Skip to main content

Possible Explanations

  • Chapter
  • First Online:
  • 222 Accesses

Part of the book series: SpringerBriefs in Philosophy ((BRIEFSPHILOSOPH))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amalric, M., & Dehaene, S. (2016). Origins of the brain networks for advanced mathematics in expert mathematicians. Proceedings of the National Academy of Sciences of the United States of America, 113, 4909–4917.

    Article  Google Scholar 

  • Atkinson, J., Campbell, F. W., & Francis, M. R. (1976). The magic number 4 ± 0: A new look at visual numerosity judgments. Perception, 5, 327–334.

    Article  Google Scholar 

  • Baroody, A. J. (1984). More precisely defining and measuring the order-irrelevance principle. Journal of Experimental Child Psychology, 38, 33–41.

    Article  Google Scholar 

  • Baroody, A. J., & Gannon, K. E. (1984). The development of the commutativity principle and economical addition strategies. Cognition and Instruction, 1, 321–339.

    Article  Google Scholar 

  • Beck, J. (2017). Can bootstrapping explain concept learning? Cognition, 158, 110–121.

    Article  Google Scholar 

  • Briars, D., & Siegler, R. S. (1984). A feature analysis of preschoolers’ counting knowledge. Developmental Psychology, 20, 607–618.

    Article  Google Scholar 

  • Brouwer, L. E. J. (1912). Intuitionism and formalism. In P. Benacerraf & H. Putnam (Eds.), Philosophy of mathematics. selected readings, (1964). Cambridge: Cambridge University Press.

    Google Scholar 

  • Brouwer, L. E. J. (1981). Brouwer’s Cambridge lectures in intuitionism. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bruner, J. S. (1968). Processes of cognitive growth: Infancy. Worcester, MA: Clark University Press.

    Google Scholar 

  • Butterworth, B. (1999). The mathematical brain. London: Macmillan.

    Google Scholar 

  • Carey, S. (2001). Cognitive foundations of arithmetic: Evolution and ontogenesis. Mind and Language, 16(1), 37–55.

    Article  Google Scholar 

  • Carey, S. (2004). Bootstrapping and the origin of concepts. Daedalus, 133, 59–68.

    Article  Google Scholar 

  • Carey, S. (2009a). The origin of concepts. New York: Oxford University Press.

    Book  Google Scholar 

  • Carey, S. (2009b). Where our number concepts come from. The Journal of Philosophy, 106, 220–254.

    Article  Google Scholar 

  • Casadei, F. (1999). Alcuni pregi e limiti della teoria cognitivista della metafora. Lingua e Stile, XXXIV(2), 167–180.

    Google Scholar 

  • Casadei, F. (2003). Per un bilancio della Semantica Cognitiva. In L. Gaeta & S. Luraghi (Eds.), Introduzione alla Linguistica Cognitiva (pp. 37–55). Roma: Carocci.

    Google Scholar 

  • Cellucci, C. (2013). Rethinking logic: Logic in relation to mathematics, evolution, and method. Dordrecht, Heidelberg, New York, London: Springer.

    Book  Google Scholar 

  • Chomsky, N. (1957). Syntactic structures. The Hague, Paris: Mouton.

    Google Scholar 

  • Cooper, D. E. (1986). Metaphor. Oxford: Blackwell.

    Google Scholar 

  • Dehaene, S. (1997). The number sense. How the mind creates mathematics. New York: Oxford University Press.

    Google Scholar 

  • Dehaene, S. (2011). The number sense. How the mind creates mathematics. Revised and Updated Edition. New York: Oxford University Press.

    Google Scholar 

  • Dehaene, S., & Brannon, E. (2011). Space, time and number in the brain. Searching for the foundations of mathematical thought. Amsterdam: Elsevier Academic Press.

    Google Scholar 

  • Dieudonné, J. (1981). History of functional analysis. Amsterdam: North-Holland.

    Google Scholar 

  • Dodge, E., & Lakoff, G. (2005). Image schemas: From linguistic analysis to neural grounding. In B. Hampe (Ed.), From perception to meaning: Image schemata in cognitive linguistics (pp. 57–91). Berlin-New York: Mouton de Gruyter.

    Chapter  Google Scholar 

  • Feigenson, L., Dehaene, S., & Spelke, E. S. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307–314.

    Article  Google Scholar 

  • Feigenson, L., Carey, S., & Spelke, E. (2002). Infants’ discrimination of number vs. continuous extent. Cognitive Psychology, 44, 33–66.

    Article  Google Scholar 

  • Fillmore, C. (1985). Frames and the semantics of understanding. Quaderni di Semantica, 6, 222–254.

