Skip to main content

Protein Dynamics Simulations Using Coarse-Grained Models

  • Chapter
  • First Online:

Part of the book series: Springer Series on Bio- and Neurosystems ((SSBN,volume 8))

Abstract

Simulations of protein dynamics may work on different levels of molecular detail. The levels of simplification (coarse-graining) may concern different simulation aspects, including protein representation, interaction schemes or models of molecular motion. So-called coarse-grained (CG) models offer many advantages, unreachable by classical simulation tools, as demonstrated in numerous studies of protein dynamics. Followed by a brief introduction, we present example applications of CG models for efficient predictions of biophysical mechanisms. We discuss the following topics: mechanisms of chaperonin action, mechanical properties of proteins and their complexes, membrane proteins , protein-protein interactions and intrinsically unfolded proteins. These areas illustrate the opportunities for practical applications of CG simulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abeln, S., Frenkel, D.: Disordered flanks prevent peptide aggregation. PLoS Comput. Biol. 4, e1000241 (2008). https://doi.org/10.1371/journal.pcbi.1000241

    Article  Google Scholar 

  2. Arad-Haase, G., et al.: Mechanical unfolding of acylphosphatase studied by single-molecule force spectroscopy and MD simulations. Biophys. J. 99, 238–247 (2010). https://doi.org/10.1016/j.bpj.2010.04.004

    Article  Google Scholar 

  3. Arkhipov, A., Freddolino, P.L., Schulten, K.: Stability and dynamics of virus capsids described by coarse-grained modeling. Structure 14, 1767–1777 (2006). https://doi.org/10.1016/j.str.2006.10.003

    Article  Google Scholar 

  4. Auer, S., Meersman, F., Dobson, C.M., Vendruscolo, M.: A generic mechanism of emergence of amyloid protofilaments from disordered oligomeric aggregates. PLoS Comput. Biol. 4, e1000222 (2008). https://doi.org/10.1371/journal.pcbi.1000222

    Article  Google Scholar 

  5. Baumketner, A., Jewett, A., Shea, J.E.: Effects of confinement in chaperonin assisted protein folding: rate enhancement by decreasing the roughness of the folding energy landscape. J. Mol. Biol. 332, 701–713 (2003). https://doi.org/10.1016/S0022-2836(03)00929-X

    Article  Google Scholar 

  6. Baumketner, A., Shea, J.E.: The structure of the Alzheimer amyloid beta 10–35 peptide probed through replica-exchange molecular dynamics simulations in explicit solvent. J. Mol. Biol. 366, 275–285 (2007)

    Article  Google Scholar 

  7. Bell, G.I.: Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978)

    Article  Google Scholar 

  8. Bernetti, M., Cavalli, A., Mollica, L.: Protein-ligand (un)binding kinetics as a new paradigm for drug discovery at the crossroad between experiments and modelling. Medchemcomm 8, 534–550 (2017). https://doi.org/10.1039/c6md00581k

    Article  Google Scholar 

  9. Best, R.B., Hummer, G.: Protein folding kinetics under force from molecular simulation. J. Am. Chem. Soc. 130, 3706–3707 (2008). https://doi.org/10.1021/ja0762691

    Article  Google Scholar 

  10. Best, R.B., Paci, E., Hummer, G., Dudko, O.K.: Pulling direction as a reaction coordinate for the mechanical unfolding of single molecules. J. Phys. Chem. B 112, 5968–5976 (2008). https://doi.org/10.1021/Jp075955j

    Article  Google Scholar 

  11. Betancourt, M.R., Thirumalai, D.: Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity. J. Mol. Biol. 287, 627–644 (1999). https://doi.org/10.1006/jmbi.1999.2591

    Article  Google Scholar 

  12. Bindschadler, M.: Modeling actin dynamics. Wiley Interdisciplinary Rev. Syst. Biol. Med. 2, 481–488 (2010). https://doi.org/10.1002/wsbm.62

    Article  Google Scholar 

  13. Brockwell, D.J., et al.: Pulling geometry defines the mechanical resistance of a beta-sheet protein (vol 10, pg 731, 2003). Nat. Struct. Biol. 10, 872–872 (2003). https://doi.org/10.1038/nsb1003-872b

