Skip to main content

Microcalcifications, Their Genesis, Growth, and Biomechanical Stability in Fibrous Cap Rupture

  • Chapter
  • First Online:
Molecular, Cellular, and Tissue Engineering of the Vascular System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1097))

Abstract

For many decades, cardiovascular calcification has been considered as a passive process, accompanying atheroma progression, correlated with plaque burden, and apparently without a major role on plaque vulnerability. Clinical and pathological analyses have previously focused on the total amount of calcification (calcified area in a whole atheroma cross section) and whether more calcification means higher risk of plaque rupture or not. However, this paradigm has been changing in the last decade or so. Recent research has focused on the presence of microcalcifications (μCalcs) in the atheroma and more importantly on whether clusters of μCalcs are located in the cap of the atheroma. While the vast majority of μCalcs are found in the lipid pool or necrotic core, they are inconsequential to vulnerable plaque. Nevertheless, it has been shown that μCalcs located within the fibrous cap could be numerous and that they behave as an intensifier of the background circumferential stress in the cap. It is now known that such intensifying effect depends on the size and shape of the μCalc as well as the proximity between two or more μCalcs. If μCalcs are located in caps with very low background stress, the increase in stress concentration may not be sufficient to reach the rupture threshold. However, the presence of μCalc(s) in the cap with a background stress of about one fifth to one half the rupture threshold (a stable plaque) will produce a significant increase in local stress, which may exceed the cap rupture threshold and thus transform a non-vulnerable plaque into a vulnerable one. Also, the classic view that treats cardiovascular calcification as a passive process has been challenged, and emerging data suggest that cardiovascular calcification may encompass both passive and active processes. The passive calcification process comprises biochemical factors, specifically circulating nucleating complexes, which would lead to calcification of the atheroma. The active mechanism of atherosclerotic calcification is a cell-mediated process via cell death of macrophages and smooth muscle cells (SMCs) and/or the release of matrix vesicles by SMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedin M, Tintut Y, Demer LL (2004) Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol 24(7):1161–1170

    Article  CAS  PubMed  Google Scholar 

  • Agatston AS et al (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15(4):827–832

    Article  CAS  PubMed  Google Scholar 

  • Aikawa E et al (2007) Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation 116(24):2841–2850

    Article  CAS  PubMed  Google Scholar 

  • Akyildiz AC et al (2011) Effects of intima stiffness and plaque morphology on peak cap stress. Biomed Eng Online 10:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Amizuka N et al (2012) Histology of epiphyseal cartilage calcification and endochondral ossification. Front Biosci (Elite Ed) 4:2085–2100

    Article  Google Scholar 

  • Anderson, H.C., Mineralization by matrix vesicles. Scan Electron Microsc. 1984;(Pt 2):953–964

    Google Scholar 

  • Arad Y et al (1998) Serum concentration of calcium, 1,25 vitamin D and parathyroid hormone are not correlated with coronary calcifications. An electron beam computed tomography study. Coron Artery Dis 9(8):513–518

    Article  CAS  PubMed  Google Scholar 

  • Balderman JA et al (2012) Bone morphogenetic protein-2 decreases microRNA-30b and microRNA-30c to promote vascular smooth muscle cell calcification. J Am Heart Assoc 1(6):e003905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bennett MR, Evan GI, Schwartz SM (1995) Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest 95(5):2266–2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berliner JA et al (1995) Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation 91(9):2488–2496

    Article  CAS  PubMed  Google Scholar 

  • Bessueille L, Magne D (2015) Inflammation: a culprit for vascular calcification in atherosclerosis and diabetes. Cell Mol Life Sci 72(13):2475–2489

    Article  CAS  PubMed  Google Scholar 

  • Bezerra HG et al (2009) Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC Cardiovasc Interv 2(11):1035–1046

    Article  PubMed  PubMed Central  Google Scholar 

  • Bluestein D et al (2008) Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling. J Biomech 41(5):1111–1118

