Skip to main content

Improving Vegetable Capsicums for Fruit Yield, Quality, and Tolerance to Biotic and Abiotic Stresses

  • Chapter
  • First Online:
Genomic Designing of Climate-Smart Vegetable Crops

Abstract

Sweet and pungent peppers (Capsicum spp.) are globally important vegetable and spice commodities as they are valued for their nutritional qualities, antioxidant compounds, flavors, pungency, brilliant colors, and textures. Capsicum. has extraordinary variability in its germplasm both in cultivated and wild species. This review presents an account of research done over several decades in the context of crop improvement. Key developments with reference to linkage analyses, DNA-based markers, the identification of quantitative trait loci for complex traits, transcriptomes of ripening fruit, and genome sequences are summarized. Prospects are excellent for using conventional, biotechnological, and genomic approaches to improve fruit yield, fruit quality, and biotic stress tolerance so that productivity in this specialty crop could be sustained, despite the changing climate. However, more research is needed to build resources to improve peppers for tolerance to abiotic stress factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Aal EM, Akhtar H, Zaheer K, Ali R (2013) Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients 5:1169–1185

    Article  CAS  PubMed Central  Google Scholar 

  • Abraham-Juarez MD, Rocha-Granados MD, Lopez MG, Rivera-Bustamante RF, Ochoa-Alejo N (2008) Virus-induced silencing of Comt, pAmt and Kas genes results in a reduction of capsaicinoid accumulation in chili pepper fruits. Planta 227:681–695

    Article  CAS  Google Scholar 

  • Ahn S, Badenes-Perez FR, Heckel DG (2011) A host-plant specialist, Helicoverpa assulta, is more tolerant to capsaicin from Capsicum annuum than other noctuid species. J Insect Physiol 57:1212–1219

    Article  CAS  PubMed  Google Scholar 

  • Ahn Y, Manivannan A, Karna S, Jun T, Yang E, Choi S, Kim J, Kim D, Lee E (2018) Whole genome resequencing of Capsicum baccatum and Capsicum annuum to discover single nucleotide polymorphism related to powdery mildew resistance. Sci Rep 8:5188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Airaki M, Leterrier M, Mateos RM, Valderrama R, Chaki M, Barroso JB, Rio LA, Palma JM, Corpas FI (2012) Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant, Cell Environ 35:281–295

    Article  CAS  Google Scholar 

  • Aktas H, Abak K, Cakmak I (2006) Genotypic variation in the response of pepper to salinity. Sci Hort 110:260–266

    Article  CAS  Google Scholar 

  • Aktas H, Abak K, Eker S (2012) Anti-oxidative responses of salt-tolerant and salt-sensitive pepper (Capsicum annuum L.) genotypes grown under salt stress. J HortSci Biotechnol 87:360–366

    Article  CAS  Google Scholar 

  • Ali AM, Kelly WC (1992) The effects of interfruit competition on the size of sweet pepper (Capsicum annuum L.) fruits. Sci Hort 52:69–76

    Article  Google Scholar 

  • Aloni B, Karni L, Rylski I, Cohen Y, Lee Y, Fuchs M, Moreshet S, Yao C (1998) Cuticular cracking in pepper fruit. I. Effects of night temperature and humidity. J Hort Sci Biotechnol 73:743–749

    Article  Google Scholar 

  • Aloni B, Peet M, Pharr M, Karni L (2001) The effect of high temperature and high atmospheric CO2 on carbohydrate changes in bell pepper (Capsicum annuum) pollen in relation to its germination. Physiol Plant 112:505–512

    Article  CAS  PubMed  Google Scholar 

  • Antonio AS, Wiedemann LSM, Veiga VF Jr (2018) The genus Capsicum: a phytochemical review of bioactive secondary metabolites. RSC Advances 8:25767–25784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arce-Rodriguez M, Ochoa-Alejo N (2017) An R2R3-MYB transcription factor regulates capsaicinoid biosynthesis. Plant Physiol 174:1359–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashrafi H, Hill T, Stoffel K, Kozik A, Yao JQ, Chin-Wo SR, Van Deynze A (2012) De Novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs. SSRs and candidate genes. BMC Genomics 13:571

    Article  CAS  PubMed  Google Scholar 

  • Azuma R, Ito N, Nakayama N, Suwa R, Nguyen TN, Larringa-Mayoral JA, Esaka M, Fujiyama H, Saneoka H (2010) Fruits are more sensitive to salinity than leaves and stems in pepper plants (Capsicum annuum L.). Sci Hort 125:171–178

    Article  CAS  Google Scholar 

  • Barbary A, Djian-Caporalino C, Palloix A, Castagnone-Sereno (2015) Host genetic resistance to root-knot nematodes, Meloidogyne spp., in Solanaceae: from genes to the field. Pest Manag Sci 71:1591–1598

    Article  CAS  PubMed  Google Scholar 

  • Baas-Espinola FM, Castro-Concha LA, Vazquez-Flota FA, Miranda-Ham ML (2016) Capsaicin synthesis requires in situ phenylalanine and valine formation in in vitro maintained placentas from Capsicum chinense. Molecules 21:799

    Article  PubMed Central  CAS  Google Scholar 

  • Barchi L, Lefebvre V, Sage-Palloix A, Lanteri S, Palloix A (2009) QTL analysis of plant development and fruit traits in pepper and performance of selective phenotyping. Theor Appl Genet 118:1157–1171

    Article  CAS  PubMed  Google Scholar 

  • Barchenger DW, Clark RA, Gniffe PA, Ledesma DR, Lin S, Hanson P, Kumar S (2018) Stability of yield and yield components of pepper (Capsicum annuum) and evaluation of publicly available predictive meteorological data in East and Southeast Asia. HortScience 53:1776–1783

    Article  Google Scholar 

  • Batista-Silva W, Nascimento VL, Medeiros DB, Nunes-Nesi A, Ribeiro DM, Zsogon A, Araujo WL (2018) Modifications in organic acid profiles during fruit development and ripening: correlation or causation? Front Plant Sci 9:1689

    Article  PubMed  PubMed Central  Google Scholar 

  • Belakbir A, Ruiz JM, Romero L (1998) Yield and fruit quality of pepper (Capsicum annuum L.) in response to bioregulators. HortScience 33:85–87

    Article  CAS  Google Scholar 

  • Ben-Chaim A, Paran I (2000) Genetic analysis of quantitative traits in pepper (Capsicum annuum). J Amer Soc Hort Sci 125:66–70

    Article  Google Scholar 

  • Ben-Chaim A, Paran I, Grube RC, Jahn M, Van Wijk R, Peleman J (2001) QTL mapping of fruit-related traits in pepper (Capsicum annuum). Theor Appl Genet 102:1016–1028