    Article  Google Scholar 

  14. Bustamante, C., Chemla, Y.R., Forde, N.R., Izhaky, D.: Mechanical processes in biochemistry. Annu. Rev. Biochem. 73, 705–748 (2004). https://doi.org/10.1146/annurev.biochem.72.121801.161542

    Article  Google Scholar 

  15. Caraglio, M., Imparato, A., Pelizzola, A.: Pathways of mechanical unfolding of FnIII(10): low force intermediates. J. Chem. Phys. 133, 065101 (2010). https://doi.org/10.1063/1.3464476

    Article  Google Scholar 

  16. Carrion-Vazquez, M., Li, H., Lu, H., Marszalek, P.E., Oberhauser, A.F., Fernandez, J.M.: The mechanical stability of ubiquitin is linkage dependent. Nat. struct. Biol. 10, 738–743 (2003). https://doi.org/10.1038/nsb965

    Article  Google Scholar 

  17. Chan, H.S., Zhang, Z., Wallin, S., Liu, Z.: Cooperativity, local-nonlocal coupling, and nonnative interactions: principles of protein folding from coarse-grained models. Annu. Rev. Phys. Chem. 62, 301–326 (2011). https://doi.org/10.1146/annurev-physchem-032210-103405

    Article  Google Scholar 

  18. Chang, S., Hu, J.P., Lin, P.Y., Jiao, X., Tian, X.H.: Substrate recognition and transport behavior analyses of amino acid antiporter with coarse-grained models. Mol. BioSyst. 6, 2430–2438 (2010). https://doi.org/10.1039/c005266c

    Article  Google Scholar 

  19. Chetwynd, A.P., Scott, K.A., Mokrab, Y., Sansom, M.S.: CGDB: a database of membrane protein/lipid interactions by coarse-grained molecular dynamics simulations. Mol. Membr. Biol. 25, 662–669 (2008). https://doi.org/10.1080/09687680802446534

    Article  Google Scholar 

  20. Chiricotto, M., Tran, T.T., Nguyen, P.H., Melchionna, S., Sterpone, F., Derreumaux, P.: Coarse-grained and all-atom simulations towards the early and late steps of amyloid fibril formation. Isr. J. Chem. 57, 564–573 (2017)

    Article  Google Scholar 

  21. Chu, J.W., Voth, G.A.: Coarse-grained modeling of the actin filament derived from atomistic-scale simulations. Biophys. J. 90, 1572–1582 (2006). https://doi.org/10.1529/biophysj.105.073924

    Article  Google Scholar 

  22. Ciemny, M.P., Kurcinski, M., Kamel, K., Kolinski, A., Nawsad, A., Schueler-Furman, O., Kmiecik, S.: Protein–peptide docking: opportunities and challenges. Drug Discov. Today. 23, 1530–1537 (2018)

    Article  Google Scholar 

  23. Ciemny, M.P., Debinski, A., Paczkowska, M., Kolinski, A., Kurcinski, M., Kmiecik, S.: Protein-peptide molecular docking with large-scale conformational changes: the p 53-MDM2 interaction. Sci. Rep. 6, 37532 (2016). https://doi.org/10.1038/srep37532

  24. Cieplak, M., Hoang, T.X., Robbins, M.O.: Folding and stretching in a go-like model of titin. Proteins 49, 114–124 (2002). https://doi.org/10.1002/prot.10087

    Article  Google Scholar 

  25. Clementi, C., Nymeyer, H., Onuchic, J.N.: Topological and energetic factors: what determines the structural details of the transition state ensemble and “en-route” intermediates for protein folding? An investigation for small globular proteins. J. Mol. Biol. 298, 937–953 (2000). https://doi.org/10.1006/jmbi.2000.3693

    Article  Google Scholar 

  26. Colizzi, F., Perozzo, R., Scapozza, L., Recanatini, M., Cavalli, A.: Single-molecule pulling simulations can discern active from inactive enzyme inhibitors. J. Am. Chem. Soc. 132, 7361–7371 (2010). https://doi.org/10.1021/ja100259r

