Skip to main content

Diesel-Like Biofuels

  • Chapter
  • First Online:
Bioenergy for Sustainability and Security

Abstract

Diesel fuel is a mixture of hydrocarbons obtained by petroleum diesel, or petrodiesel is produced by distilling crude oil between 200 °C (392 °F) and 350 °C (662 °F) at atmospheric pressure. The important properties which are used to characterize diesel fuel include cetane number (or cetane index), fuel volatility, density, viscosity, cold behaviour and sulphur content. Diesel fuel specifications differ for various fuel grades and in different countries. Biodiesel is a fuel developed from vegetable oil, animal fat and algal lipids which works in a diesel engine. These fuels are made as greener and cleaner alternatives to petrol and diesel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Demirbas, A (2009). Production of biodiesel fuels from linseed oil using methanol and ethanol in non-catalytic SCF conditions. Biomass Bioenergy, 33: 113–118.

    Article  Google Scholar 

  2. Demirbas, A (2009). Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Conversion and Management, 50(4): 923–927.

    Article  Google Scholar 

  3. Demirbas, A (2009). EnergyProgress and recent trends in biodiesel fuels. Energy Conversion and Management, 50: 923–927.

    Article  Google Scholar 

  4. Shahid, EM et al (2012). Effect of Used Cooking Oil Methyl Ester on Compression Ignition Engine. Journal of Quality and Technology Management, VIII (II), 4: 91–104.

    Google Scholar 

  5. Lotero, E et al (2005). Synthesis of biodiesel via acid catalysis. Ind. Eng. Chem. Res., 44(14): 5353–5363.

    Article  Google Scholar 

  6. Zhang, Y et al (2003a). Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresour. Tech., 89(1): 1–16.

    Article  Google Scholar 

  7. Zhang, Y et al (2003b). Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour. Tech., 90(3): 229–240.

    Article  Google Scholar 

  8. Wang, Y et al (2006). Comparison of two different processes to synthesize biodiesel by waste cooking oil. J. Mol. Catal. A-Chem., 252(1–2): 107–112.

    Article  Google Scholar 

  9. Leung, DYC and Guo Y (2006). Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Process Tech., 87(10): 883–890.

    Article  Google Scholar 

  10. Meher, LC et al (2006). Technical aspects of biodiesel production by transesterification—A review. Renew. Sust. Energ. Rev., 10(3): 248–268.

    Article  Google Scholar 

  11. Bournay, L et al (2005). New heterogeneous process for biodiesel production: A way to improve the quality and the value of the crude glycerin produced by biodiesel plants. Catal. Today, 106(1–4): 190–192.

    Article  Google Scholar 

  12. Cao, F et al (2008). Biodiesel production from high acid value waste frying oil catalyzed by superacid heteropolyacid. Biotech. Bioengin, 101(1): 93–100.

    Article  Google Scholar 

  13. Srinivasan, S (2009). The food v fuel debate: A nuanced view of incentive structures. Renew. Energ., 34(4): 950–954.

    Article  Google Scholar 

  14. Canakci, M and Van Gerpen, JH (2001). Biodiesel production from oils and fats with high free fatty acids. Transactions of the American Society of Agricultural Engineers, 44(6): 1429–1436.

    Google Scholar 

  15. Hama, S et al (2004). Effect of fatty acid membrane composition on whole-cell biocatalysts for biodiesel-fuel production. Biochemical Engineering Journal, 21(2): 155–160.

    Article  Google Scholar 

  16. Kusdiana, D and Saka, S (2001). Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel, 80: 225–231.

    Article  Google Scholar 

  17. Demirbas, A (2002). Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Conversion & Management, 43: 2349–2356.

    Article  Google Scholar 

  18. Warabi, Y et al (2004). Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcohols. Bioresource Technology, 91: 283–287.

    Article  Google Scholar 

  19. Kusdiana, D and Saka, S (2004). Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresource Technology, 91: 289–295.

    Article  Google Scholar 

  20. Glisic, S and Skala, D (2009).The problems in design and detailed analyses of energy consumption for biodiesel synthesis at supercritical conditions. The Journal of Supercritical Fluids, 49: 293–301.