    Article  Google Scholar 

  • Ben-Chaim A, Borovsky Y, De Jong W, Paran I (2003) Linkage of the A locus for the presence of anthocyanin and fs10.1, a major fruit-shape QTL in pepper. Theor Appl Genet 106:889–894

    Article  CAS  Google Scholar 

  • Ben-Chaim A, Borovsky Y, Falise M, Mazourek M, Kang BC, Paran I, Jahn M (2006) QTL analysis for capsaicinoid content in Capsicum. Theor Appl Genet 113:1481–1490

    Article  CAS  PubMed  Google Scholar 

  • Ben-Chaim A, Borovsky Y, Rao G, Zamir D, Paran I (2013) Comparative QTL mapping of fruit size and shape in tomato and pepper. Isr J Plant Sci 54:191–203

    Article  Google Scholar 

  • Bhutia ND, Seth T, Shende VD, Dutta S, Chattopadhyay A (2015) Estimation of heterosis, dominance effect and genetic control of fresh fruit yield, quality and leaf curl disease severity traits of pepper (Capsicum annuum L.) Sci Hortic 182:47–55

    Google Scholar 

  • Blum E, Mazourek M, O’Connell M, Curry J, Thorup T, Liu K, Jahn M, Paran I (2003) Molecular mapping of capsaicinoid biosynthesis genes and quantitative trait loci analysis for capsaicinoid content in Capsicum. Theor and Appl Gen 108:79–86

    Article  CAS  Google Scholar 

  • Bojorquez-Quintal E, Ruiz-Lau N, Velarde-Buendia A, Echevarria-Machado I, Pottosin I, Martinez-Esteves M (2016) Natural variation in primary root growth and K + retention in roots of habanero pepper (Capsicum chinense) under salt stress. Funct Plant Biol 43:1114–1125

    Article  CAS  PubMed  Google Scholar 

  • Boswell VR (1937) Improvement and genetics of tomatoes, peppers, eggplant. United States Government Printing Office, Yearbook of Agriculture, Washington, pp 176–206

    Google Scholar 

  • Canto-Flick A, Balam-Uc E, Bello-Bello JJ, Lecona-Guzman C, Solis-Marroquin D, Aviles-Vinas S, Gomez-Uc E, Lopez-Puc G, Santana-Buzzy N, Iglesias-Andreu LG (2008) Capsaicinoids content in habanero pepper (Capsicum chinense Jacq.): hottest known cultivars. HortScience 43:1344–1349

    Article  Google Scholar 

  • Carrizo Garcia C, Barfuss MH, Sehr EM, Barboza GE, Samuel R, Moscone EA, Ehrendorfer F (2016) Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae). Ann Bot 118:35–51

    Article  PubMed  PubMed Central  Google Scholar 

  • Chartzoulakis K, Klapaki G (2000) Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci Hortic 86:247–260

    Article  CAS  Google Scholar 

  • Chen HC, Klein A, Xiang M, Backhaus RA, Kuntz M (1998) Drought- and wound-induced expression in leaves of a gene encoding a chromoplast carotenoid-associated protein. Plant J 14:317–326

    Article  Google Scholar 

  • Cheng J, Shen H, Yang X, Yu S, Sun Z, Sun X (2008) Changes in biochemical characteristics related to firmness during fruit development of pepper (Capsicum annuum L.). Eur J Hort Sci 5:155–161

    Google Scholar 

  • Cheng Q, Li T, Ai Y, Lu Q, Wang Y, Sun L, Shen H (2019) Complementary transcriptomic and proteomic analysis reveals a complex network regulating pollen abortion in GMS (msc-1) pepper (Capsicum annuum L.). Intl J Mol Sci 20:1789

    Article  CAS  PubMed Central  Google Scholar 

  • Crosby KM (2007) Pepper. In: Prohens-Tomas J, Nuez F (eds) Vegetables II. New York, Springer, pp 221–247

    Google Scholar 

  • Cruz-Huerta N, Williamson JG, Darnell RL (2011) Low night temperature increases ovary size in sweet pepper cultivars. HortScience 46:396–401

    Article  Google Scholar 

  • Deshpande RB (1935) Studies in Indian chillies. 4. Inheritance of pungency in Capsicum annuum. L. Indian J Agri Sci 5:513–516

    Google Scholar 

  • Dhall RK, Cheema DS (2010) Use of male sterility in hybrid seed production in chilli (Capsicum annuum L.): a review. J Res Punjab Agri Univ 47:46–52

    Google Scholar 

  • Dijian-Caporalino C, Fazari A, Arguel MJ, Vernie T, VandeCasteele C, Faure I et al (2007) Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome. Theor Appl Genet 114:473–486

    Article  CAS  Google Scholar 

  • Do HM, Lee SC, Jung HW, Sohn KH, Hwang BK (2004) Differential expression and in situ localization of a pepper defensing (CaDEF1) gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum. Plant Sci 166:1297–1305

    Article  CAS  Google Scholar 

  • Dutta TK, Papolu PK, Banakar P, Choudhary D, Sirohi A, Rao U (2015) Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes. Front Microbiol 6:260

    PubMed  PubMed Central  Google Scholar 

  • Eggink PM, Maliepaard C, Tikunov Y, Haanstra JPW, Bovy AG, Visser RGF (2012) A taste of sweet pepper: volatile and non-volatile chemical composition of fresh sweet pepper (Capsicum annuum) in relation to sensory evaluation of taste. Food Chem 132:302–310

    Article  CAS  Google Scholar 

  • Elibox W, Meynard CP, Umaharan P (2017) Fruit volume and width at harvest can be used to predict shelf life in pepper (Capsicum chinense Jacq.). Trop Agri (Trinidad) 94:122–131

    Google Scholar 

  • Erickson AN, Markhart AH (2001) Flower production, fruit set, and physiology of bell pepper during elevated temperature and vapor pressure deficit. J Am Soc Hortic Sci 126:697–702

    Article  Google Scholar 

  • Erickson AN, Markhart AH (2002) Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant, Cell Environ 25:123–130

    Article  Google Scholar 

  • FAO (2017) www.fao.org/statistics/en. Accessed 1 Jun 2019

  • Fuller VL, Lilley CJ, Urwin PE (2008) Nematode resistance. New Phytol 180:27–44

    Article  CAS  PubMed  Google Scholar 

  • Gammoudi N, PedroT San, Ferchichi A, Gisbert C (2018) Improvement of regeneration in pepper: a recalcitrant species. Vitro Cell Dev Biol Plant 54:145–153

    Article  CAS  Google Scholar 

  • Geleta LF, Labuschangne MT, Viljoen CD (2004) Relationship between heterosis and genetic distance based on morphological traits and AFLP markers in pepper. Plant Breed 123:467–473

    Article  CAS  Google Scholar 

  • Govindarajan VS, Salzer UJ (1985) Capsicum-production, technology, and quality. Part 1: History, botany, cultivation, and primary processing. Crit Rev Food Sci Nutr 22:109–176

