Skip to main content

Enhancement-Mode High Electron Mobility Transistor on SiC Substrate with T-Gate Field Plate for High Power Applications

  • Conference paper
  • First Online:
The Physics of Semiconductor Devices (IWPSD 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 215))

Included in the following conference series:

  • 3016 Accesses

Abstract

A normally Off-GaN based High Electron Mobility transistor is simulated using Sentaurus TCAD and demonstrated the DC and BV characteristics of the device. The divergence in the polarization charges from the barrier and buffer interface depletes the inherent 2DEG (Two-Dimensional Electron Gas) channel and makes the device in off-state. A considerable improvement in the breakdown voltage (BV) and transconductance (gm) are reported in this paper. The transconductance shows a flat behavior over a certain range of gate bias and shows a maximum of 158 mS/μm, which is the maximum, reported for a normally-off GaN based HEMT devices along with high power performance. The T-gate field plate effectively distributes the peak electric field at the drain end of the gate edge over the field plate length (LFP). Consequently, the BV of the device above 2 μm LFP shows a significant improvement. The higher transconductance and BV makes this device a suitable candidate for applications in future high power, high frequency applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Aktas, Z.F. Fan, A. Botchkarev, S.N. Mohammad, M. Roth, T. Jenkins, L. Kehias, H. Morko¸c, Microwave Performance of AlGaN/GaN Inverted MODFET’s. IEEE Electron Device Lett. 18(6), 293–295 (1997)

    Article  ADS  Google Scholar 

  2. Y.-F. Wu, S. Keller, P. Kozodoy, B.P. Keller, P. Parikh, D. Kapolnek, S. P. Denbaars, U.K. Mishra, Bias dependent microwave performance of AlGaN/GaN MODFET’s Up To 100 V. IEEE Electron Device Lett. 18(6), 290–292 (1997)

    Article  ADS  Google Scholar 

  3. Y.-F. Wu, B.P. Keller, S. Keller, N.X. Nguyen, M. Le, C. Nguyen, T.J. Jenkins, L.T. Kehias, S.P. Denbaars, U.K. Mishra, Short channel AlGaN/GaN MODFET’s with 50-GHz and 1.7-W/mm output-power at 10 GHz. IEEE Electron Device Lett. 18(9), 438–448 (1997)

    Article  ADS  Google Scholar 

  4. A.T. Ping, Q. Chen, J.W. Yang, M. Asif Khan, I. Adesida, DC and microwave performance of high-current AlGaN/GaN Heterostructure field effect transistors grown on p-type SiC substrates. IEEE Electron Device Lett. 19(2), 54–56 (1998)

    Article  ADS  Google Scholar 

  5. D. Song, J. Liu, Z. Cheng, W.C.W. Tang, K.M.Lau, K.J. Chen, Normally off AlGaN/GaN low-density drain HEMT (LDD-HEMT) with enhanced breakdown voltage and reduced current collapse. IEEE Electron Device Lett. 28(3), 189–191 (2007)

    Article  ADS  Google Scholar 

  6. W. Chen, K.-Y. Wong, K.J. Chen, Single-chip boost converter using monolithically integrated AlGaN/GaN lateral field-effect rectifier and normally off HEMT. IEEE Electron Device Lett. 30(5), 430–432 (2009)

    Article  ADS  Google Scholar 

  7. T.J. Anderson, M.J. Tadjer, M.A. Mastro, J.K. Hite, K.D. Hobart, C.R. Eddy, Jr., F.J. Kub, An AlN/Ultrathin AlGaN/GaN HEMT structure for enhancement-mode operation using selective etching. IEEE Electron Device Lett. 30(12), 1251–1253 (2009)

    Article  ADS  Google Scholar 

  8. I. Khalil, A. Liero, M. Rudolph, R. Lossy, W. Heinrich, GaN HEMT potential for low-noise highly linear RF applications. IEEE Microwave Wirel. Compon. Lett. 18(9), 605–607 (2008)