    Article  Google Scholar 

  21. Deshpande, A et al (2010). Supercritical biodiesel production and power cogeneration: Technical and economic feasibilities. Bioresource Technology, 101: 1834–1843.

    Article  Google Scholar 

  22. Math, MC et al (2010). Technologies for biodiesel production from used cooking oil—A review. Energy for Sustainable Development, 14(4): 339–345.

    Article  Google Scholar 

  23. Schuchardt, U et al (1998). Transesterification of vegetable oils: A review. Journal of the Brazilian Chemical Society, 9(3): 199–210.

    Article  Google Scholar 

  24. Meher, LC et al (2006). Technical aspects of biodiesel production by transesterification—A review. Renewable and Sustainable Energy Reviews, 10: 248–268.

    Article  Google Scholar 

  25. Al-Zuhair Sulaiman et al (2006). A new method for preparing raw material for biodiesel production. Biochemical Engineering Journal, 30: 212–217.

    Article  Google Scholar 

  26. Ma, F et al (1999).The effect of mixing on transesterification of beef tallow. BioresourTechnol, 69: 289–293.

    Article  Google Scholar 

  27. Ogunniyi, DS (2006). Castor oil: A vital industrial raw material. BioresourceTechnol, 97: 1086–1091.

    Article  Google Scholar 

  28. Ogunwole, OA (2012). Production of Biodiesel from Jatropha Oil (Curcas Oil). Research Journal of Chemical Sciences, 2(11): 30–33.

    Google Scholar 

  29. Gude, VG et al (2012). Sustainable Biodiesel Production. Second world Sustainable forum 1–14, www.wsforum.org

  30. Peterson, et al (2005). Biodiesel from Yellow Mustard Oil. National Institute for Advanced Transportation Technology. KLK311, NIATT Report Number N05–06.

    Google Scholar 

  31. Hartman and Eviana (2008). A Promising Oil Alternative: Algae Energy. The Washington Post. Retrieved 10 June 2008.

    Google Scholar 

  32. Dyer and Gwynne (2008). A replacement for oil. The Chatham Daily News.

    Google Scholar 

  33. Sheehan, J et al (1998). Look Back at the U S Department of Energy’s Aquatic Species Program—Biodiesel from Algae.Vol. 328. National Renewable Energy Laboratory, CO, USA.

    Google Scholar 

  34. Huesemann, MH et al (2009). Biomass productivities in wild type and pigment mutant of Cyclotella sp. (diatom). Appl Biochem Biotechnol, 157(3): 507–526.

    Article  Google Scholar 

  35. Yang, Jia et al (2010). Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance (PDF). Bioresources Technology, 10: 1016.

    Google Scholar 

  36. Cornell, CB (2008). First Algae Biodiesel Plant Goes Online: 1 April 2008. http://gas2.org/2003/03/29first-algae-biodiesel-plant-goes-online-april-1-2008.

  37. Dinh, LT et al (2009). Sustainability evaluation of biodiesel production using multicriteria decision-making. Environmental Progress & Sustainable Energy, 28: 38–46. doi:https://doi.org/10.1002/ep.10335 .

    Article  Google Scholar 

  38. Demirbas, A (2011). Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems. Applied Energy, 88(10): 3541–3547.

    Article  MathSciNet  Google Scholar 

  39. Demirbas, AH (2009). Inexpensive oil and fats feedstocks for production of biodiesel. Energy Education Science and Technology Part A: Energy Science and Research, 23: 1–13.

    Google Scholar 

  40. Carriquiry, MA et al (2011). Second generation biofuels: Economics and policies. Energy Policy, 39(7): 4222–4234.

    Article  Google Scholar 

  41. Greenwell, J et al (2009). Placing microalgae on the biofuels priority list: A review of the technological challenges. Journal of the Royal Society Interface, 7(46): 703–726.

    Article  Google Scholar 

  42. Moheimani, NR and Borowitzka, MA (2007). Limits to productivity of the alga Pleurochrysis carterae (haptophyta) grown in outdoor raceway ponds. Biotechnol Bioeng, 96(1): 27–36.