    Article  CAS  PubMed  Google Scholar 

  • Guan DY, Yang F, Xia XQ, Shi YY, Yang S, Cheng W, He SL (2018) CaHSL1 acts as a positive regulator of pepper thermotolerance under high humidity and is transcriptionally modulated by CaWRKY40. Front Plant Sci 9:1802

    Article  PubMed  PubMed Central  Google Scholar 

  • Guiffrida F, Cassaniti C, Leonardi C (2013) The influence of rootstock on growth and ion concentrations in pepper (Capsicum annuum L.) under saline conditions. J Hort Sci Biotechnol 88:110–116

    Article  Google Scholar 

  • Guo M, Liu JH, Lu JP, Zhai YF, Wang H, Gong ZH, Wang SB, Lu MH (2015) Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress. Front Plant Sci 6:806

    PubMed  PubMed Central  Google Scholar 

  • Guo M, Liu JH, Ma X, Zhai YF, Gong ZH, Lu MH (2016) Genome-wide analysis of the Hsp70 family genes in pepper (Capsicum annuum L.) and functional identification of CaHsp70-2 involvement in heat stress. Plant Sci 252:246–256

    Article  CAS  PubMed  Google Scholar 

  • Guzman I, Hamby S, Romero J, Bosland PW, O’Connell MA (2010) Variability of carotenoid biosynthesis in orange colored Capsicum spp. Plant Sci 179:49–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha S, Kim J, Park J, Lee S, Cho K (2007) A comparison of the carotenoid accumulation in Capsicum varieties that show different ripening colours: deletion of the capsanthin-capsorubin synthase gene is not a prerequisite for the formation of a yellow pepper. J Exp Bot 58:3135–3144

    Article  CAS  PubMed  Google Scholar 

  • Hajihassani A, Rutter WB, Luo X (2019) Resistant pepper carrying N, Me1, and Me3 have different effects on penetration and reproduction of four major Meloidogyne species. J Nematol. https://doi.org/10.21307/jofnern-2019-020

    Article  PubMed  PubMed Central  Google Scholar 

  • Han K, Lee HY, Ro N, Hur O, Lee J, Kwon J, Kang BC (2018) QTL mapping and GWAS reveal candidate genes controlling capsaicinoid content in Capsicum. Plant Biotechnol J 16:1546–1558

    Article  CAS  PubMed Central  Google Scholar 

  • Heidari-Zefreh AA, Shariatpanahi ME, Mousavi A, Kalatejari S (2019) Enhancement of microspore embryogenesis induction and plantlet regeneration of sweet pepper (Capsicum annuum L.) using putrescine and ascorbic acid. Protoplasma 256:13–24

    Article  CAS  PubMed  Google Scholar 

  • Herbers K, Conrads-Strauch J, Bonas U (1992) Race-specificity of plant resistance to bacterial spot disease determined by repetitive motifs in a bacterial avirulence protein. Nature 356:172–174

    Article  CAS  Google Scholar 

  • Heuvelink E, Korner O (2001) Parthenocarpic fruit growth reduces yield fluctuation and blossom-end rot in sweet pepper. Ann Bot 88:69–74

    Article  Google Scholar 

  • Hill TA, Ashrafi H, Reyes-Chin-Wo S, Yao JQ, Stoffel K, Truco MJ, Kozik A, Michelmore RW, Van Deynze A (2013) Characterization of Capsicum annuum genetic diversity and population structure based on parallel polymorphism discovery with a 30 K unigene pepper genechip. PLoS ONE 8:e56200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornero-MendezD., Guevara R, Minguez-Mosquera IM (2000) Carotenoid biosynthesis changes in five red pepper (Capsicum annuum L.) cultivars during ripening. Cultivar selection for breeding. J Agri Food Chem 48: 3857–3864

    Google Scholar 

  • Huang G, Allen R, Davis EL, Baum TJ, Hussey RS (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci USA 103:14302–14306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huberman M, Riov J, Aloni B, Goren R (1997) Role of ethylene biosynthesis and auxin content and transport in high temperature-induced abscission of pepper reproductive organs. J Plant Growth Regul 16:129–135

    Article  CAS  Google Scholar 

  • Hulse-Kemp A, Maheshwari S., Stoffel K, Hill TA, Jaffe D, Williams SR, Weisenfeld N, Ramakrishnan S, Kumar V, Shah P, Schatz MC, Church DM, Van Deynze A (2018) Reference quality assembly of the 3.5-Gb genome of Capsicum annuum from a single linked-read library. Hort Res 5:4

    Google Scholar 

  • Hurtado-Hernandez H, Smith PG (1985) Inheritance of mature fruit color in Capsicum annuum L. J Hered 76:211–213

    Article  Google Scholar 

  • IPPC (2014) Climate change 2014: synthesis report. Contribution of working Groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. [Core Writing Team, Pachauri RK, Meyer LA (eds)]. Geneva, Switzerland, IPCC, 151 pp. https://www.ipcc.ch/report/ar5/syr/

  • Isbat M, Zeba N, Kim SR, Hong CB (2009) A BAX inhibitor-1 gene in Capsicum annuum is induced under various abiotic stresses and endows multi-tolerance in transgenic tobacco. J Plant Physiol 166:1685–1693

    Article  CAS  PubMed  Google Scholar 

  • Jang YK, Jung ES, Lee H, Choi D, Lee CH (2015) Metabolomic characterization of hot pepper (Capsicum annuum “CM334”) during fruit development. J Agri Food Chem 63:9452–9460

    Article  CAS  Google Scholar 

  • Jarret RL, Barboza GE, Batista FRC, Berke T, Chou Y, Hulse-Kemp A, Ochoa-Alejo N, Tripodi P, Veres A, Garcia CC, Csillery G, Huan Y, Kiss E, Kovacs Z, Kondrak M, Arce-Rodriguez ML, Scaldaferro MA, Szoke A (2019) Capsicum—An abbreviated compendium. J Amer Soc Hort Sci 144:3–22

    Article  Google Scholar 

  • Jo YD, Ha Y, Lee JH, Park M, Bergsma AC, Choi HI, Goritschnig S, Kloosterman B, van Dijk PJ, Choi D, Kang BC (2016) Fine mapping of Restorer-of-fertility in pepper (Capsicum annuum L.) identified a candidate gene encoding a pentatricopeptide repeat (PPR)-containing protein. Theor Appl Genet 129: 2003-2017

    Article  CAS  PubMed  Google Scholar 

  • Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J, Jones MGK, Kikuchi T, Manzanilla-Lopez R, Palomares-Rius JE, Wesemael WML, Perry RN (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14:946–961