    Article  Google Scholar 

  27. De Sancho, D., Best, R.B.: Modulation of an IDP binding mechanism and rates by helix propensity and non-native interactions: association of HIF1alpha with CBP. Mol. BioSyst. 8, 256–267 (2012). https://doi.org/10.1039/c1mb05252g

    Article  Google Scholar 

  28. Di Fenza, A., Rocchia, W., Tozzini, V.: Complexes of HIV-1 integrase with HAT proteins: multiscale models, dynamics, and hypotheses on allosteric sites of inhibition. Proteins: Struct. Funct. Bioinf. 76, 946–958 (2009). https://doi.org/10.1002/prot.22399

    Article  Google Scholar 

  29. Dudko, O.K., Hummer, G., Szabo, A.: Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys. Rev. Lett. 96, 108101 (2006). https://doi.org/10.1103/PhysRevLett.96.108101

    Article  Google Scholar 

  30. Eliezer, D.: Biophysical characterization of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 19, 23–30 (2009). https://doi.org/10.1016/j.sbi.2008.12.004

    Article  Google Scholar 

  31. Evans, E., Ritchie, K.: Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541–1555 (1997). https://doi.org/10.1016/S0006-3495(97)78802-7

    Article  Google Scholar 

  32. Fernandez, J.M., Li, H.B.: Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303, 1674–1678 (2004). https://doi.org/10.1126/science.1092497

    Article  Google Scholar 

  33. Fletcher, D.A., Mullins, R.D.: Cell mechanics and the cytoskeleton. Nature 463, 485–492 (2010). https://doi.org/10.1038/nature08908

    Article  Google Scholar 

  34. Florin, E.L., Moy, V.T., Gaub, H.E.: Adhesion forces between individual ligand-receptor pairs. Science 264, 415–417 (1994). https://doi.org/10.1126/science.8153628

    Article  Google Scholar 

  35. Fowler, S.B., et al.: Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering. J. Mol. Biol. 322, 841–849 (2002). https://doi.org/10.1016/S0022-2836(02)00805-7

    Article  Google Scholar 

  36. Frembgen-Kesner, T., Elcock, A.H.: Absolute protein-protein association rate constants from flexible, coarse-grained brownian dynamics simulations: the role of intermolecular hydrodynamic interactions in Barnase-Barstar association. Biophys. J. 99, L75–L77 (2010). https://doi.org/10.1016/j.bpj.2010.09.006

    Article  Google Scholar 

  37. Granzier, H.L., Labeit, S.: The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ. Res. 94, 284–295 (2004). https://doi.org/10.1161/01.res.0000117769.88862.f8

    Article  Google Scholar 

  38. Grubmuller, H., Heymann, B., Tavan, P.: Ligand binding: Molecular mechanics calculation of the streptavidin biotin rupture force. Science 271, 997–999 (1996). https://doi.org/10.1126/science.271.5251.997

    Article  Google Scholar 

  39. Gu, J.F., Li, H.X., Wang, X.C.: A self-adaptive steered molecular dynamics method based on minimization of stretching force reveals the binding affinity of protein-ligand complexes. Molecules 20, 19236–19251 (2015). https://doi.org/10.3390/molecules201019236

    Article  Google Scholar 

  40. Habchi, J., Tompa, P., Longhi, S., Uversky, V.N.: Introducing protein intrinsic disorder. Chem. Rev. 114, 6561–6588 (2014). https://doi.org/10.1021/cr400514h

    Article  Google Scholar 

  41. Habibi, M., Rottler, J., Plotkin, S.S.: As simple as possible but not simpler: on the reliability of protein coarse-grained models. Biophys. J. 112, 176a–176a (2017)

    Article  Google Scholar 

  42. Hall, B.A., Chetwynd, A.P., Sansom, M.S.: Exploring peptide-membrane interactions with coarse-grained MD simulations. Biophys. J. 100, 1940–1948 (2011). https://doi.org/10.1016/j.bpj.2011.02.041

    Article  Google Scholar 

  43. Hall, B.A., Sansom, M.S.P.: Coarse-grained MD simulations and protein–protein interactions: the Cohesin–Dockerin system. J. Chem. Theory Comput. 5, 2465–2471 (2009). https://doi.org/10.1021/ct900140w