    Article  Google Scholar 

  9. G. Crupi, A. Raffo, G. Avolio, D.M.M.-P. Schreurs, G. Vannini, A. Caddemi, Temperature influence on GaN HEMT equivalent circuit. IEEE Microwave Wirel. Compon. Lett. 26(10), 831–835 (2016)

    Article  Google Scholar 

  10. Z. Xu, J. Wang, Y. Cai, J. Liu, Z. Yang, X. Li, M. Wang, M. Yu, B. Xie, W. Wu, X. Ma, J. Zhang, Y. Hao, High temperature characteristics of GaN-based inverter integrated with enhancement-mode (E-Mode) MOSFET and Depletion-Mode (D-Mode) HEMT. IEEE Electron Device Lett. 35(1), 33–35 (2014)

    Article  ADS  Google Scholar 

  11. J.J. Freedsman, T. Kubo, T. Egawa, High drain current density E-mode Al2O3/AlGaN/GaN MOS-HEMT on Si with enhanced power device figure-of-merit”. IEEE Trans. Electron Devices 60(10), 3079–3083 (2013)

    Article  ADS  Google Scholar 

  12. S. Kim, I. Adesida, 0.15-µm-gate InAlAs/InGaAs/InP E-HEMTs utilizing Ir/Ti/Pt/Au gate structure. IEEE Electron Device Lett. 27(11), 873–876 (2006)

    Article  ADS  Google Scholar 

  13. Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, D. Ueda, Gate injection transistor (GIT)—a normally-off AlGaN/GaN power transistor using conductivity modulation. IEEE Trans. Electron Devices 54(12), 3393–3399 (2007)

    Article  ADS  Google Scholar 

  14. C.-H. Chen, R. Sadler, D. Wang, D. Hou, Y. Yang, Wing Yau, W. Sutton, J. Shim, S. Wang, A. Duong, The causes of GaN HEMT bell shaped transconductance degradation. Solid-State Electron. 126, 115–124 (2016)

    Article  ADS  Google Scholar 

  15. T. Oka, T. Nozawa AlGaN/GaN recessed MIS gate HFET with high-threshold-voltage normally-off operation for power electronics applications. IEEE Electron Device Lett. 29(7), 668–670 (2008)

    Article  ADS  Google Scholar 

  16. S. Karmalkar, N. Soudabi, A closed-form model of the drain-voltage dependence of the OFF-state channel electric field in a HEMT with a field plate. IEEE Trans. Electron Devices 53(10), 2430–2437 (2006)

    Article  ADS  Google Scholar 

  17. Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, D. Ueda, Gate injection transistor (GIT) a normally-off AlGaN/GaN power transistor using conductivity modulation. IEEE Trans. Electron Device 54(12), 3393–3399 (2007)

    Article  ADS  Google Scholar 

  18. F. Lecourt, Y. Douvry, N. Defrance, V. Hoel, J.C. De Jaeger, S. Bouzid, M. Renvoise, D. Smith and H. Maher OMMIC, High transconductance AlGaN/GaN HEMT with thin barrier on Si(111) substrate. IEEE Solid-State Device Res. Conf. 281–284 (2010)

    Google Scholar 

  19. J. Wei, S. Liu, B. Li, X. Tang, Y. Lu, C. Liu, M. Hua, Z. Zhang, G. Tang, K. J. Chen, Low on-resistance normally-off GaN double-channel metal–oxide–semiconductor high-electron-mobility transistor. IEEE Electron Device Lett. 36(12), 1287–1290 (2015)

    Article  ADS  Google Scholar 

  20. T. Mizutani, M. Ito, S. Kishimoto, F. Nakamura, AlGaN/GaN HEMTs with thin InGaN cap layer for normally off operation. IEEE Electron Device Lett. 28(7), 549–551 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash Chander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chander, S., Ajay, Gupta, M. (2019). Enhancement-Mode High Electron Mobility Transistor on SiC Substrate with T-Gate Field Plate for High Power Applications. In: Sharma, R., Rawal, D. (eds) The Physics of Semiconductor Devices. IWPSD 2017. Springer Proceedings in Physics, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-97604-4_45

Download citation

Publish with us

Policies and ethics