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones DA, Takemoto D (2004) Plant innate immunity—direct and indirect recognition of general and specific pathogen-associated molecules. Curr Opin Immunol 16:48–62

    Article  CAS  PubMed  Google Scholar 

  • Kaiser S (1935) The factors governing shape and size in Capsicum fruits; a genetic and developmental analysis. Bull Torr Bot Club 62:433–445

    Article  Google Scholar 

  • Kang BC, Nahm SH, Huh JH, Yoo HS, Yu JW, Lee MH, Kim BD (2001) An interspecific (Capsicum annuum × C. chinense) F-2 linkage map in pepper using RFLP and AFLP. Theor Appl Genet 102:531–539

    Article  CAS  Google Scholar 

  • Keyhaninejad N, Curry J, Romero J, O’Connell MA (2014) Fruit specific variability in capsaicinoid accumulation and transcription of structural and regulatory genes in Capsicum fruit. Plant Sci 215:59–68

    Article  PubMed  CAS  Google Scholar 

  • Khan Z, Kim SG, Jeon YH, Khan HU, Son SH, Kim YH (2008) A plant growth promoting rhizobacterium Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode. Bioresour Technol 99:3016–3023

    Article  CAS  PubMed  Google Scholar 

  • Kilcrease J, Rodriguez-Uribe L, Richins RD, Victorino AJM, O’Connell MA (2015) Correlations of carotenoid content and transcript abundance for fibrillin and carotonogenic enzymes in Capsicum annum fruit pericarp. Plant Sci 232:57–66

    Article  CAS  PubMed  Google Scholar 

  • Kim DS, Hwang BK (2014) An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signaling of the defense response to microbial pathogens. J Exp Bot 65:2295–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DS, Kim DH, Yoo JH, Kim BD (2006) Cleaved amplified polymorphic sequence and amplified fragment length polymorphism markers linked to the fertility restorer gene in chili pepper (Capsicum annuum L.). Mol Cells 21:135–140

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Kang JGK, Kim BD (2007) Isolation and characterization of the cytoplasmic male sterility-associated orf456 gene of chili pepper (Capsicum annuum L.) Plant Mol Biol 63: 519–532

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Park M, Yeom SI, Kim YM Lee JM, Lee, HA, Seo E, Choi J, Cheong K, Kim KT, Jung K, Lee GW, Oh SK, Bae C, Kim SB, Lee, HY, Kim, SY, Kim, MS, Kang BS, Jo YD, Yang HB, Jeong HJ, Kang WH, Kwon JK, Shin C, Lim JY, Park JH, Huh JS, Kim BD, Kim O, Cohen I, Paran MC, Suh SB, Lee YK, Kim Y, Shin SJ, Noh J, Park YS, Seo SY, Kwon HA, Kim JM, Park HJ, Kim SB, Choi PW, Bosland G, Reeves SH, Jo BW, Lee HT, Cho HS, Choi MS, Lee Y, YuY, Do Choi BS, Park A, van Deynze H, Ashrafi T, Hill WT, Kim HS, Pai HK, Ahn I, Yeam, JJ, Giovannoni JK, Rose I, Sørensen SJ, Lee RW, Kim IY, Choi BS, Choi JS, Lim YH, Lee, Choi, D. (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Park J, Yeom S, Kim YM, Seo E, Kim K, Kim M, Lee J, Cheong K, Shin H, Kim S, Han K, Lee J, Park M, Lee H, Lee H, Lee Y, Oh S, Lee JH, Choi E, Choi E, Lee S, Jeon J, Kim H, Choi G, Song H, Lee J, Lee S, Kwon J, Lee H, Koo N, Hong Y, Kim RW, Kang WH, Huh JH, Kang BC, Yang T, Lee YH, Bennetzen JL, Choi D (2017) New reference genome sequences of hot pepper reveal the massive evolution of plant disease resistance genes by retroduplication. Genome Biol 18:210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim N, Kang WH, Lee J, Yeom S (2019) Development of clustered resistance gen analogs-based markers of resistance to Phytophthora capsici in chilli pepper. Biomed Res Int 1093186

    Google Scholar 

  • Kim SJ, Lee SJ, Kim B-D, Paek K-H (1997) Satellite-RNA-mediated resistance to cucumber mosaic virus in transgenic plants of hot pepper (Capsicum annuum cv. Golden Tower). Plant Cell Reports 16 (12):825–830

    Article  CAS  PubMed  Google Scholar 

  • Kissinger M, Tuvia-Alkalai S, Shalom Y, Fallik E, Elkind Y, Jenks MA, Goodwin MS (2005) Characterization of physiological and biochemical factors associated with postharvest water loss in ripe pepper fruit during storage. J Am SocHortic Sci 130:735–741

    CAS  Google Scholar 

  • Kothari SL, Joshi A, Kachhwaha S, Ochoa-Alejo N (2010) Chilli peppers—A review on tissue culture and trasngenesis. Biotechnol Adv 28:35–48

    Article  CAS  PubMed  Google Scholar 

  • Ko MK, Soh H, Kim KM, Kim YS (2007) Stable production of transgenic pepper plants mediated by Agrobacterium tumefaciens. HortScience 42:1425–1430

    Article  CAS  Google Scholar 

  • Kraft KH, Brown CH, Nabhan GP, Luedeling E, Ruiz JJL, Coppens d’Eeckenbrugge G, Hijmans RJ, Gepts P (2013) Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico. Proc Natl Acad Sci USA 111:6165–6170

    Article  CAS  Google Scholar 

  • Lee SJ, Kim BS (2012) Evaluation of pepper genetic resources (Capsicum spp.) for disease resistance breeding. Kor J Hort Sci Technol 30:185–191

    Google Scholar 

  • Lee JM, Nahm SH, Kim YM, Kim BD (2004) Characterization and molecular genetic mapping of microsatellite loci in pepper. Theor Appl Genet 108:619–627

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Yoon JB, Park HG (2008) A CAPS marker associated with the partial restoration of cytoplasmic male sterility in chili pepper (Capsicum annuum L.). Mol Breed 21:95–104

    Article  CAS  Google Scholar 

  • Lee J, Park S, Do J, Han JH, Choi D, Yoon JB (2013) Development of a genetic map of chili pepper using single nucleotide polymorphism markers generated from next generation resequencing of parents. Kor J Hort Sci Technol 31:473–482

    CAS  Google Scholar 

  • Lefebvre V, Pflieger S, Thabuis A, Caranta C, Blattes A, Chauvet JC, Daubeze AM, Palloix A (2002) Towards the saturation of the pepper linkage map by alignment of three intraspecific maps including known-function genes. Genome 45:839–854