    Article  PubMed  Google Scholar 

  • Bobryshev YV et al (2008) Matrix vesicles in the fibrous cap of atherosclerotic plaque: possible contribution to plaque rupture. J Cell Mol Med 12(5B):2073–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Boer IH et al (2009) 25-hydroxyvitamin D levels inversely associate with risk for developing coronary artery calcification. J Am Soc Nephrol 20(8):1805–1812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Born GVR, Richardson PD (1989) Mechanical properties of human atherosclerotic lesions. In: Glagov S, Newman WP, Shaffer S (eds) Pathology of the human atherosclerotic plaque. Springer, Berlin

    Google Scholar 

  • Boström KI (2016) Where do we stand on vascular calcification? Vasc Pharmacol 84:8–14

    Article  CAS  Google Scholar 

  • Boström K et al (1993) Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest 91(4):1800–1809

    Article  PubMed  PubMed Central  Google Scholar 

  • Boström KI et al (2011) Activation of vascular bone morphogenetic protein signaling in diabetes mellitus. Circ Res 108(4):446–457

    Article  PubMed  CAS  Google Scholar 

  • Brandenburg VM et al (2014) Fibroblast growth factor 23 (FGF23) and mortality: the Ludwigshafen risk and cardiovascular health study. Atherosclerosis 237(1):53–59

    Article  CAS  PubMed  Google Scholar 

  • Bucay N et al (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12(9):1260–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke AP et al (1997) Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 336(18):1276–1282

    Article  CAS  PubMed  Google Scholar 

  • Burke AP et al (1999) Plaque rupture and sudden death related to exertion in men with coronary artery disease. JAMA 281(10):921–926

    Article  CAS  PubMed  Google Scholar 

  • Burke AP et al (2001) Pathophysiology of calcium deposition in coronary arteries. Herz 26(4):239–244

    Article  CAS  PubMed  Google Scholar 

  • Burke AP et al (2002) Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation 105(3):297–303

    Article  PubMed  Google Scholar 

  • Burleigh MC et al (1992) Collagen types I and III, collagen content, GAGs and mechanical strength of human atherosclerotic plaque caps: span-wise variations. Atherosclerosis 96(1):71–81

    Article  CAS  PubMed  Google Scholar 

  • Cancela AL et al (2012) Phosphorus is associated with coronary artery disease in patients with preserved renal function. PLoS One 7(5):e36883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso L, Weinbaum S (2014) Changing views of the biomechanics of vulnerable plaque rupture: a review. Ann Biomed Eng 42(2):415–431

    Article  PubMed  Google Scholar 

  • Cardoso L et al (2014) Effect of tissue properties, shape and orientation of microcalcifications on vulnerable cap stability using different hyperelastic constitutive models. J Biomech 47(4):870–877

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng GC et al (1993) Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation 87(4):1179–1187

    Article  CAS  PubMed  Google Scholar 

  • Cheng SL et al (2013) Dkk1 and MSX2-Wnt7b signaling reciprocally regulate the endothelial-mesenchymal transition in aortic endothelial cells. Arterioscler Thromb Vasc Biol 33(7):1679–1689

    Article  CAS  PubMed  Google Scholar 

  • Cheng SL et al (2015) Vascular smooth muscle LRP6 limits arteriosclerotic calcification in diabetic LDLR−/− mice by restraining noncanonical Wnt signals. Circ Res 117(2):142–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi BJ et al (2008) Comparison of 64-slice multidetector computed tomography with spectral analysis of intravascular ultrasound backscatter signals for characterizations of noncalcified coronary arterial plaques. Am J Cardiol 102(8):988–993

    Article  PubMed  Google Scholar 

  • Choudhury RP et al (2002) MRI and characterization of atherosclerotic plaque: emerging applications and molecular imaging. Arterioscler Thromb Vasc Biol 22(7):1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Clarke MC et al (2008) Chronic apoptosis of vascular smooth muscle cells accelerates atherosclerosis and promotes calcification and medial degeneration. Circ Res 102(12):1529–1538