    Article  Google Scholar 

  43. Blanco, AM et al (2007). Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Appl Microbiol Biotechnol, 73(6):1259–1266.

    Article  Google Scholar 

  44. Metting, FB (1996). Biodiversity and application of microalgae. Journal of Industrial Microbiology, 17: 477–489.

    Article  Google Scholar 

  45. Spolaore, P et al (2006). Commercial application of microalgae. Journal of Bioscience and Bioengineering, 101: 87–96.

    Article  Google Scholar 

  46. Seckbach, J et al (1971). Growth and photosynthesis of Cyanidium caldarium cultured under pure CO2. Israel Journal of Botany, 20: 84–90.

    Google Scholar 

  47. Hanagata, N et al (1992). Tolerance of microalgae to high CO2 and high temperature. Phytochemistry, 31(10): 3345–3348.

    Article  Google Scholar 

  48. Kodama, M et al (1993). A new species of highly CO2-tolerant fast growing marine microalga suitable for high-density culture. Journal of Marine Biotechnology, 1: 21–25.

    Google Scholar 

  49. Miyairi, S (1995). CO2 assimilation in a thermophilic cyanobacterium. Energy Conversion and Management, 36(6–9): 763–766.

    Article  Google Scholar 

  50. Nakano, Y et al (1996). Growth of photosynthetic algae Euglena in high CO2 conditions and its photosynthetic characteristics. Acta Hort, 440: 49–54.

    Article  Google Scholar 

  51. Nagase, H et al (1998). Improvement of microalgal NOx removal in bubble column and airlift reactors. Journal of Fermentation and Bioengineering, 86(4): 421–423.

    Article  Google Scholar 

  52. Miura, Y et al (1993). Stimulation of hydrogen production in algal cells grown under high CO2 concentration and low temperature. Applied Biochemistry and Biotechnology, 39/40: 753–761.

    Article  Google Scholar 

  53. Matsumoto, H et al (1995). Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Applied Biochemistry and Biotechnology, 51/52: 681–692.

    Article  Google Scholar 

  54. Li, Q et al (2008). Perspectives of microbial oils for biodiesel production. Appl. Microbiol. Biotechnol., 80: 749–756.

    Article  Google Scholar 

  55. http://www.ebb-eu.org/stats.php (2007). European Biodiesel Board. The EU Biodiesel Industry.

  56. Carriquiry, M (). U.S. Biodiesel production: Recent developments and prospects. Iowa Agric. Rev.Online, 13: 8–9.

    Google Scholar 

  57. http://www.biodiesel.org/production/production-statistics (2012). TUSNBB. Production statistics.

  58. http://algenol.com/about-algenol/facilities-locations

  59. http://algenol.com/commercialization/project-development-activities

  60. https://www.cnet.com/news/algae (2008). Algae farm in Mexico to produce ethanol in ‘09 .

  61. https://www.treehugger.com Algenol Enters the Algae Biofuel Race with Process Economics Advantage.

  62. http://algenol.com/commercialization/commercialization

  63. http://algenol.com/about-algenol/our-supporters

  64. Davey, HM and Kell DB (1996). Flow cytometry and cell sorting of heterogeneous microbial populations: The importance of single-cell analyses. Microbiol. Rev., 60: 641–696.

    Google Scholar 

  65. Reckermann, M (2000). Flow sorting in aquatic ecology. Sci. Mar., 64: 235–246.

    Article  Google Scholar 

  66. Dinh, LTT et al (2009). Sustainability evaluation of biodiesel production using multicriteria decision-making. Environ. Prog. Sustain. Energy, 28: 38–46.

    Article  Google Scholar 

  67. Chisti, Y (2007). Biodiesel from microalgae. Biotechnol. Adv., 25: 294–306.

    Article  Google Scholar 

  68. Rismani-Yazdi, H et al (2011). Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels. BMC Genomics, 12: 148.

    Article  Google Scholar 

  69. Sheehan, J (1998). A look back at the US Department of Energy’s aquatic species program—Biodiesel from algae. Prepared for the US Department of Energy, The National Renewable Energy Laboratory (NREL) [R]. NREL/TP-580-24190.