    Google Scholar 

  • Fodor, J. A. (2008). The language of thought revisited. New York: Oxford University Press.

    Book  Google Scholar 

  • Fuson, K. C. (1988). Children’s counting and concepts of number. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Fuson, K. C., & Hall, J. W. (1983). The acquisition of eraly number word meanings. In H. Ginsburg (Ed.), The development of children’s mathematical thinking (pp. 49–107). New-York: Academic Press.

    Google Scholar 

  • Fuson, K. C., Pergament, G. G., & Lyons, B. G. (1985). Collection terms and preschoolers’ use of the cardinality rule. Cognitive Psychology, 17, 315–323.

    Article  Google Scholar 

  • Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22, 455–479.

    Article  Google Scholar 

  • Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 43–74.

    Article  Google Scholar 

  • Geary, D. C. (1994). Children’s mathematical development: Research and practical applications. Washington, DC: APA.

    Book  Google Scholar 

  • Gelman, R. (1993). A rational-constructivist account of early learning about numbers and objects. In D. Medin (Ed.), The psychology of learning and motivation. San Diego, CA: Academic Press.

    Google Scholar 

  • Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Gelman, R., Greeno, J. G. (1989). On the nature of competence: Principles for understanding in a domain. In L. B. Resnick (Ed.), Knowing and learning: Issues for a cognitive science of instruction, 125–186. Hillsdale, NJ: LEA.

    Google Scholar 

  • Gelman, R., & Meck, E. (1983). Preschooler’s counting: Principles before skills. Cognition, 13, 343–359.

    Article  Google Scholar 

  • Gelman, R., & Meck, E. (1986). The notion of principle: The case of counting. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 29–57). Hillsdale, NJ, US: Lawrence Erlbaum Associates.

    Google Scholar 

  • Gelman, R., Meck, E., & Merkin, S. (1986). Young children’s numerical competence. Cognitive Development, 1, 1–29.

    Article  Google Scholar 

  • Gelman, R., & Tucker, M. F. (1975). Further investigations of the young child’s conception of number. Child Development, 46, 167–175.

    Article  Google Scholar 

  • Gibbs, R. W. (2005). The psychological status of image schemas. In B. Hampe (Ed.), From perception to meaning: Image schemata in cognitive linguistics (pp. 113–135). Berlin-New York: Mouton de Gruyter.

    Chapter  Google Scholar 

  • Glucksberg, S., & Keysar, B. (1993). How metaphor works. In A. Ortony (Ed.), Metaphor and thought (pp. 401–424). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Graziano, M. (2013). Numbers in mind. Between intuitionism and cognitive science. Reti, Saperi, Linguaggi, 4, 72–79.

    Google Scholar 

  • Graziano, M. (2015). Numerical cognition and philosophy of mathematics. Dehaene’s (neuro)intuitionism and the relevance of language. Rivista Italiana di Filosofia del Linguaggio, SFL 2014, 362–377.

    Google Scholar 

  • Groen, G. J., & Parkman, J. M. (1972). A chronometric analysis of simple addition. Psychological Review, 79, 329–343.

    Article  Google Scholar 

  • Halford, G. S. (1993). Children’s understanding: The development of mental models. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Hanna, R. (2006). Rationality and logic. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Hespos, S. J., & Spelke, E. S. (2004). Conceptual precursors to language. Nature, 430(6998), 453–456.

    Article  Google Scholar 

  • Hutchins, E. (1996). Cognition in the wild. Cambridge: MIT Press.

    Google Scholar 

  • Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh. New York: Perseus Book.

    Google Scholar 

  • Lakoff, G., & Johnson, M. (1980). Metaphors We Live By. Chicago: Chicago University Press.

    Google Scholar 

  • Lakoff, G., & Johnson, M. (1987). Women, fire and dangerous things: What categories reveal about the mind. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Lakoff, G. (1987). Women, fire, and dangerous things. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic books.

    Google Scholar 

  • Langacker, R. W. (1987). Fondations of cognitive grammar, vol 1: Theoretical prerequisites. Stanford: Stanford University Press.

    Google Scholar 

  • Lave, J. (1988). Cognition in practice. Mind mathematics and culture in everyday life. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lépine, R., Barrouillet, P., & Camos, V. (2003). New evidence about the nature of the subitizing process. The XIII Conference of the European Society for Cognitive Psychology. Grenade, Espagne.

    Google Scholar 

  • Lolli, G. (2004). Da dove viene la matematica. Recensione di G. Lakoff, R. E. Nunez, Where Mathematics comes from. http://homepage.sns.it/lolli/articoli/LakNun.pdf.

