Skip to main content

Analysis of Skeletal Muscle System Loads for the Most Optimal Positions During Lifting in Different Load Distances

  • Conference paper
  • First Online:
Biomechanics in Medicine and Biology (BIOMECHANICS 2018)

Abstract

The aim of this study was to determine the effect of the distance between load and the ankle joint on musculoskeletal system loading. The Any-Body software with the verified model was used for calculations of loads of muscoskeletal system during the initial phase of lifting. A total of 3,485 static musculoskeletal models in different positions were analyzed, out of which 13 with optimal lumbar spine loads were selected. Recived data from model calculation were knee joint reactions, L5S1 intervertebral disc reactions and sum of squares of muscle forces. Results confirm that the musculoskeletal system loading increase with growth of the load distance. However, it is worth to notice that optimal models basing on reactions in lumbar spine are not optimal in terms of knee joint loads and energy expenditure. In addition, there was also no change in the reactions observed in the literature for a load distance of about 0.4 m. It indicates that this change may be the result of the habits of the subjects but not the actual increase in efficiency. These study is an introduction to a broader analysis of the presented issue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arjmand, N., Ekrami, O., Shirazi-Adl, A., Plamondon, A., Parnianpour, M.: Relative performances of artificial neural network and regression mapping tools in evaluation of spinal loads and muscle forces during static lifting. J. Biomech. 46, 1454–1462 (2013). https://doi.org/10.1016/j.jbiomech.2013.02.026

    Article  Google Scholar 

  2. Arjmand, N., Gagnon, D., Plamondon, A., Shirazi-Adl, A., Larivière, C.: A comparative study of two trunk biomechanical models under symmetric and asymmetric loadings. J. Biomech. 43, 485–491 (2010). https://doi.org/10.1016/j.jbiomech.2009.09.032

    Article  Google Scholar 

  3. Arjmand, N., Plamondon, A., Shirazi-Adl, A., Larivière, C., Parnianpour, M.: Predictive equations to estimate spinal loads in symmetric lifting tasks. J. Biomech. 44, 84–91 (2011). https://doi.org/10.1016/j.jbiomech.2010.08.028

    Article  Google Scholar 

  4. Arjmand, N., Plamondon, A., Shirazi-Adl, A., Parnianpour, M., Larivière, C.: Predictive equations for lumbar spine loads in load-dependent asymmetric one- and two-handed lifting activities. Clin. Biomech. 27, 537–544 (2012). https://doi.org/10.1016/j.clinbiomech.2011.12.015

    Article  Google Scholar 

  5. Bassani, T., Stucovitz, E., Qian, Z., Briguglio, M., Galbusera, F.: Validation of the AnyBody full body musculoskeletal model in computing lumbar spine loads at L4L5 level. J Biomech. (2017). https://doi.org/10.1016/j.jbiomech.2017.04.025

    Article  Google Scholar 

  6. Burgess-Limerick, R., Abernethy, B.: Effect of lead distance on self-selected manual lifting technique. Int. J. Ind. Ergon. 22, 367–372 (1998). https://doi.org/10.1016/S0169-8141(97)00090-5

    Article  Google Scholar 

  7. Chang, C.C., Brown, D.R., Bloswick, D.S., Hsiang, S.M.: Biomechanical simulation of manual lifting using spacetime optimization. J. Biomech. 34, 527–532 (2001). https://doi.org/10.1016/S0021-9290(00)00222-0

    Article  Google Scholar 

  8. Ciriello, V.M.: The effects of box size, frequency and extended horizontal reach on maximum acceptable weights of lifting. Int. J. Ind. Ergon. 32, 115–120 (2003). https://doi.org/10.1016/S0169-8141(03)00045-3

    Article  Google Scholar 

  9. Ciriello, V.M.: The effects of container size, frequency and extended horizontal reach on maximum acceptable weights of lifting for female industrial workers. Appl. Ergon. 38, 1–5 (2007). https://doi.org/10.1016/j.apergo.2006.02.001