    Article  CAS  PubMed  Google Scholar 

  • Clarke MC et al (2010) Vascular smooth muscle cell apoptosis induces interleukin-1-directed inflammation: effects of hyperlipidemia-mediated inhibition of phagocytosis. Circ Res 106(2):363–372

    Article  CAS  PubMed  Google Scholar 

  • Collett GD, Canfield AE (2005) Angiogenesis and pericytes in the initiation of ectopic calcification. Circ Res 96(9):930–938

    Article  CAS  PubMed  Google Scholar 

  • Collin-Osdoby P et al (2002) Basic fibroblast growth factor stimulates osteoclast recruitment, development, and bone pit resorption in association with angiogenesis in vivo on the chick chorioallantoic membrane and activates isolated avian osteoclast resorption in vitro. J Bone Miner Res 17(10):1859–1871

    Article  CAS  PubMed  Google Scholar 

  • Davies MJ, Thomas T (1981) The pathological basis and microanatomy of occlusive thrombus formation in human coronary arteries. Philos Trans R Soc Lond Ser B Biol Sci 294(1072):225–229

    Article  CAS  Google Scholar 

  • Davies MJ, Thomas AC (1985) Plaque fissuring—the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J 53(4):363–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies MJ et al (1993) Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 69(5):377–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demer LL (2002) Vascular calcification and osteoporosis: inflammatory responses to oxidized lipids. Int J Epidemiol 31(4):737–741

    Article  PubMed  Google Scholar 

  • Demer LL, Tintut Y (2014) Inflammatory, metabolic, and genetic mechanisms of vascular calcification. Arterioscler Thromb Vasc Biol 34(4):715–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhingra R et al (2007) Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch Intern Med 167(9):879–885

    Article  CAS  PubMed  Google Scholar 

  • Evrard S et al (2015) Vascular calcification: from pathophysiology to biomarkers. Clin Chim Acta 438:401–414

    Article  CAS  PubMed  Google Scholar 

  • Finet G, Ohayon J, Rioufol G (2004) Biomechanical interaction between cap thickness, lipid core composition and blood pressure in vulnerable coronary plaque: impact on stability or instability. Coron Artery Dis 15(1):13–20

    Article  PubMed  Google Scholar 

  • Fleisch HA et al (1970) The inhibitory effect of phosphonates on the formation of calcium phosphate crystals in vitro and on aortic and kidney calcification in vivo. Eur J Clin Investig 1(1):12–18

    Article  CAS  Google Scholar 

  • Francis MD (1969) The inhibition of calcium hydroxypatite crystal growth by polyphosphonates and polyphosphates. Calcif Tissue Res 3(2):151–162

    Article  CAS  PubMed  Google Scholar 

  • Friedrich GJ et al (1994) Detection of intralesional calcium by intracoronary ultrasound depends on the histologic pattern. Am Heart J 128:435–41

    Article  CAS  PubMed  Google Scholar 

  • Galvin KM et al (2000) A role for smad6 in development and homeostasis of the cardiovascular system. Nat Genet 24(2):171–174

    Article  CAS  PubMed  Google Scholar 

  • Gent AN (1980) Detachment of an elastic matrix from a rigid spherical inclusion. J Mater Sci 15(11):2884–2888

    Article  Google Scholar 

  • Gent AN, Park B (1984) Failure processes in elastomers at or near a rigid spherical inclusion. J Mater Sci 19(6):1947–1956

    Article  CAS  Google Scholar 

  • Golub EE (2011) Biomineralization and matrix vesicles in biology and pathology. Semin Immunopathol 33(5):409–417

    Article  PubMed  Google Scholar 

  • Goodier JN (1933) Concentration of stress around spherical and cylindrical inclusion and flaws. Trans ASME 55:39–44

    Google Scholar 

  • Grønhøj MH et al (2016) Associations between calcium-phosphate metabolism and coronary artery calcification; a cross sectional study of a middle-aged general population. Atherosclerosis 251:101–108

    Article  PubMed  CAS  Google Scholar 

  • Hansen NM et al (1976) Aggregation of hydroxyapatite crystals. Biochim Biophys Acta 451(2):549–559

