Khot et al., Studies on the colloidal stability of PVP-coated LSMO nanoparticles for magnetic fluid hyperthermia. New J. Chem. 37, 3121–3130 (2013)

    Article  Google Scholar 

  7. H. Gao et al., Structure and magnetic properties of three-dimensional La1−xSrxMnO3 nanofilms on ZnO nanorod arrays. Appl. Phys. Lett. 98(1–3), 123105 (2011)

    Google Scholar 

  8. A. Janotti, B. Jalan, S. Stemmer, C.G. Walle, Effects of doping on the lattice parameter of SrTiO3. Appl. Phys. Lett. 100(1–4), 262104 (2012)

    Article  ADS  Google Scholar 

  9. Y. Liu, X. Sun, B. Li, Y. Lei, Tunable p–n transition behavior of p-La0.67Sr0.33MnO3/n-CeO2 nanofibers heterojunction for the development of selective high-temperature propane sensors. J. Mater. Chem. A 2, 11651–11659 (2014)

    Article  Google Scholar 

  10. S. Bansal, P. Aryal, Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1D simulations, in IEEE 43rd Photovoltaic Specialists Conference (2016), pp. 0747–0750

    Google Scholar 

  11. A. Tiwari, C. Jin, D. Kumar, J. Narayan, Rectifying electrical characteristics of La0.7Sr0.3MnO3/ZnO heterostructure. Appl. Phys. Lett. 83, 1773–1775 (2003)

    Article  ADS  Google Scholar 

  12. K.X. Jin, S.G. Zhao, C.L. Chen, X.Y. Tan, X.W. Jia, Ultraviolet photovoltage characteristics in ZnO/La0.7Sr0.3MnO3 heterostructure. Appl. Phys. 42(1–4), 015001 (2009)

    Google Scholar 

  13. H.Y. Dai, B. Wang et al., Growth of La0.7Sr0.3MnO3 films on Si (0 0 1) using SrMnO3 template layer. Elsevier 80, 914–917 (2006)

    Google Scholar 

  14. Jiyon Song et al., Device modeling and simulation of the performance of Cu(In1−xGax)Se2 solar cells. Solid-State Electron. 48, 73–79 (2004)

    Article  ADS  Google Scholar 

  15. Nima Khoshsirat et al., Analysis of absorber and buffer layer band gap grading on CIGS thin film solar cell performance using SCAPS. Pertanika J. Sci. Technol. 23, 241–250 (2015)

    Google Scholar 

  16. A. Janotti, B. Jalan, S. Stemmer, C.G. Walle, Effects of doping on the lattice parameter of SrTiO3. Appl. Phys. Lett. 100(1–4), 262104 (2012)

    Article  ADS  Google Scholar 

  17. W.J. Zhon et al., Significant enhancement of photovoltage in artificially designed perovskite oxide structures. Appl. Phys. Lett. 105(1–6), 131109 (2014)

    Google Scholar 

  18. A.T. Choi, L. Jiang, S. Lee, T. Egami, H.N. Lee, High rectification and photovoltaic effect in oxide nano-junctions. New J. Phys. 14(1–10), 093056 (2012)

    Article  ADS  Google Scholar 

  19. H. Guo et al., The origin of oxygen vacancies controlling La2/3Sr1/3MnO3 electronic and magnetic properties. Adv. Mater. Inter. 3, 1500753 (2016)

    Article  Google Scholar 

  20. Y. Xu, T. Gong, J.N. Munday, The generalized Shockley-Queisser limit for nanostructured solar cells. Sci. Rep. 5, 13536 (2015)

    Article  ADS  Google Scholar 

  21. M. Mostefaoui, H. Mazar, S. Khelifi, A. Bouraiou, R. Dabou, Simulation of high efficiency CIGS solar cells with SCAPS-1D software. Energy Proc. 74, 736–744 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Marc Burgelman University of Gent, Belgium for providing the solar cell capacitor simulator (SCAPS-1D) software used in our simulation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonu Bishnoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bishnoi, S., Pandey, S.K. (2019). Transport Properties of La0.7Sr0.3MnO3/NSTO and La0.7Sr0.3MnO3/ZnO Perovskite Solar Cells. In: Sharma, R., Rawal, D. (eds) The Physics of Semiconductor Devices. IWPSD 2017. Springer Proceedings in Physics, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-97604-4_69

Download citation

Publish with us

Policies and ethics