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Huang Y, Bergelson J, Nordborg M, Borevitz JO (2010) Association mapping of local climate-sensitive quantitative trait loci in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:21199–21204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li WP, Cheng JW, Wu ZM, Qin C, Tan S, Tang X, Cui JJ, Zhang L, Hu KL (2015a) An InDel-based linkage map of hot pepper (Capsicum annuum). Mol Breed 35:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lightbourn GJ, Stommel JR, Griesbach RJ (2007) Epistatic interactions influencing anthocyanin gene expression in Capsicum annuum. J Am Soc Hort Sci 132:824–829

    Article  CAS  Google Scholar 

  • Liu Y, Tikunov Y, Schouten RE, Marcelis LFM, Visser RGF, Bovy A (2018) Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: a review. Front Chem 6:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Locascio SJ, Stall WM (1994) Bell pepper yield as influenced by plant spacing and row arrangement. J Am Soc Hort Sci 119:899–902

    Article  Google Scholar 

  • Lopez-Marin J, Gonzalez A, Perez-Alfocea F, Egea-Gilabert C, Fernandez JA (2013) Grafting is an efficient alternative to shading screens to alleviate thermal stress in greenhouse-growth sweet pepper. Sci Hort 149:39–46

    Article  Google Scholar 

  • Lu F, Cho MC, Park YJ (2012a) Transcriptome profiling and molecular marker discovery in red pepper, Capsicum annuum L. TF68. Mol Biol Rep 39:3327–3335

    Article  CAS  PubMed  Google Scholar 

  • Lu F, Kwon SW, Yoon MY, Kim KT, Cho MC, Yoon M, Park YJ (2012b) SNP marker integration and QTL analysis of 12 agronomic and morphological traits in F8 RILs of pepper (Capsicum annuum L.). Mol Cells 34:25–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zou C, Xu J, Ji X, Niu X, Yang J, Huang X, Zhang K (2015b) Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes. Annu Rev Phytopathol 53:67–95

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Hill BD (2008) Neural network modeling to predict weekly yields of sweet peppers in a commercial greenhouse. Can J Plant Sci 88:531–536

    Article  Google Scholar 

  • Lin W, Dietmar F (2009) Combined analysis to characterize yield pattern of greenhouse-grown red sweet peppers. HortScience 44:362–365

    Article  Google Scholar 

  • Livingstone KD, Lackney VK, Blauth JR, van Wijk R, Jahn MK (1999) Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:1183–1202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maboko MM, Plooy D, Phillipus C (2015) Effect of plant growth regulators on growth, yield, and quality of sweet pepper plants grown hydroponically. HortScience 50:383–386

    Article  CAS  Google Scholar 

  • Mahasuk P, Struss D, Mongkolporn O (2016) QTLs for resistance to anthracnose identified in two Capsicum sources. Mol Breed 36:10

    Article  CAS  Google Scholar 

  • Maharijaya A, Vosman B, Pelgrom K, Wahyuni Y, De Vos RCH, Voorrips RE (2019) Genetic variation in phytochemicals in leaves of pepper (Capsicum) in relation to thrips resistance. Arthropod Plant Interact 13:1–9

    Article  Google Scholar 

  • Maharijaya A, Vosman B, Steenhuis-Broers G, Pelgrom K, Purwito A, Visser RGF, Voorrips RE (2015) QTL mapping of thrips resistance in pepper. Theor Appl Genet 128:1945–1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manoj Kumar A, Reddy KN, Manjulatha M, Arellano ES, Rohini S, Girija G (2011) A rapid, novel and high-throughput identification of putative bell pepper transformants generated through in planta transformation approach. Sci Hort 129:898–903

    Article  Google Scholar 

  • Mazourek M, Pujar A, Borovsky Y, Paran I, Mueller L, Jahn MM (2009) A dynamic interface for capsaicinoid systems biology. Plant Physiol 150:1806–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meena OP, Dhaliwal MS, Jindal SK (2018) Development of cytoplasmic male sterile lines in chilli (Capsicum annuum L.) and their evaluation across multiple environments. Breed Sci 68:404–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercado JA, Reid MS, Valpuesta V, Quesada MA (1997) Metabolic changes and susceptibility to chilling stress in Capsicum annuum plants grown at suboptimal temperature. Aust J Plant Physiol 24:759–767

    CAS  Google Scholar 

  • Minamiyama Y, Tsuro M, Hirai M (2006) An SSR-based linkage map of Capsicum annuum. Mol Breed 18:57–169

    Article  CAS  Google Scholar 

  • Moury B, Selassie KG, Marchoux G, Daubeze AM, Palloix A (1998) High temperature effects on hypersensitive resistance to Tomato Spotted wilt Tospovirus (TSWV) in pepper (Capsicum chinense Jacq.). Eur J Plant Pathol 104:489–498

    Article  Google Scholar 

  • Naegele RP, Granke LL, Fry J, Hill TA, Ashrafi H, Van Deynze A, Hausbeck MK (2017) Disease resistance to multiple fungal and oomycete pathogens evaluated using a recombinant inbred line population in pepper. Phytopathology 107:1522–1531

    Article  CAS  PubMed  Google Scholar 

  • Nascimento NF, Do Rego ER, Nascimento MF, Bruckner CH, Finger FL, Do Rego MM (2014) Combining ability for yield and fruit quality in the pepper Capsicum annuum. Genet Mol Res 13:3237–3249

    Article  PubMed  Google Scholar 

  • Nimmakayala P, Abburi VL, Saminathan T, Alaparthi SB, Almeida A, Davenport B, Nadimi M, Davidson J, Tonapi K, Yadav L, Malkaram S, Vajja G, Hankins G, Harris R, Park M, Choi D, Stommel J, Reddy UK (2016a) Genome-wide diversity and association mapping for Capsaicinoids and fruit weight in Capsicum annuum. Sci Rep 6:38081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimmakayala P, Abburi VL, Saminathan T, Almeida A, Davenport B, Davidson J, Reddy CVCM, Hankins G, Ebert A, Choi D, Stommel J, Reddy UK (2016b) Genome-wide divergence and linkage disequilibrium analyses for Capsicum baccatum revealed by genome-anchored single nucleotide polymorphisms. Front Plant Sci 7:1646

    PubMed  PubMed Central  Google Scholar 

  • Niu G, Rodriguez DS, Crosby K, Leskovar D, Jifon J (2010) Rapid screening for relative salt tolerance among chile pepper genotypes. HortScience 45:1192–1195

    Article  Google Scholar 

  • Ogawa D, Ishikawa K, Nunomura O, Mii M (2010) Correlation between fruit characters and degree of polysomaty in fruit tissues of Capsicum. J Jpn Soc Hort Sci 79:168–173

    Article  Google Scholar 

  • Oliveira Vilarinho LB, Silva DJH, Greene A, Salazar KD, Alves C, Eveleth M, Nichols B, Tehseen S, Khoury JK Jr, Johnson JV, Sargent SA, Rathinasabapathi B (2015) Inheritance of fruit traits in Capsicum annuum: heirloom cultivars as sources of quality parameters relating to pericarp shape, color, thickness and total soluble solids. J Am Soc Hort Sci 140:597–604