    Article  CAS  PubMed  Google Scholar 

  • Hoshino T et al (2009) Mechanical stress analysis of a rigid inclusion in distensible material: a model of atherosclerotic calcification and plaque vulnerability. Am J Physiol Heart Circ Physiol 297(2):H802–H810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu HH, Camacho NP (1999) Isolation of calcifiable vesicles from human atherosclerotic aortas. Atherosclerosis 143(2):353–362

    Article  CAS  PubMed  Google Scholar 

  • Huang H et al (2001) The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103(8):1051–1056

    Article  CAS  PubMed  Google Scholar 

  • Hutcheson JD, Maldonado N, Aikawa E (2014) Small entities with large impact: microcalcifications and atherosclerotic plaque vulnerability. Curr Opin Lipidol 25(5):327–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutcheson JD et al (2016) Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nat Mater 15(3):335–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isner JM et al (1995) Apoptosis in human atherosclerosis and restenosis. Circulation 91(11):2703–2711

    Article  CAS  PubMed  Google Scholar 

  • Jo H, Song H, Mowbray A (2006) Role of NADPH oxidases in disturbed flow- and BMP4- induced inflammation and atherosclerosis. Antioxid Redox Signal 8(9–10):1609–1619

    Article  CAS  PubMed  Google Scholar 

  • Joshi NV et al (2014) 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 383(9918):705–713

    Article  PubMed  Google Scholar 

  • Kageyama A et al (2013) Palmitic acid induces osteoblastic differentiation in vascular smooth muscle cells through ACSL3 and NF-κB, novel targets of eicosapentaenoic acid. PLoS One 8(6):e68197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapustin AN et al (2011) Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization. Circ Res 109(1):e1–e12

    Article  CAS  PubMed  Google Scholar 

  • Kapustin AN et al (2015) Vascular smooth muscle cell calcification is mediated by regulated exosome secretion. Circ Res 116(8):1312–1323

    Article  CAS  PubMed  Google Scholar 

  • Kelly-Arnold A et al (2013) Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc Natl Acad Sci U S A 110(26):10741–10746. https://doi.org/10.1073/pnas.1308814110

    Article  PubMed  PubMed Central  Google Scholar 

  • Kestenbaum B et al (2014) Fibroblast growth factor-23 and cardiovascular disease in the general population: the multi-ethnic study of atherosclerosis. Circ Heart Fail 7(3):409–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khavandgar Z et al (2014) Elastin haploinsufficiency impedes the progression of arterial calcification in MGP-deficient mice. J Bone Miner Res 29(2):327–337

    Article  CAS  PubMed  Google Scholar 

  • Knollmann F et al (2008) Quantification of atherosclerotic coronary plaque components by submillimeter computed tomography. Int J Cardiovasc Imaging 24(3):301–310

    Article  PubMed  Google Scholar 

  • Kockx MM et al (1998) Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation 97(23):2307–2315

    Article  CAS  PubMed  Google Scholar 

  • Kolodgie FD et al (2000) Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol 157(4):1259–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolodgie FD et al (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349(24):2316–2325

    Article  CAS  PubMed  Google Scholar 

  • Kopp AF et al (2001) Non-invasive characterisation of coronary lesion morphology and composition by multislice CT: first results in comparison with intracoronary ultrasound. Eur Radiol 11(9):1607–1611

    Article  CAS  PubMed  Google Scholar 

  • de Korte CL et al (1998) Intravascular ultrasound elastography: assessment and imaging of elastic properties of diseased arteries and vulnerable plaque. Eur J Ultrasound 7(3):219–224

    Article  PubMed  Google Scholar 

  • Lanzer P et al (2014) Medial vascular calcification revisited: review and perspectives. Eur Heart J 35(23):1515–1525

    Article  PubMed  PubMed Central  Google Scholar 

  • Larose E et al (2005) Characterization of human atherosclerotic plaques by intravascular magnetic resonance imaging. Circulation 112(15):2324–2331

    Article  PubMed  Google Scholar 

  • Larose E et al (2008) Improved characterization of atherosclerotic plaques by gadolinium contrast during intravascular magnetic resonance imaging of human arteries. Atherosclerosis 196(2):919–925

    Article  CAS  PubMed  Google Scholar 

  • Lee RT et al (1991) Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation 83(5):1764–1770

    Article  CAS  PubMed  Google Scholar 

  • Lendon CL et al (1991) Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis 87(1):87–90

    Article  CAS  PubMed  Google Scholar 

  • Leopold JA (2015) Vascular calcification: mechanisms of vascular smooth muscle cell calcification. Trends Cardiovasc Med 25(4):267–274

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yang HY, Giachelli CM (2008) BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells. Atherosclerosis 199(2):271–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libby P (2002) Inflammation in atherosclerosis. Nature 420(6917):868–874

    Article  CAS  PubMed  Google Scholar 

  • Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105(9):1135–1143

    Article  CAS  PubMed  Google Scholar 

  • Lim K et al (2012) Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation 125(18):2243–2255

    Article  CAS  PubMed  Google Scholar 

  • Liu L et al (2011) Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nat Med 17(8):1010–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lomashvili KA et al (2004) Phosphate-induced vascular calcification: role of pyrophosphate and osteopontin. J Am Soc Nephrol 15(6):1392–1401

    Article  CAS  PubMed  Google Scholar 

  • Loree HM et al (1992) Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 71(4):850–858

    Article  CAS  PubMed  Google Scholar 

  • Lowe HC et al (2011) Intracoronary optical diagnostics current status, limitations, and potential. JACC Cardiovasc Interv 4(12):1257–1270

    Article  PubMed  Google Scholar 

  • Lutgens E et al (1999) Biphasic pattern of cell turnover characterizes the progression from fatty streaks to ruptured human atherosclerotic plaques. Cardiovasc Res 41(2):473–479

    Article  CAS  PubMed  Google Scholar 

  • Lutsey PL et al (2014) Fibroblast growth factor-23 and incident coronary heart disease, heart failure, and cardiovascular mortality: the atherosclerosis risk in communities study. J Am Heart Assoc 3(3):e000936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maehara A et al (2002) Morphologic and angiographic features of coronary plaque rupture detected by intravascular ultrasound. J Am Coll Cardiol 40(5):904–910

    Article  PubMed  Google Scholar 

  • Maldonado N et al (2012) A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture. Am J Physiol Heart Circ Physiol 303(5):H619–H628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maldonado N et al (2013) The explosive growth of small voids in vulnerable cap rupture; cavitation and interfacial debonding. J Biomech 46(2):396–401

    Article  PubMed  Google Scholar 

  • Maldonado N et al (2015) Imaging and analysis of microcalcifications and lipid/necrotic core calcification in fibrous cap atheroma. Int J Cardiovasc Imaging 31(5):1079–1087

    Article  PubMed  PubMed Central  Google Scholar 

  • Masai H et al (2013) A preliminary study of the potential role of FGF-23 in coronary calcification in patients with suspected coronary artery disease. Atherosclerosis 226(1):228–233

    Article  CAS  PubMed  Google Scholar 

  • Mathew JS et al (2014) Fibroblast growth factor-23 and incident atrial fibrillation: the multi-ethnic study of atherosclerosis (MESA) and the cardiovascular health study (CHS). Circulation 130(4):298–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauriello A et al (2013) Coronary calcification identifies the vulnerable patient rather than the vulnerable plaque. Atherosclerosis 229(1):124–129

    Article  CAS  PubMed  Google Scholar 

  • Morena M et al (2009) A cut-off value of plasma osteoprotegerin level may predict the presence of coronary artery calcifications in chronic kidney disease patients. Nephrol Dial Transplant 24(11):3389–3397

    Article  CAS  PubMed  Google Scholar 

  • Moreno PR et al (2002) Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation 105(8):923–927

    Article  PubMed  Google Scholar 

  • Motoyama S et al (2007) Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 50(4):319–326

    Article  PubMed  Google Scholar 

  • Nadra I et al (2005) Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways: a vicious cycle of inflammation and arterial calcification? Circ Res 96(12):1248–1256

    Article  CAS  PubMed  Google Scholar 

  • Naik V et al (2012) Sources of cells that contribute to atherosclerotic intimal calcification: an in vivo genetic fate mapping study. Cardiovasc Res 94(3):545–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakahara T et al (2016) Fibroblast growth factor 23 inhibits osteoblastic gene expression and induces osteoprotegerin in vascular smooth muscle cells. Atherosclerosis 253:102–110

    Article  CAS  PubMed  Google Scholar 

  • Nakahara T et al (2017) Coronary artery calcification: from mechanism to molecular imaging. JACC Cardiovasc Imaging 10(5):582–593

    Article  PubMed  Google Scholar 

  • Nasu K et al (2006) Accuracy of in vivo coronary plaque morphology assessment: a validation study of in vivo virtual histology compared with in vitro histopathology. J Am Coll Cardiol 47(12):2405–2412

    Article  PubMed  Google Scholar 

  • New SEP, Aikawa E (2011) Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ Res 108(11):1381–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • New SE et al (2013) Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ Res 113(1):72–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohayon J et al (2005) A three-dimensional finite element analysis of stress distribution in a coronary atherosclerotic plaque: in-vivo prediction of plaque rupture location. Biomech Appl Comput Assist Surg 661:225–241

    Google Scholar 

  • Ohayon J et al (2007) Influence of residual stress/strain on the biomechanical stability of vulnerable coronary plaques: potential impact for evaluating the risk of plaque rupture. Am J Physiol Heart Circ Physiol 293(3):H1987–H1996

    Article  CAS  PubMed  Google Scholar 

  • Ohayon J et al (2008) Necrotic core thickness and positive arterial remodeling index: emergent biomechanical factors for evaluating the risk of plaque rupture. Am J Physiol Heart Circ Physiol 295(2):H717–H727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otsuka F et al (2014) Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol 34(4):724–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panh L et al (2017) Coronary artery calcification: from crystal to plaque rupture. Arch Cardiovasc Dis 110(10):550–561

    Article  PubMed  Google Scholar 

  • Parker BD et al (2010) The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the heart and soul study. Ann Intern Med 152(10):640–648

    Article  PubMed  PubMed Central  Google Scholar 

  • Patwari P et al (2000) Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound. Am J Cardiol 85(5):641–644

    Article  CAS  PubMed  Google Scholar 

  • Potkin BN et al (1990) Coronary artery imaging with intravascular high-frequency ultrasound. Circulation 81(5):1575–1585

    Article  CAS  PubMed  Google Scholar 

  • Proudfoot D et al (2000) Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies. Circ Res 87(11):1055–1062

    Article  CAS  PubMed  Google Scholar 

  • Rambhia SH et al (2012) Microcalcifications increase coronary vulnerable plaque rupture potential: a patient-based micro-CT fluid-structure interaction study. Ann Biomed Eng 40(7):1443–1454

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JL et al (2004) Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J Am Soc Nephrol 15(11):2857–2867

    Article  CAS  PubMed  Google Scholar 

  • Richardson PD, Davies MJ, Born GV (1989) Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 2(8669):941–944

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Granillo GA et al (2005) In vivo intravascular ultrasound-derived thin-cap fibroatheroma detection using ultrasound radiofrequency data analysis. J Am Coll Cardiol 46(11):2038–2042

    Article  PubMed  Google Scholar 

  • Roijers RB et al (2011) Microcalcifications in early intimal lesions of atherosclerotic human coronary arteries. Am J Pathol 178(6):2879–2887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz JL et al (2016) Zooming in on the genesis of atherosclerotic plaque microcalcifications. J Physiol 594(11):2915–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell RR 3rd, Zaret BL (2006) Nuclear cardiology: present and future. Curr Probl Cardiol 31(9):557–629

    Article  PubMed  Google Scholar 

  • Rutsch F et al (2008) Hypophosphatemia, hyperphosphaturia, and bisphosphonate treatment are associated with survival beyond infancy in generalized arterial calcification of infancy. Circ Cardiovasc Genet 1(2):133–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage AP et al (2011) Hyperphosphatemia-induced nanocrystals upregulate the expression of bone morphogenetic protein-2 and osteopontin genes in mouse smooth muscle cells in vitro. Kidney Int 79(4):414–422

    Article  CAS  PubMed  Google Scholar 

  • Sangiorgi G et al (1998) Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology. J Am Coll Cardiol 31(1):126–133

    Article  CAS  PubMed  Google Scholar 

  • Schaar JA et al (2003) Characterizing vulnerable plaque features with intravascular elastography. Circulation 108(21):2636–2641

    Article  PubMed  Google Scholar 

  • Schlieper G et al (2016) Vascular calcification in chronic kidney disease: an update. Nephrol Dial Transplant 31(1):31–39

    Article  CAS  PubMed  Google Scholar 

  • Schrijvers DM et al (2005) Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb Vasc Biol 25(6):1256–1261

    Article  CAS  PubMed  Google Scholar 

  • Scialla JJ et al (2013) Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int 83(6):1159–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao JS et al (2007) Vascular bmp Msx2 Wnt signaling and oxidative stress in arterial calcification. Ann N Y Acad Sci 1117:40–50

    Article  CAS  PubMed  Google Scholar 

  • Sheen CR et al (2015) Pathophysiological role of vascular smooth muscle alkaline phosphatase in medial artery calcification. J Bone Miner Res 30(5):824–836

    Article  CAS  PubMed  Google Scholar 

  • Sinusas AJ (2010) Molecular imaging in nuclear cardiology: translating research concepts into clinical applications. Q J Nucl Med Mol Imaging 54(2):230–240

    CAS  PubMed  Google Scholar 

  • Speer MY et al (2009) Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ Res 104(6):733–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • St Hilaire C et al (2011) NT5E mutations and arterial calcifications. N Engl J Med 364(5):432–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stary HC et al (1994) A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the committee on vascular lesions of the council on arteriosclerosis, American Heart Association. Circulation 89(5):2462–2478

    Article  CAS  PubMed  Google Scholar 

  • Stary HC et al (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the committee on vascular lesions of the council on arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol 15(9):1512–1531

    Article  CAS  PubMed  Google Scholar 

  • Strauss HW, Grewal RK, Pandit-Taskar N (2004) Molecular imaging in nuclear cardiology. Semin Nucl Med 34(1):47–55

    Article  PubMed  Google Scholar 

  • Tanaka A et al (2008) Morphology of exertion-triggered plaque rupture in patients with acute coronary syndrome: an optical coherence tomography study. Circulation 118(23):2368–2373

    Article  PubMed  Google Scholar 

  • Tang D et al (2004) Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3-D fluid-structure interactions (FSI) models. J Biomech Eng 126(3):363–370

    Article  PubMed  Google Scholar 

  • Tang D et al (2005) Local maximal stress hypothesis and computational plaque vulnerability index for atherosclerotic plaque assessment. Ann Biomed Eng 33(12):1789–1801

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarbell JM (2010) Shear stress and the endothelial transport barrier. Cardiovasc Res 87(2):320–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tawakol A et al (2006) In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 48(9):1818–1824

    Article  PubMed  Google Scholar 

  • Tonelli M et al (2005) Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation 112(17):2627–2633

    Article  CAS  PubMed  Google Scholar 

  • Tsimikas S, Shaw PX (2002) Non-invasive imaging of vulnerable plaques by molecular targeting of oxidized LDL with tagged oxidation-specific antibodies. J Cell Biochem Suppl 39:138–146

    Article  PubMed  CAS  Google Scholar 

  • Urry DW (1971) Neutral sites for calcium ion binding to elastin and collagen: a charge neutralization theory for calcification and its relationship to atherosclerosis. Proc Natl Acad Sci U S A 68(4):810–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vengrenyuk Y et al (2006) A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci U S A 103(40):14678–14683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vengrenyuk Y, Cardoso L, Weinbaum S (2008) Micro-CT based analysis of a new paradigm for vulnerable plaque rupture: cellular microcalcifications in fibrous caps. Mol Cell Biomech 5(1):37–47