  • Longo, G. (2005). The cognitive foundations of mathematics: Human gestures in proofs and mathematical incompleteness of formalisms. In M. Okada, et al. (Eds.), Images and reasoning (pp. 105–134). Tokio: Keio University Press.

    Google Scholar 

  • Majid, A., Bowerman, M., Kita, S., Haun, D. B., & Levinson, S. C. (2004). Can language restructure cognition? The case for space. Trends in Cognitive Science, 8(3), 108–114.

    Article  Google Scholar 

  • Mandler, G., & Shebo, B. J. (1982). Subitizing: An analysis of its component processes. Journal of Experimental Psychology: General, 111, 1–22.

    Article  Google Scholar 

  • Molko, N., Wilson, A., & Dehaene, S. (2004). Dyscalculie, le sens perdu des nombres. La Recherche, 10, 42–49.

    Google Scholar 

  • Ortony, A. (1993). Metaphor and thought. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Piazza, M., Fumarola, A., Chinello, A., & Melcher, D. (2011). Subitizing reflects visuo-spatial object individuation capacity. Cognition, 121(1), 147–153.

    Article  Google Scholar 

  • Poincaré, H. (1907). The value of science. New York: The Science Press.

    Google Scholar 

  • Pylyshyn, Z. W. (1998). The role of visual indexes in spatial vision and imagery. In R. Wright (Ed.), Visual attention (pp. 215–231). Oxford: Oxford University Press.

    Google Scholar 

  • Resnick, L. B. (1986). The development of mathematical intuition. In M. Perimutter (Ed.), Perspectives on intellectual: The Minnesota symposia on child psychology. Hillsdale, NJ: LEA.

    Google Scholar 

  • Revkin, S. K., Piazza, M., Izard, V., Cohen, L., & Dehaene, S. (2008). Does subitizing reflect numerical estimation? Psychological Science, 19(6), 607–614.

    Article  Google Scholar 

  • Rey, G. (2014). Innate and learned: Carey, mad dog nativism, and the poverty of stimuli and analogies (yet again). Mind and Language, 29, 109–132.

    Article  Google Scholar 

  • Rips, L. J., Bloomfield, A., & Asmuth, J. (2008). From numerical concepts to concepts of number. Behavioral and Brain Sciences, 31, 623–642.

    Article  Google Scholar 

  • Rosch, E. (1975). Cognitive representations of semantic categories. Journal of Experimental Psycology, 104, 192–233.

    Article  Google Scholar 

  • Searle, J. R. (1979). The metaphor. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Shapiro, S. (2004). Foundations of mathematics: Metaphysics, epistemology, structure. The Philosophical Quarterly, 54, 16–37.

    Article  Google Scholar 

  • Shipley, E. F., & Shepperson, B. (1990). The what-if of counting. Cognition, 36, 285–289.

    Article  Google Scholar 

  • Siegler, R. S., & Crowley, K. (1994). Constraints on learning in nonprivileged domains. Cognitive Psychology, 27, 194–226.

    Article  Google Scholar 

  • Sperber, D., & Wilson, D. (1986). Relevance: Communication and cognition. Oxford: Blackwell.

    Google Scholar 

  • Sperber, D., & Wilson, D. (2006). A deflationary account of metaphor. UCL Work. Pap. Linguist, 18, 171–203.

    Google Scholar 

  • Svenson, O. (1975). Analysis of time required by children for simple addition. Acta Psychologica, 39, 289–302.

    Article  Google Scholar 

  • Trick, L. M., & Pylyshyn, Z. W. (1993). What enumeration studies can show us about spatial attention: Evidence for limited capacity preat-tentive processing. Journal of Experimental Psychology: Human Per- ception and Performance, 19, 331–351.

    Google Scholar 

  • Varela, F. J., Thompson, E. T., & Rosch, E. (1992). The embodied mind: Cognitive science and human experience. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Xu, F. (2003). Numerosity discrimination in infants: Evidence for two systems of representations. Cognition, 89, 15–25.

    Google Scholar 

  • Wilson, D., & Carston, R. (2006). Metaphor, relevance and the ‘Emergent Property’ issue. Mind and Language, 21(3), 230–260.

    Google Scholar 

  • Wittgenstein, L. (1953). Philosophical investigations. Oxford: Blackwell.

    Google Scholar 

  • Wynn, K. (1990). Children’s understanding of counting. Cognition, 36, 155–193.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Graziano .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Graziano, M. (2018). Possible Explanations. In: Dual-Process Theories of Numerical Cognition. SpringerBriefs in Philosophy. Springer, Cham. https://doi.org/10.1007/978-3-319-96797-4_5

Download citation

Publish with us

Policies and ethics