    Article  Google Scholar 

  • Ortega JL, Rajapakse W, Bagga S, Apodaca K, Lucero Y, Sengupta-Gopalan C (2018) An intragenic approach to confer glyphosate resistance in chile (Capsicum annuum) by introducing an in vitro mutagenized chile EPSPS gene encoding for a glyphosate resistant EPSPS protein. PLoS ONE 13:e0194666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osorio S, Alba R, Nikoloski Z, Kochevenko A, Fernie AR, Giovannoni JJ (2012) Integrative comparative analyses of transcript and metabolite profiles from pepper and tomato ripening and development stages uncovers species-specific patterns of network regulatory behavior. Plant Physiol 159:1713–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ou L, Li D, Lv J, Chen W, Zhang Z, Li X, Yang B, Zhou S, Yang S, Li W, Gao H, Zeng Q, Yu H, Ouyang B, Li F, Liu F, Zheng J, Liu Y, Wang J, Wang B, Dai X, Ma Y, Zou X (2018) Pan-genome of cultivated pepper (Capsicum) and its use in gene presence-absence variation analyses. New Phytol 220:360–363

    Article  PubMed  Google Scholar 

  • Pabon-Mora N, Litt A (2011) Comparative anatomical and developmental analysis of dry and fleshy fruits of Solanaceae. Amer J Bot 98:1415–1436

    Article  Google Scholar 

  • Pagamas P, Nawata E (2008) Sensitive stages of fruit and seed development of chili pepper (Capsicum annuum L. var. Shishito) exposed to high-temperature stress. Sci Hortic 117:21–25

    Article  CAS  Google Scholar 

  • Palloix A, Ayme V, Moury B (2009) Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. New Phytol 183:190–199

    Article  CAS  PubMed  Google Scholar 

  • Paran I, Van der Voot JR, Lefebvre V, Jahn M, Landry L, Van Schriek M, Tanyolac B, Caranta C, Ben Chaim A, Livingstone K, Palloix A, Peleman J (2004) An integrated genetic linkage map of pepper (Capsicum spp.). Mol Breed 13:251–261

    Article  CAS  Google Scholar 

  • Paran I, Van der Knaap E (2007) Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J Exp Bot 58:3841–3852

    Article  CAS  PubMed  Google Scholar 

  • Park M, Park J, Kim S, Kwon J, Park H, Bae IH, Yang T, Lee Y, Kang BC, Choi D (2011) Evolution of the large genome in Capsicum annuum occurred through accumulation of single-type LTR-retrotransposons and their derivatives. Plant J 69:1018–1029

    Article  PubMed  CAS  Google Scholar 

  • Pegard A, Brizzard G, Fazari A, Soucaze O, Abad P, Djian-Caporalino C (2005) Histological characterization of resistance to different root-knot nematodes species related to phenolics accumulation in Capsicum annuum. Phytopathology 95:158–165

    Article  CAS  PubMed  Google Scholar 

  • Penella C, Landi M, Guidi L, Nebauer SG, Pellegrini E, Bautista AS, Remorini D, Nali C, Lopez-Galarza S, Calatayud A (2016) Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength. J Plant Physiol 193:1–11

    Article  CAS  PubMed  Google Scholar 

  • Penella C, Nebauer SG, Lopez-Galarza S, Quinones A, Bautista AS, Calatayud A (2017) Grafting pepper onto tolerant rootstocks: an environmental-friendly technique to overcome water and salt stress. Sci Hort 226:33–41

    Article  Google Scholar 

  • Peterson PA (1958) Cytoplasmically inherited male sterility in Capsicum. Amer Natur 92:111–119

    Article  Google Scholar 

  • Pickersgill B (1997) Genetic resources and breeding of Capsicum spp. Euphytica 96:129–133

    Article  Google Scholar 

  • Pressman E, Moshkovitch H, Rosenfeld K, Shaked R, Gamliel B, Aloni B (1998) Influence of low night temperature on sweet pepper flower quality and the effect of repeated pollinations, with viable pollen, on fruit setting. J Hort Sci BioTechnol 73:131–136

    Article  Google Scholar 

  • Qin C, Yu C, Shen Y, Fang X, Chen L, Min UJ, Cheng J, Zhao S, Xu M, Luo Y, Yang Y, Wu Z, Mao L, Wu H, Ling-Hu C, Zhou H, Lin H, Gonzalez-Morales S, Trejo-Saavedra DL, Tian H, Tang X, Zhao M, Huang Z, Zhou A, Yao X, Cui J, Li W, Chen Z, Feng Y, Niu Y, Bi S, Yang X, Li W, Cai H, Luo X, Montes-Hernandez S, Leyva-Gonzalez MA, Xiong Z, He X, Bai L, Tan S, Tang X, Liu D, Liu J, Zhang S, Chen M, Zhang L, Zhang L, Zhang Y, Liao W, Zhang Y, Wang M, Lv X, Wen B, Liu H, Luan H, Zhang Y, Yang S, Wang X, Xu J, Li X, Li S, Wang J, Palloix A, Bosland PW, Li Y, Krogh A, Rivera-Bustamante RF, Herrera-Estrella L, Yin Y, Yu J, Hu K, Zhang Z (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci USA 111:5135–5140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramalho do Rego E, Monteiro do Rego M, Cruz CD, Finger FL, Dias Casali VW (2011) Phenotypic diversity, correlation and importance of variables for fruit quality and yield traits in Brazilian peppers (Capsicum baccatum). Genet Resour Crop Evol 58:909–918

    Google Scholar 

  • Rao GU, Ben Chaim A, Borovsky Y, Paran I (2003) Mapping of yield-related QTLs in pepper in an interspecific cross of Capsicum annuum and C. frutescens. Theor Appl Genet 106:1457–1466

    Article  CAS  PubMed  Google Scholar 

  • Reddy KR, Kakani VG (2007) Screening Capsicum species of different origins for high temperature tolerance by in vitro pollen germination and pollen tube length. Sci Hort 112:130–135

    Article  Google Scholar 

  • Rehrig WZ, Ashrafi H, Hill T, Prince J, Van Deynze A (2014) CaDMR1 cosegregates with QTL Pc5.1 for resistance to Phytophthora capsici in pepper (Capsicum annuum). Plant Genome 7:1–12

    Article  CAS  Google Scholar 

  • Richins RD, Micheletto S, O’Connell MA (2010) Gene expression profiles unique to chile (Capsicum annuum L.) resistant to Phytophthora root rot. Plant Sci 178 (2):192–201

    Article  CAS  Google Scholar 

  • Rigano MM, Lionetti V, Raiola A, Bellincampi D, Barone A (2018) Pectic enzymes as potential enhancers of ascorbic acid production through the D-galacturonate pathway in Solanaceae. Plant Sci 266:55–63

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez JM, Berke T, Engle L, Nienhuis J (1999) Variation among and within Capsicum species revealed by RAPD markers. Theor Appl Genet 99:147–156

    Article  CAS  Google Scholar 

  • Ropokis A, Nitatsi G, Kittas C, Katsoulas N, Savvas D (2019) Effect of temperature and grafting on yield, nutrient uptake, and water use efficiency of a hydroponic sweet pepper crop. Agronomy MDPI 9:110

    Article  CAS  Google Scholar 

  • Rosado-Souza L, Scossa F, Chaves IS, Kleessen S, Salvador LFD, Milagre JC, Finger F, Bhering LL, Sulpice R, Aranjo WL, Nikoloski Z, Fernie AR, Nunes-Nesi A (2015) Exploring natural variation of photosynthetic, primary metabolism and growth parameters in a large panel of Capsicum chinense accessions. Planta 242:677–691

    Article  CAS  PubMed  Google Scholar 

  • Rubio JS, Garcia-Sanchez F, Martinez RV (2009) Yield, blossom-end rot incidence, and fruit quality in pepper plants under moderate salinity are affected by K+ and Ca2+ fertilization. Sci Hort 119:79–87

    Article  CAS  Google Scholar 

  • Sakamoto M, Munemura I, Tomita R, Kobayashi K (2008) Involvement of hydrogen peroxide in leaf abscission signaling, revealed by analysis with an in vitro abscission system in Capsicum plants. Plant J 56:13–27

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Bel P, Egea I, Sanchez-Ballesta MT, Martinez-Madrid C, Fernandez-Garcia N, Romojaro F, Olmos E, Estrella E, Bolarin MC, Flores FB (2012) Understanding the mechanisms of chilling injury in bell pepper fruits using the proteomic approach. J Proteom 75:5463–5478

    Article  CAS  Google Scholar 

  • Sarath Babu B, Pandravada SR, Prasada Rao RDVJ, Anitha K, Chakrabarty SK, Varaprasad KS (2011) Global sources of pepper genetic resources against arthropods, nematodes and pathogens. Crop Protec 30:389–400

    Article  Google Scholar 

  • Saure MC (2014) Why calcium deficiency is not the cause of blossom-end rot in tomato and pepper fruit—a reappraisal. Sci Hort 174:151–154

    Article  CAS  Google Scholar 

  • Seid A, Fininsa C, Mekete T, Decraemer W, Wesemael WML (2015) Tomato (Solanum lycopersicum) and root-knot nematodes (Meloidogyne spp.)—a century-old battle. Nematology 17:995–1009

    Article  CAS  Google Scholar 

  • Sezen SM, Yazar A, Eker S (2006) Effect of drip irrigation regimes on yield and quality of field grown bell pepper. Agri Water Manag 81:115–131

    Article  Google Scholar 

  • Seymour GB, Manning K, Eriksson EM, Popovich AH, King GJ (2002) Genetic identification and genomic organization of factors affecting texture. J Exp Bot 53:2065–2071

    Article  CAS  PubMed  Google Scholar 

  • Shin R, Han JH, Lee G, Peak KH (2002) The potential use of a viral coat protein gene as a transgene screening marker and multiple virus resistance of pepper plants coexpressing coat proteins of cucumber mosaic virus and tomato mosaic virus. Transgen Res 11:215–219

    Article  CAS  Google Scholar 

  • Shifriss C (1997) Male sterility in pepper (Capsicum annuum L.). Euphytica 93:83–88

    Article  Google Scholar 

  • Singh Y, Sharma M, Sharma A (2009) Genetic variation, association of characters, and their direct and indirect contributions for improvement in chilli peppers. Intl J Veg Sci 15:340–368

    Article  Google Scholar 

  • Sivakumara TN, Chaudhary S, Kamaraju D, Dutta TK, Papolu PK, Banakar P, Sreevastha R, Singh B, Manjaiah KM, Rao U (2017) Host-induced silencing of two pharyngeal gland genes conferred transcriptional alteration of cell wall-modifying enzymes of Meloidogyne incognita vis-à-vis perturbed nematode infectivity in eggplant. Front Plant Sci 8:473

    Google Scholar 

  • Sood S, Kumar N (2010) Heterotic expression for fruit yield and yield components in intervarietal hybrids of sweet pepper (Capsicum annuum L. var. grossum Sendt.). SABRAO J Breed Genet 42:106–116

    Google Scholar 

  • Song EG, Ryu KH (2017) Engineering resistance to a resistance-breaking strain of Cucumber mosaic virus in plants utilizing viral dsRNA. Plant Biotechnol Rep 11:429–438

    Article  Google Scholar 

  • Stall RE, Jones JB Minsavage GV (2009) Durability of resistance in tomato and pepper to Xanthomonads causing bacterial spot. Annu Rev Phytopathol 47:265–284

    Article  CAS  PubMed  Google Scholar 

  • Stommel JR, Lightbourn GJ, Winkel BS, Griesbach RJ (2009) Transcription factor families regulate the anthocyanin biosynthetic pathway in Capsicum annuum. J Am Soc Hort Sci 134:244–251

    Article  Google Scholar 

  • SWREC (2019) Southwest Florida Research & Education Center, University of Florida. Vegetable Variety Testing Program. Web document: https://swfrec.ifas.ufl.edu/programs/veg-hort/veg-variety/peppers/. Accessed 31 May 2019

  • Silvar C, Garcia-Gonzalez CA (2016) Deciphering genetic diversity in the origins of pepper (Capsicum spp.) and comparison with worldwide variability. Crop Sci 56:3100–3111

    Article  CAS  Google Scholar 

  • Sun GS, Dai ZL, Bosland PW, Wang Q, Sun CQ, Zhang ZC, Ma ZH (2016) Characterizing and marker-assisting a novel chili pepper (Capsicum annuum L.) yellow bud mutant with cytoplasmic male sterility. Genet Mol Res 16: gmr16019459

    Google Scholar 

  • Sun JT, Cheng GX, Huang LJ, Liu S, Ali M, Khan A, Yu QH, Yang SB, Luo DX, Gong ZH (2019) Modified expression of a heat shock protein gene, CaHSP22.0, results in high sensitivity to heat and salt stress in pepper (Capsicum annuum L.). Sci Hort 249:364–373

    Article  CAS  Google Scholar 

  • Thiele R, Muller-Seitz E, Petz M (2008) Chili pepper fruits: presumed precursors of fatty acids characteristic for capsaicinoids. J Agri Food Chem 56:4218–4224

    Article  CAS  Google Scholar 

  • Thies JA, Fery RL (1998) Modified expression of the N gene for southern root-knot nematode resistance in pepper at high soil temperatures. J Am Soc Hort Sci 123:1012–1015

    Article  CAS  Google Scholar 

  • Thies JA, Fery RL (2000) Characterization of resistance conferred by the N gene to Meloidogyne arenaria races 1 and 2, M. hapla, and M. javanica in two sets of isogenic lines of Capsicum annuum. J Am Soc Hort Sci 125:71–75

    Article  Google Scholar 

  • Thorup TA, Tanyolac B, Livingstone KD, Popovsky S, Paran I, Jahn M (2000) Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proc Natl Acad Sci USA 97:11192–11197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tijskens LMM, Otma EC, Van Kooten O (1994) Photosystem II quantum yield as a measure of radical scavengers in chilling injury in cucumber fruits and bell peppers. Planta 194:478–486

    Article  CAS  Google Scholar 

  • Tiwari A, Offringa R, Heuvelink E (2012) Auxin-induced fruit set in Capsicum annuum L. requires downstream gibberellin biosynthesis. J Plant Growth Regul 31:570–578

    Article  CAS  Google Scholar 

  • Tsaballa A, Pasentsis K, Darzentas N, Tsaftaris AS (2011) Multiple evidence for the role of an Ovate-like gene in determining fruit shape in pepper. BMC Plant Biol 11:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • USDA (2019) Sweet pepper grades and standards. https://www.ams.usda.gov/grades-standards/sweet-peppers-grades-and-standards. Accessed 7 June 2019

  • Van Eck J (2018) Genome editing and plant transformation of solanaceous food crops. Curr Opinn BioTechnol 49:35–41

    Article  CAS  Google Scholar 

  • Velosco J, Prego C, Varela MM, Carballeira R, Bernal A, Merino F, Diaz J (2014) Properties of capsaicinoids for the control of fungi and oomycetes pathogenic to pepper. Plant Biol 16:177–185

    Article  CAS  Google Scholar 

  • Vicente AR, Pineda C, Lemoine L, Civello PM, Martinez GA, Chaves AR (2005) UV-C treatments reduce decay, retain quality and alleviate chilling injury in pepper. Postharvest Biol Technol 35:69–78

    Article  CAS  Google Scholar 

  • Vidi PA, Kanwischer M, Baginsky S, Austin JR, Csucs G, Dormann P, Kessler F, Brehelin C (2006) Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. J Biol Chem 281:11225–11234

    Article  CAS  PubMed  Google Scholar 

  • Visschers IGS, Peters JL, Van de Vondervoort JAH, Hoogveld RHM, Van Dam NM (2019) Thrips resistance screening is coming of age: leaf position and ontogeny are important determinants of leaf-based resistance in pepper. Front Plant Sci 10:510

    Article  PubMed  PubMed Central  Google Scholar 

  • Wahyuni Y, Ballester A, Sudarmonowati E, Bino RJ, Bovy AG (2011) Metabolite biodiversity in pepper (Capsicum) fruits of thirty-two diverse accessions: variation in health-related compounds and implications for breeding. Phytochemistry 72:1358–1370

    Article  CAS  PubMed  Google Scholar 

  • Wahyuni Y, Ballester A, Tikunov Y, De Vos RC, Pelgrom KTB, Mahrijaya A, Sudarmonowati E, Bino RJ, Bovy AG (2013) Metabolomics and molecular marker analysis to explore pepper (Capsicum sp.) biodiversity. Metabolomics 9:130–144

    Article  CAS  PubMed  Google Scholar 

  • Wahyuni Y, Stahl-Hermes V, Ballester A, De Vos RCH, Voorrips RE, Maharijaya A, Moltthoff J, Zamora MV, Sudarmonowati E, Arisi ACM, Bino RJ, Bovy AG (2014) Genetic mapping of semi-polar metabolites in pepper fruits (Capsicum sp.): toward unravelling the molecular regulation of flavonoid quantitative trait loci. Mol Breed 33:503–518

    Article  CAS  PubMed  Google Scholar 

  • Wall MM, Waddell CA, Bosland PW (2001) Variation in β-carotene and total carotenoid content in fruits of Capsicum. HortScience 36:746–749

    Article  CAS  Google Scholar 

  • Wang P, Lu Q, Ai Y, Wang Y, Li T, Wu L, Liu J, Cheng Q, Sun L, Shen H (2019) Candidate gene selection for cytoplasmic male sterility in pepper (Capsicum annuum L.) through whole mitochondrial genome sequencing. Int J Mol Sci 20:578

    Article  CAS  PubMed Central  Google Scholar 

  • Wang D, Bosland PW (2006) The genes of Capsicum. HortScience 41:1169–1187

    Article  CAS  Google Scholar 

  • Wu F, Eannetta NT, Xu Y, Durrett R, Mazourek M, Jahn MM, Tanksley SD (2009) A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evoluation in the genus Capsicum. Theor Appl Genet 118:1279–1293

    Article  CAS  PubMed  Google Scholar 

  • Yadav BC, Veluthambi K, Subramaniam K (2006) Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol Biochem Parasitol 148:219–222

    Article  CAS  PubMed  Google Scholar 

  • Yi GB, Lee JM, Lee S, Choi D, Kim BD (2006) Exploitation of pepper EST-SSRs and an SSR-based linkage map. Theor Appl Genet 114:113–130

    Article  CAS  PubMed  Google Scholar 

  • Zhu YX, OuYang WJ, Zhang YF, Chen ZL (1996) Transgenic sweet pepper plants from Agrobacterium mediated transformation. Plant Cell Rep 16:71–75

    Article  CAS  PubMed  Google Scholar 

  • Zhu ZD, Sun BM, Wei JL, Cai W, Huang ZB, Chen CM, Cao BH, Chen GJ, Lei JJ (2019) Construction of a high-density genetic map of an interspecific cross of Capsicum chinense and Capsicum annuum and QTL analysis of floral traits. Sci Rep 1054

    Google Scholar 

  • Zhuo K, Chen JS, Lin BR, Wang J, Sun FX, Hu LL, Liao JL (2017) A novel Meloidogyne enterolobii effector MeTCTP promotes parasitism by suppressing programmed cell death in host plants. Mol Plant Pathol 18:45–54

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Jingwei Fu (University of Florida) for help with figures. Funding for the author’s research on Capsicum breeding is gratefully acknowledged: grants were from the College of Agriculture and Life Sciences, the US Department of Agriculture’s Agricultural and Marketing Service, and the Florida Department of Agriculture and Consumer Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bala Rathinasabapathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rathinasabapathi, B. (2020). Improving Vegetable Capsicums for Fruit Yield, Quality, and Tolerance to Biotic and Abiotic Stresses. In: Kole, C. (eds) Genomic Designing of Climate-Smart Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-319-97415-6_5

Download citation

Publish with us

Policies and ethics