    Article  Google Scholar 

  44. Hanson, P.I., Whiteheart, S.W.: AAA + proteins: have engine, will work. Nat. Rev. Mol. Cell Biol. 6, 519–529 (2005). https://doi.org/10.1038/nrm1684

    Article  Google Scholar 

  45. He, C., Genchev, G.Z., Lu, H., Li, H.: Mechanically untying a protein slipknot: multiple pathways revealed by force spectroscopy and steered molecular dynamics simulations. J. Am. Chem. Soc. 134, 10428–10435 (2012). https://doi.org/10.1021/ja3003205

    Article  Google Scholar 

  46. Heath, A.P., Kavraki, L.E., Clementi, C.: From coarse-grain to all-atom: toward multiscale analysis of protein landscapes. Proteins 68, 646–661 (2007). https://doi.org/10.1002/prot.21371

    Article  Google Scholar 

  47. Huang, Y., Liu, Z.: Kinetic advantage of intrinsically disordered proteins in coupled folding-binding process: a critical assessment of the “Fly-Casting” mechanism. J. Mol. Biol. 393, 1143–1159 (2009). https://doi.org/10.1016/j.jmb.2009.09.010

    Article  Google Scholar 

  48. Hunte, C.: Specific protein-lipid interactions in membrane proteins. Biochem. Soc. Trans. 33, 938–942 (2005). https://doi.org/10.1042/BST20050938

    Article  Google Scholar 

  49. Irback, A., Mitternacht, S., Mohanty, S.: Dissecting the mechanical unfolding of ubiquitin. Proc Natl Acad Sci U S A 102, 13427–13432 (2005). https://doi.org/10.1073/pnas.0501581102

    Article  Google Scholar 

  50. Jacob, E., Horovitz, A., Unger, R.: Different mechanistic requirements for prokaryotic and eukaryotic chaperonins: a lattice study. Bioinformatics 23, i240–i248 (2007). https://doi.org/10.1093/bioinformatics/btm180

    Article  Google Scholar 

  51. Jamroz, M., Kolinski, A., Kmiecik, S.: CABS-flex: server for fast simulation of protein structure fluctuations. Nucleic Acids Res. 41, W427–W431 (2013). https://doi.org/10.1093/nar/gkt332

    Article  Google Scholar 

  52. Jamroz, M., Kolinski, A., Kmiecik, S.: CABS-flex predictions of protein flexibility compared with NMR ensembles. Bioinformatics 30, 2150–2154 (2014). https://doi.org/10.1093/bioinformatics/btu184

    Article  Google Scholar 

  53. Jamroz, M., Orozco, M., Kolinski, A., Kmiecik, S.: Consistent view of protein fluctuations from all-atom molecular dynamics and coarse-grained dynamics with knowledge-based force-field. J. Chem. Theor. Comput. 9, 119–125 (2013). https://doi.org/10.1021/ct300854w

    Article  Google Scholar 

  54. Jewett, A.I., Baumketner, A., Shea, J.E.: Accelerated folding in the weak hydrophobic environment of a chaperonin cavity: creation of an alternate fast folding pathway. Proc Natl Acad Sci U S A 101, 13192–13197 (2004). https://doi.org/10.1073/pnas.0400720101

    Article  Google Scholar 

  55. Jewett, A.I., Shea, J.E.: Reconciling theories of chaperonin accelerated folding with experimental evidence. Cell. Mol. Life Sci. 67, 255–276 (2009)

    Article  Google Scholar 

  56. Jung, J., Mori, T., Kobayashi, C., Matsunaga, Y., Yoda, T., Feig, M., Sugita, Y.: GENESIS: a hybrid-parallel and multi-scale molecular dynamics simulator with enhanced sampling algorithms for biomolecular and cellular simulations. Wiley Interdisciplinary Rev. Comput. Mol. Sci. 5, 310–323 (2015). https://doi.org/10.1002/wcms.1220

    Google Scholar 

  57. Kalli, A.C., Hall, B.A., Campbell, I.D., Sansom, M.S.: A helix heterodimer in a lipid bilayer: prediction of the structure of an integrin transmembrane domain via multiscale simulations. Structure 19, 1477–1484 (2011). https://doi.org/10.1016/j.str.2011.07.014