    Google Scholar 

  70. Carioca, JOB et al (2009). The hard choice for alternative biofuels to diesel in Brazil. BiotechnolAdv, 27(6): 1043–1050.

    Google Scholar 

  71. Vijayarghavank, K et al (2009). Biodiesel production from freshwater algae. Energy Fuels, 23: 5448–5453.

    Article  Google Scholar 

  72. Rodolfil et al (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102(1): 100–112.

    Article  Google Scholar 

  73. Blackburn, SL et al (2009). Australian strain selection and enhancement for biodiesel from algae. Phycologia, 48(4): 8–9.

    Google Scholar 

  74. Neofotis, P et al (2016) Characterization and classification of highly productive microalgae strains discovered for biofuel and bioproduct generation. Algal Research, 15: 164–178.

    Article  Google Scholar 

  75. Slocombe, SP et al (2015). Unlocking nature’s treasure-chest: Screening for oleaginous algae. Sci Rep., 5: 9844.

    Article  Google Scholar 

  76. Mata, TM (2010). Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev., 14: 217–232.

    Article  Google Scholar 

  77. http://www.csiro.au/ (2012). CSIRO. Australian national algae culture collection Organisation-Structure/National-Facilities/Australian-National-Algae-Culture-Collection.aspx

  78. Andrade, MR and Costa, JAV (2007). Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture, 264: 130–134.

    Article  Google Scholar 

  79. Barclay, W and Apt, K (2013). Strategies for bioprospecting microalgae for potential commercial applications. In: Richmond, A and Hu, Q (eds), Handbook of microalgal culture: Applied phycology and biotechnology, 2nd edn. Wiley-Blackwell, Chichester.

    Chapter  Google Scholar 

  80. Barclay, W et al (2013). Commercial production of microalgae via fermentation. In: Richmond, A and Hu, Q (eds), Handbook of microalgal culture: Applied phycology and biotechnology, 2nd edn. Wiley-Blackwell, Chichester.

    Google Scholar 

  81. Bassi, A et al (2014). Mixotrophic algae cultivation for energy production and other applications. In: Bajpai, R, Prokop, A and Zappi, M (eds), Algal biorefineries, Vol. 1. Cultivation of cells and products. Springer, New York.

    Google Scholar 

  82. Cheirsilp, B and Torpee, S (2012). Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol, 110: 510–516.

    Article  Google Scholar 

  83. Espinosa-Gonzalez, I et al (2014). Heterotrophic growth and lipid accumulation of Chlorella protothecoides in whey permeate, a dairy by-product stream, for biofuel production. Bioresour Technol, 155: 170–176.

    Article  Google Scholar 

  84. Wang, J et al (2014). Mixotrophic cultivation of microalgae for biodiesel production: Status and prospects. Appl Biochem Biotechnol, 172: 3307–3329.

    Article  Google Scholar 

  85. Wijffels, RH et al (2010). Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioprod Biorefin, 4: 287–295.

    Article  Google Scholar 

  86. Kalnes, TN et al (2012). Green Diesel production by hydrorefining renewable feedstocks. Biofuels Technology, 7–11 https://www.uop.com

  87. http://www.greencarcongress.com (2012). Green Car Congress: ConocoPhillips Begins Production of Renewable Diesel Fuel at Whitegate Refinery . greencarcongress.com . Retrieved December 27, 2012.

  88. https://www.revolvy.com (2007). UOP and Italy’s Eni S.p.A. announce plans for facility to produce diesel fuel from vegetable oil. (PDF) (Press release). UOP LLC . June 19, 2007.

  89. http://www.biodiesels.com.br/wpcontent/uploads/2013/11/Tarja_Myllym% C3%A4ki_NesteOil.pdf

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Capital Publishing Company, New Delhi, India

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Behera, B.K., Varma, A. (2019). Diesel-Like Biofuels. In: Bioenergy for Sustainability and Security . Springer, Cham. https://doi.org/10.1007/978-3-319-96538-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96538-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96537-6

  • Online ISBN: 978-3-319-96538-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics