Skip to main content

Silicon Etching Characteristics in Modified TMAH Solution

  • Conference paper
  • First Online:
Book cover The Physics of Semiconductor Devices (IWPSD 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 215))

Included in the following conference series:

  • 3032 Accesses

Abstract

In the present work, we have studied the etching characteristics of Si{100} and Si{110} in modified low concentration TMAH solution by adding different concentrations of NH2OH. The etch rate of silicon and thermal oxide, and etched surface morphology, which are important parameters to be known in the fabrication of MEMS structures using silicon wet bulk micromachining, have been studied in modified TMAH solution. In addition, the effect of aging time of the etchant solution on the etching characteristics is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Pal, K. Sato (eds.), Silicon Wet Bulk Micromachining for MEMS (CRC Press, Singapore, 2017)

    Google Scholar 

  2. A. Ashok, P. Pal, Silicon micromachining in 25 wt% TMAH without and with surfactant concentrations ranging from ppb to ppm. Microsyst. Technol. 23, 47–54 (2017)

    Article  Google Scholar 

  3. J. Frühauf, Shape and functional elements of the bulk silicon microtechnique: a manual of wet-etched silicon structures (Springer, 2005)

    Google Scholar 

  4. I. Zubel, M. Kramkowska, Possibilities of extension of 3D shapes by bulk micromachining of different Si (hkl) substrates. J. Micromech. Microeng. 15, 485–493 (2005)

    Article  ADS  Google Scholar 

  5. P. Pal, K. Sato, Complex three dimensional structures in Si{100} using wet bulk micromachining. J. Micromech. Microeng. 19, 105008 (9pp) (2009)

    Article  ADS  Google Scholar 

  6. S. Lee, S. Park, D. Cho, The surface/bulk micromachining (SBM) process: a new method for fabricating released microelectromechanical systems in single crystal silicon. J. Microelectromech. Syst. 8, 409–416 (1999)

    Article  Google Scholar 

  7. Y.W. Xu, A. Michael, C.Y. Kwok, Formation of ultra-smooth 45° micromirror on (100) silicon with low concentration TMAH and surfactant: techniques for enlarging the truly 45° portion. Sens. Actuators A Phys. 166, 164–171 (2011)

    Article  Google Scholar 

  8. P. Pal, K. Sato, Fabrication methods based on wet etching process for the realization of silicon MEMS structures with new shapes. Microsyst. Technol. 16, 1165–1174 (2010)

    Article  Google Scholar 

  9. T. Deng, J. Chen, W. Si, M. Yin, W. Ma, Z. Liu, Fabrication of silicon nanopore arrays using a combination of dry and wet etching. J. Vac. Sci. Technol. Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 30, 061804 (2012)

    Article  ADS  Google Scholar 

  10. M. Elwenspoek, H. Jansen, Silicon Micromachining (Cambridge University Press, UK, 1998)

    Google Scholar 

  11. P. Pal, K. Sato, A comprehensive review on convex and concave corners in silicon bulk micromachining based on anisotropic wet chemical etching. Micro Nano Syst. Lett. 3, 6 (2015)

    Article  ADS  Google Scholar 

  12. K. Sato, M. Shikida, T. Yamashiro, K. Asaumi, Y. Iriye, M. Yamamoto, Anisotropic etching rates of single-crystal silicon for TMAH water solution as a function of crystallographic orientation. Sens. Actuators A 73, 131–137 (1999)

    Article  Google Scholar 

  13. P. Pal, K. Sato, M.A. Gosalvez, B. Tang, H. Hida, M. Shikida, Fabrication of novel microstructures based on orientation-dependent adsorption of surfactant molecules in a TMAH solution. J. Micromech. Microeng. 21, 015008 (2010)

    Article  Google Scholar 

  14. P.H. Chen, H.Y. Peng, C.M. Hsieh, M.K. Chyu, The characteristic behavior of TMAH water solution for anisotropic etching on both Silicon substrate and SiO2 layer. Sens. Actuators A 93, 132–137 (2001)

    Article  Google Scholar 

  15. J. Zhang, W.C. Hon, L.L. Leung, K.J. Chen, CMOS-compatible micromachining techniques for fabricating high-performance edge-suspended RF/microwave passive components on silicon substrates. J. Micromech. Microeng. 15, 328 (2004)

    Article  Google Scholar 

  16. M.A. Gosalvez, P. Pal, N. Ferrando, H. Hida, K. Sato, Experimental procurement of the complete 3D etch rate distribution of Si in anisotropic etchants based on vertically micromachined wagon wheel samples. J. Micromech. Microeng. 21, 125007 (2011)

    Article  ADS  Google Scholar 

  17. D. Resnik, D. Vrtacnik, U. Aljancic, M. Mozek, S. Amon, The role of Triton surfactant in anisotropic etching of 110 reflective planes on (100) silicon. J. Micromech. Microeng. 15, 1174–1183 (2005)

    Article  ADS  Google Scholar 

  18. D. Cheng, M.A. Gosálvez, T. Hori, K. Sato, M. Shikida, Improvement in smoothness of anisotropically etched silicon surfaces: effects of surfactant and TMAH concentrations. Sens. Actuators A Phys. 125, 415–421 (2006)

    Article  Google Scholar 

  19. P. Pal, K. Sato, M.A. Gosalvez, M. Shikida, Study of rounded concave and sharp edge convex corners undercutting in CMOS compatible anisotropic etchants. J. Micromech. Microeng. 17, 2299–2307 (2007)

    Article  ADS  Google Scholar 

  20. C.R. Yang, P.Y. Chen, C.H. Yang, Y.C. Chiou, R.T. Lee, Effects of various ion-typed surfactants on silicon anisotropic etching properties in KOH and TMAH solutions. Sen. Actuators A Phys. 119, 271–281 (2005)

    Article  Google Scholar 

  21. K. Sato, D. Uchikawa, M. Shikida, Change in orientation-dependent etching properties of single-crystal silicon caused by a surfactant added to TMAH solution. Sens. Mater. 13, 285–291 (2001)

    Google Scholar 

  22. P. Pal, K. Sato, M.A. Gosalvez, Y. Kimura, K.I. Ishibashi, M. Niwano, H. Hida, B. Tang, S. Itoh, Surfactant adsorption on single-crystal silicon surfaces in TMAH solution: rientation-dependent adsorption detected by in situ infrared spectroscopy. J. Microelectromech. Syst. 18, 1345–1356 (2009)

    Article  Google Scholar 

  23. R. Sotoaka, New etchants for high speed anisotropic etching of silicon. J. Surf. Finish. Soc. Jpn. 59, 104 (2008)

    Article  Google Scholar 

  24. M. Yao, B. Tang, K. Sato, W. Su, Silicon anisotropic etching in Triton-mixed and isopropyl alcohol-mixed tetramethyl ammonium hydroxide solution. Micro Nano Lett. 10, 469–471 (2015)

    Article  Google Scholar 

  25. I. Zubel, M. Kramkowska, K. Rola, Silicon anisotropic etching in TMAH solutions containing alcohol and surfactant additives. Sens. Actuators A 178, 126–135 (2012)

    Article  Google Scholar 

  26. V. Swarnalatha, A.N. Rao, A. Ashok, S.S. Singh, P. Pal, Modified TMAH based etchant for improved etching characteristics on Si 100 wafer. J. Micromech. Microeng. 27, 085003 (2017)

    Article  ADS  Google Scholar 

  27. B. Tang, P. Pal, M.A. Gosalvez, M. Shikida, K. Sato, H. Amakawa, S. Itoh, Ellipsometry study of the adsorbed surfactant thickness on Si{110} and Si{100} and the effect of pre-adsorbed surfactant layer on etching characteristics in TMAH. Sens. Actuators A 156, 334–341 (2009)

    Article  Google Scholar 

  28. V. Swarnalatha, A.V.N. Rao, P. Pal, Silicon anisotropic etching in ternary solution composed of TΜΑΗ + Triton + NH2ΟΗ. ECS Trans. 77, 1737–1745 (2017)

    Article  Google Scholar 

  29. H. Seidel, L. Csepregi, A. Heuberger, H. Baumgärtel, Anisotropic etching of crystalline silicon in alkaline solutions I. Orientation dependence and behavior of passivation layers. J. Electrochem. Soc. 137, 3612–3626 (1990)

    Article  Google Scholar 

  30. H. Seidel, L. Csepregi, A. Heuberger, H. Baumgärtel, Anisotropic etching of crystalline silicon in alkaline solutions II. Influence of dopants. J. Electrochem. Soc. 137, 3626–3632 (1990)

    Article  Google Scholar 

  31. L.O. Cisneros, W.J. Rogers, M.S. Mannan, Comparison of the thermal decomposition behavior for members of the hydroxylamine family. Thermochim. Acta 414, 177–183 (2004)

    Article  Google Scholar 

  32. M.N. Hughes, H.G. Nicklin, Autoxidation of hydroxylamine in alkaline solutions. J. Chem. Soc. A Inorg. Phys. Theor., 164–168 (1971)

    Google Scholar 

  33. C. Wei, S.R. Saraf, W.J. Rogers, M.S. Mannan, Thermal runaway reaction hazards and mechanisms of hydroxylamine with acid/base contaminants. Thermochim. Acta 421, 1–9 (2004)

    Article  Google Scholar 

  34. L.O. Cisneros, X. Wu, W.J. Rogers, M.S. Mannan, J. Park, S.W. North, Decomposition products of 50 mass% hydroxylamine/water under runaway reaction conditions. Process Saf. Environ. Prot. 81, 121–124 (2003)

    Article  Google Scholar 

  35. M. Shikida, T. Masuda, D. Uchikawa, K. Sato, Surface roughness of single-crystal silicon etched by TMAH solution. Sens. Actuators A Phys. 90, 223–231 (2001)

    Article  Google Scholar 

  36. E. Van Veenendaal, K. Sato, M. Shikida, J. Van Suchtelen, Micromorphology of single crystalline silicon surfaces during anisotropic wet chemical etching in KOH and TMAH. Sens. Actuators A Phys. 93, 219–231 (2001)

    Article  Google Scholar 

  37. M.A. Gosálvez, R.M. Nieminen, Surface morphology during anisotropic wet chemical etching of crystalline silicon. New J. Phys. 5, 100.1–100.28 (2003)

    Google Scholar 

  38. B. Tang, M.Q. Yao, G. Tan, P. Pal, K. Sato, W. Su, Smoothness control of wet etched Si{100} surfaces in TMAH + Triton. Key Eng. Mat. 609, 536–541 (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the DST and the CSIR, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veerla Swarnalatha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Swarnalatha, V., Rao, A.V.N., Pal, P. (2019). Silicon Etching Characteristics in Modified TMAH Solution. In: Sharma, R., Rawal, D. (eds) The Physics of Semiconductor Devices. IWPSD 2017. Springer Proceedings in Physics, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-97604-4_121

Download citation

Publish with us

Policies and ethics