    PubMed  Google Scholar 

  • Vengrenyuk Y et al (2010) Computational stress analysis of atherosclerotic plaques in ApoE knockout mice. Ann Biomed Eng 38(3):738–747

    Article  PubMed  Google Scholar 

  • Villa-Bellosta R, Sorribas V (2011) Calcium phosphate deposition with normal phosphate concentration. Role of pyrophosphate. Circ J 75(11):2705–2710

    Article  CAS  PubMed  Google Scholar 

  • Villa-Bellosta R et al (2011) Extracellular pyrophosphate metabolism and calcification in vascular smooth muscle. Am J Physiol Heart Circ Physiol 301(1):H61–H68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villa-Bellosta R et al (2013) Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment. Circulation 127(24):2442–2451

    Article  CAS  PubMed  Google Scholar 

  • Virmani R et al (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20(5):1262–1275

    Article  CAS  PubMed  Google Scholar 

  • Virmani R et al (2003) Pathology of the thin-cap fibroatheroma: a type of vulnerable plaque. J Interv Cardiol 16(3):267–272

    Article  PubMed  Google Scholar 

  • Virmani R et al (2007) The vulnerable atherosclerotic plaque: strategies for diagnosis and management. Blackwell, Malden, MA

    Google Scholar 

  • Watson KE et al (1997) Active serum vitamin D levels are inversely correlated with coronary calcification. Circulation 96(6):1755–1760

    Article  CAS  PubMed  Google Scholar 

  • Wenk JF (2011) Numerical modeling of stress in stenotic arteries with microcalcifications: a parameter sensitivity study. J Biomech Eng 133(1):014503

    Article  PubMed  Google Scholar 

  • Yabushita H et al (2002) Characterization of human atherosclerosis by optical coherence tomography. Circulation 106(13):1640–1645

    Article  PubMed  Google Scholar 

  • Yahagi K et al (2017) Pathology of human coronary and carotid artery atherosclerosis and vascular calcification in diabetes mellitus. Arterioscler Thromb Vasc Biol 37(2):191–204

    Article  CAS  PubMed  Google Scholar 

  • Yang F et al (2003) Segmentation of wall and plaque in in vitro vascular MR images. Int J Cardiovasc Imaging 19(5):419–428

    Article  PubMed  Google Scholar 

  • Yang H, Curinga G, Giachelli CM (2004) Elevated extracellular calcium levels induce smooth muscle cell matrix mineralization in vitro. Kidney Int 66(6):2293–2299

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Shahbazian A, Boström KI (2008) Proline and gamma-carboxylated glutamate residues in matrix Gla protein are critical for binding of bone morphogenetic protein-4. Circ Res 102(9):1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Yao Y et al (2010) Inhibition of bone morphogenetic proteins protects against atherosclerosis and vascular calcification. Circ Res 107(4):485–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y et al (2013) A role for the endothelium in vascular calcification. Circ Res 113(5):495–504

    Article  CAS  PubMed  Google Scholar 

  • Yao J et al (2015) Serine protease activation essential for endothelial-Mesenchymal transition in vascular calcification. Circ Res 117(9):758–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research has been supported by NIH grants 1R01HL136431 and 1SC1DK103362; NSF grants CMMI-1662970, CMMI-1333560, MRI-0723027, and MRI-1229449; and NYS DOH grant C31291GG.

Conflict of Interest The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Cardoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cardoso, L., Weinbaum, S. (2018). Microcalcifications, Their Genesis, Growth, and Biomechanical Stability in Fibrous Cap Rupture. In: Fu, B., Wright, N. (eds) Molecular, Cellular, and Tissue Engineering of the Vascular System. Advances in Experimental Medicine and Biology, vol 1097. Springer, Cham. https://doi.org/10.1007/978-3-319-96445-4_7

Download citation

Publish with us

Policies and ethics