    Article  Google Scholar 

  10. Colobert, B., Multon, F., Cretual, A., Delamarche, P.: Biomechanical simulation of human lifting. In: ESM 2003: 17th European Simulation Multiconference: Foundations for Successful Modelling and Simulation, pp. 318–322 (2003)

    Google Scholar 

  11. Van Dieën, J.H., Hoozemans, M.J.M., Toussaint, H.M.: Stoop or squat: a review of biomechanical studies on lifting technique. Clin. Biomech. 14, 685–696 (1999)

    Article  Google Scholar 

  12. Dreischarf, M., Rohlmann, A., Graichen, F., Bergmann, G., Schmidt, H.: In vivo loads on a vertebral body replacement during different lifting techniques. J. Biomech. 49, 890–895 (2016). https://doi.org/10.1016/j.jbiomech.2015.09.034

    Article  Google Scholar 

  13. Faber, G.S., Chang, C.C., Kingma, I., Dennerlein, J.T.: Estimating dynamic external hand forces during manual materials handling based on ground reaction forces and body segment accelerations. J. Biomech. 46, 2736–2740 (2013). https://doi.org/10.1016/j.jbiomech.2013.07.030

    Article  Google Scholar 

  14. Faber, G.S., Kingma, I., Bakker, A.J.M., van Dieën, J.H.: Low-back loading in lifting two loads beside the body compared to lifting one load in front of the body. J. Biomech. 42, 35–41 (2009). https://doi.org/10.1016/j.jbiomech.2008.10.013

    Article  Google Scholar 

  15. Fogleman, M., Smith, J.L.: The use of biomechanical measures in the investigation of changes in lifting strategies over extended periods. Int. J. Ind. Ergon. 16, 57–71 (1995). https://doi.org/10.1016/0169-8141(94)00087-J

    Article  Google Scholar 

  16. Gagnon, D., Larivière, C., Loisel, P.: Comparative ability of EMG, optimization, and hybrid modelling approaches to predict trunk muscle forces and lumbar spine loading during dynamic sagittal plane lifting. Clin. Biomech. 16, 359–372 (2001). https://doi.org/10.1016/S0268-0033(01)00016-X

    Article  Google Scholar 

  17. Guzik-Kopyto, A., Michnik, R., Wodarski, P., Chuchnowska, I.: Determination of loads in the joints of the upper limb during activities of daily living. In: Advances in Intelligent Systems and Computing, pp. 99–108 (2016). https://doi.org/10.1007/978-3-319-39904-1_9

    Google Scholar 

  18. Gzik, M., Wodarski, P., Jurkojć, J., Michnik, R., Bieniek, A.: Interactive system of enginering support of upper limb diagnosis. In: Advances in Intelligent Systems and Computing, pp. 115–123 (2017)

    Google Scholar 

  19. Hu, B., Ma, L., Zhang, W., Salvendy, G., Chablat, D., Bennis, F.: Predicting real-world ergonomic measurements by simulation in a virtual environment. Int. J. Ind. Ergon. 41, 64–71 (2011). https://doi.org/10.1016/j.ergon.2010.001

    Article  Google Scholar 

  20. Hwang, S., Kim, Y., Kim, Y.: Lower extremity joint kinetics and lumbar curvature during squat and stoop lifting. BMC Musculoskelet. Disord. (2009). https://doi.org/10.1186/1471-2474-10-15

  21. Jin, S., Mirka, G.A.: The effect of a lower extremity kinematic constraint on lifting biomechanics. Appl. Ergon. 42, 867–872 (2011). https://doi.org/10.1016/j.apergo.2011.02.003

    Article  Google Scholar 

  22. Jurkojć, J., Wodarski, P., Michnik, R., Nowakowska, K.: The upper limb motion deviation index: a new comprehensive index of upper limb motion pathology. Acta Bioeng. Biomech. 19, 175–185 (2016). https://doi.org/10.5277/ABB-00698-2016-02

    Article  Google Scholar 

  23. Katsuhira, J., Matsudaira, K., Iwakiri, K., Kimura, Y., Ohashi, T., Ono, R., Sugita, S., Fukuda, K., Abe, S., Maruyama, H.: Effect of mental processing on low back load while lifting an object. Spine 38, E832–E839 (2013). https://doi.org/10.1097/BRS.0b013e31829360e5. (Phila Pa 1976)

    Article  Google Scholar 

  24. Lee, J., Nussbaum, M.A.: Experienced workers may sacrifice peak torso kinematics/kinetics for enhanced balance/stability during repetitive lifting. J. Biomech. 46, 1211–1215 (2013). https://doi.org/10.1016/j.jbiomech.2013.01.011

    Article  Google Scholar 

  25. Michnik, R., Jurkojć, J., Wodarski, P., Gzik, M., Bieniek, A.: The influence of the scenery and the amplitude of visual disturbances in the virtual reality on the maintaining the balance. Arch. Budo 10, 133–140 (2014)

    Google Scholar 

  26. Michnik, R., Jurkojć, J., Wodarski, P., Gzik, M., Jochymczyk-Woźniak, K., Bieniek, A.: The influence of frequency of visual disorders on stabilographic parameters. Acta Bioeng. Biomech. 18, 25–33 (2016). https://doi.org/10.5277/ABB-00201-2014-04

    Article  Google Scholar 

  27. Mohammadi, Y., Arjmand, N., Shirazi-Adl, A.: Comparison of trunk muscle forces, spinal loads and stability estimated by one stability- and three EMG-assisted optimization approaches. Med. Eng. Phys. 37, 792–800 (2015). https://doi.org/10.1016/j.medengphy.2015.05.018

    Article  Google Scholar 

  28. Nowakowska, K., Gzik, M., Michnik, R., Myśliwiec, A., Jurkojć, J., Suchoń, S., Burkacki, M.: Innovations in Biomedical Engineering. Springer, Cham (2017)

    Google Scholar 

  29. Plamondon, A., Delisle, A., Bellefeuille, S., Denis, D., Gagnon, D., Larivière, C., IRSST MMH Research Group: Lifting strategies of expert and novice workers during a repetitive palletizing task. Appl. Ergon. 45, 471–481 (2014). https://doi.org/10.1016/j.apergo.2013.06.008

    Article  Google Scholar 

  30. Plamondon, A., Larivière, C., Denis, D., St-Vincent, M., Delisle, A.: Sex differences in lifting strategies during a repetitive palletizing task. Appl. Ergon. 45, 1558–1569 (2014). https://doi.org/10.1016/j.apergo.2014.05.005

    Article  Google Scholar 

  31. Rajaee, M.A., Arjmand, N., Shirazi-Adl, A., Plamondon, A., Schmidt, H.: Comparative evaluation of six quantitative lifting tools to estimate spine loads during static activities. Appl. Ergon. 48, 22–32 (2015). https://doi.org/10.1016/j.apergo.2014.11.002

    Article  Google Scholar 

  32. Schipplein, O.D., Reinsel, T.E., Andersson, G.B., Lavender, S.A.: The influence of initial horizontal weight placement on the loads at the lumbar spine while lifting. Spine 20, 1895–1898 (1995). https://doi.org/10.1097/00007632-199509000-00010. (Phila Pa 1976)

    Article  Google Scholar 

  33. Visser, S., Faber, G.S., Hoozemans, M.J.M., van der Molen, H.F., Kuijer, P.P.F.M., Frings-Dresen, M.H.W., van Dieën, J.H.: Lumbar compression forces while lifting and carrying with two and four workers. Appl. Ergon. 50, 56–61 (2015). https://doi.org/10.1016/j.apergo.2015.02.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bieniek Andrzej .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andrzej, B., Anna, S., Robert, M., Miłosz, C., Piotr, W., Jacek, J. (2019). Analysis of Skeletal Muscle System Loads for the Most Optimal Positions During Lifting in Different Load Distances. In: Arkusz, K., Będziński, R., Klekiel, T., Piszczatowski, S. (eds) Biomechanics in Medicine and Biology. BIOMECHANICS 2018. Advances in Intelligent Systems and Computing, vol 831. Springer, Cham. https://doi.org/10.1007/978-3-319-97286-2_20

Download citation

Publish with us

Policies and ethics