    Article  Google Scholar 

  58. Kamerlin, S.C., Vicatos, S., Dryga, A., Warshel, A.: Coarse-grained (multiscale) simulations in studies of biophysical and chemical systems. Annu. Rev. Phys. Chem. 62, 41–64 (2011). https://doi.org/10.1146/annurev-physchem-032210-103335

    Article  Google Scholar 

  59. Kar, P., Gopal, S.M., Cheng, Y.M., Panahi, A., Feig, M.: Transferring the PRIMO coarse-grained force field to the membrane environment: simulations of membrane proteins and helix-helix association. J. Chem. Theor. Comput. 10, 3459–3472 (2014). https://doi.org/10.1021/ct500443v

    Article  Google Scholar 

  60. Kim, Y.C., Hummer, G.: Coarse-grained models for simulations of multiprotein complexes: application to ubiquitin binding. J. Mol. Biol. 375, 1416–1433 (2008). https://doi.org/10.1016/j.jmb.2007.11.063

    Article  Google Scholar 

  61. Kim, B.L., Schafer, N.P., Wolynes, P.G.: Predictive energy landscapes for folding alpha-helical transmembrane proteins. Proc. Natl. Acad. Sci. U S A 111, 11031–11036 (2014). https://doi.org/10.1073/pnas.1410529111. 1410529111 [pii]

    Article  Google Scholar 

  62. Kim, Y.C., Tang, C., Clore, G.M., Hummer, G.: Replica exchange simulations of transient encounter complexes in protein-protein association. Proc. Natl. Acad. Sci. U S A 105, 12855–12860 (2008). https://doi.org/10.1073/pnas.0802460105

    Article  Google Scholar 

  63. Kmiecik, S., Gront, D., Kolinski, A.: Towards the high-resolution protein structure prediction. Fast refinement of reduced models with all-atom force field. BMC Struct. Biol. 7, 43 (2007). https://doi.org/10.1186/1472-6807-7-43

    Article  Google Scholar 

  64. Kmiecik, S., Gront, D., Kolinski, M., Wieteska, L., Dawid, A.E., Kolinski, A.: Coarse-grained protein models and their applications. Chem. Rev. 116, 7898–7936 (2016). https://doi.org/10.1021/acs.chemrev.6b00163

    Article  Google Scholar 

  65. Kmiecik, S., Gront, D., Kouza, M., Kolinski, A.: From coarse-grained to atomic-level characterization of protein dynamics: transition state for the folding of B domain of protein A. J. Phys. Chem. B 116, 7026–7032 (2012). https://doi.org/10.1021/jp301720w

    Article  Google Scholar 

  66. Kmiecik, S., Kolinski, A.: Folding pathway of the b1 domain of protein G explored by multiscale modeling. Biophys. J. 94, 726–736 (2008). https://doi.org/10.1529/biophysj.107.116095

    Article  Google Scholar 

  67. Kmiecik, S., Kolinski, A.: Simulation of chaperonin effect on protein folding: a shift from nucleation-condensation to framework mechanism. J. Am. Chem. Soc. 133, 10283–10289 (2011). https://doi.org/10.1021/ja203275f

    Article  Google Scholar 

  68. Kmiecik, S., Jamroz, M., Kolinski, A.: Multiscale approach to protein folding dynamics. In: Kolinski, A. (ed.) Multiscale Approaches to Protein Modeling, pp. 281–293. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-6889-0_12

    Google Scholar 

  69. Knepp, A.M., Periole, X., Marrink, S.J., Sakmar, T.P., Huber, T.: Rhodopsin forms a dimer with cytoplasmic helix 8 contacts in native membranes. Biochemistry 51, 1819–1821 (2012). https://doi.org/10.1021/bi3001598

    Article  Google Scholar 

  70. Koga, N., Takada, S.: Folding-based molecular simulations reveal mechanisms of the rotary motor F1-ATPase. Proc. Natl. Acad. Sci. U S A 103, 5367–5372 (2006). https://doi.org/10.1073/pnas.0509642103

    Article  Google Scholar 

  71. Kolinski, A., Skolnick, J.: Reduced models of proteins and their applications. Polymer 45, 511–524 (2004). https://doi.org/10.1016/j.polymer.2003.10.064

    Article  Google Scholar 

  72. Kolinski, A.: Protein modeling and structure prediction with a reduced representation. Acta Biochim. Pol. 51, 349–371 (2004). doi: 035001349

    Google Scholar 

  73. Kouza, M., Banerji, A., Kolinski, A., Buhimschi, I.A., Kloczkowski, A.: Oligomerization of FVFLM peptides and their ability to inhibit beta amyloid peptides aggregation: consideration as a possible model. Phys. Chem. Chem. Phys. 19, 2990–2999 (2017)

    Article  Google Scholar 

  74. Kouza, M., Banerji, A., Kolinski, A., Buhimschi, I.A., Kloczkowski, A.: Role of Resultant Dipole Moment in Mechanical Dissociation of Biological Complexes. Molecules 23, 1995 (2018)

    Article  Google Scholar 

  75. Kouza, M., Co, N.T., Li, M.S., Kmiecik, S., Kolinski, A., Kloczkowski, A., Buhimschi, I.A.: Kinetics and mechanical stability of the fibril state control fibril formation time of polypeptide chains: A computational study. J. Chem. Phys. 148, 215106 (2018)

    Article  Google Scholar 

  76. Kouza, M., Hu, C.K., Li, M.S.: New force replica exchange method and protein folding pathways probed by force-clamp technique. J. Chem. Phys. 128, 045103 (2008). https://doi.org/10.1063/1.2822272

    Article  Google Scholar 

  77. Kouza, M., Hu, C.K., Zung, H., Li, M.S.: Protein mechanical unfolding: importance of non-native interactions. J. Chem. Phys. 131, 215103 (2009). https://doi.org/10.1063/1.3272275

    Article  Google Scholar 

  78. Kouza, M., Jamroz, M., Gront, D., Kmiecik, S., Kolinski, A.: Mechanical unfolding of DDFLN4 studied by coarse-grained knowledge-based CABS model. TASK Quaterly 18, 373–378 (2014)

    Google Scholar 

  79. Kouza, M., Co, N.T., Nguyen, P.H., Kolinski, A., Li, M.S.: Preformed template fluctuations promote fibril formation: Insights from lattice and all-atom models. J. Chem. Phys. 142 (2015). doi: Artn 145104. https://doi.org/10.1063/1.4917073

  80. Kouza, M., Lan, P.D., Gabovich, A.M., Kolinski, A., Li, M.S.: Switch from thermal to force-driven pathways of protein refolding. J. Chem. Phys. 146 (2017b). doi: Artn 135101. https://doi.org/10.1063/1.4979201

  81. Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(7), 284–303 (1940). https://doi.org/10.1016/S0031-8914(40)90098-2

    Article  MathSciNet  MATH  Google Scholar 

  82. Kubelka, J., Hofrichter, J., Eaton, W.A.: The protein folding ‘speed limit’. Curr. Opin. Struct. Biol. 14, 76–88 (2004)

    Article  Google Scholar 

  83. Kumar, S., Li, M.S.: Biomolecules under mechanical force. Phys. Rep.-Rev. Sect. Phys. Lett. 486, 1–74 (2010). https://doi.org/10.1016/j.physrep.2009.11.001

    Article  Google Scholar 

  84. Kurcinski, M., Kolinski, A.: Theoretical study of molecular mechanism of binding TRAP220 coactivator to Retinoid X Receptor alpha, activated by 9-cis retinoic acid. J. Steroid Biochem. Mol. Biol. 121, 124–129 (2010). https://doi.org/10.1016/j.jsbmb.2010.03.086

    Article  Google Scholar 

  85. Kurcinski, M., Kolinski, A., Kmiecik, S.: Mechanism of folding and binding of an intrinsically disordered protein as revealed by ab initio simulations. J. Chem. Theor. Comput. 10, 2224–2231 (2014). https://doi.org/10.1021/ct500287c

    Article  Google Scholar 

  86. Kurcinski, M., Oleniecki, T., Ciemny, M.P., Kuriata, A., Kolinski, A., Kmiecik, S. CABS-flex standalone: a simulation environment for fast modeling of protein flexibility. Bioinformatics, bty685 (2018).

    Google Scholar 

  87. Kuriata, A., Gierut A.M., Oleniecki, T., Ciemny, M.P., Kolinski, A., Kurcinski, M., Kmiecik, S. CABS-flex 2.0: a web server for fast simulations of flexibility of protein structures. Nucl. Acids Res. W1: W338–W343 (2018).

    Article  Google Scholar 

  88. Lau, T.L., Kim, C., Ginsberg, M.H., Ulmer, T.S.: The structure of the integrin alphaIIbbeta3 transmembrane complex explains integrin transmembrane signalling. EMBO J. 28, 1351–1361 (2009). https://doi.org/10.1038/emboj.2009.63

    Article  Google Scholar 

  89. Lee, A.G.: How lipids affect the activities of integral membrane proteins. BBA-Biomembr. 1666, 62–87 (2004). https://doi.org/10.1016/j.bbamem.2004.05.012

    Article  Google Scholar 

  90. Lee, E.H., Hsin, J., Sotomayor, M., Comellas, G., Schulten, K.: Discovery through the computational microscope. Structure 17, 1295–1306 (2009). https://doi.org/10.1016/j.str.2009.09.001

    Article  Google Scholar 

  91. Levitt, M., Warshel, A.: Computer simulation of protein folding. Nature 253, 694–698 (1975). https://doi.org/10.1038/253694a0

    Article  Google Scholar 

  92. Li, M.S.: Secondary structure, mechanical stability, and location of transition state of proteins. Biophys. J. 93, 2644–2654 (2007). https://doi.org/10.1529/biophysj.107.106138

    Article  Google Scholar 

  93. Li, L., Huang, H.H., Badilla, C.L., Fernandez, J.M.: Mechanical unfolding intermediates observed by single-molecule force spectroscopy in a fibronectin type III module. J. Mol. Biol. 345, 817–826 (2005). https://doi.org/10.1016/j.jmb.2004.11.021

    Article  Google Scholar 

  94. Li, M.S., Kouza, M.: Dependence of protein mechanical unfolding pathways on pulling speeds. J. Chem. Phys. 130, 145102 (2009). https://doi.org/10.1063/1.3106761

    Article  Google Scholar 

  95. Li, M.S., Kouza, M., Hu, C.K.: Refolding upon force quench and pathways of mechanical and thermal unfolding of ubiquitin. Biophys. J. 92, 547–561 (2007). https://doi.org/10.1529/biophysj.106.087684

    Article  Google Scholar 

  96. Li, M.S., Mai, B.K.: Steered molecular dynamics-a promising tool for drug design. Curr. Bioinform. 7, 342–351 (2012)

    Article  Google Scholar 

  97. Lichter, S., Rafferty, B., Flohr, Z., Martini, A.: Protein high-force pulling simulations yield low-force results. PLoS ONE 7, e34781 (2012). https://doi.org/10.1371/journal.pone.0034781

    Article  Google Scholar 

  98. Liphardt, J., Onoa, B., Smith, S.B., Tinoco Jr., I., Bustamante, C.: Reversible unfolding of single RNA molecules by mechanical force. Science 292, 733–737 (2001). https://doi.org/10.1126/science.1058498

    Article  Google Scholar 

  99. Liu, X., Shi, D., Zhou, S., Liu, H., Yao, X.: Molecular dynamics simulations and novel drug discovery. Expert Opin. Drug Discov. 13, 23–37 (2018). https://doi.org/10.1080/17460441.2018.1403419

    Article  Google Scholar 

  100. Lu, H., Isralewitz, B., Krammer, A., Vogel, V., Schulten, K.: Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys. J. 75, 662–671 (1998)

    Article  Google Scholar 

  101. Lu, H., Schulten, K.: The key event in force-induced unfolding of Titin’s immunoglobulin domains. Biophys. J. 79, 51–65 (2000). https://doi.org/10.1016/S0006-3495(00)76273-4

    Article  Google Scholar 

  102. Lucent, D., England, J., Pande, V.: Inside the chaperonin toolbox: theoretical and computational models for chaperonin mechanism. Phys. Biol. 6, 015003 (2009). https://doi.org/10.1088/1478-3975/6/1/015003

    Article  Google Scholar 

  103. Malolepsza, E., Boniecki, M., Kolinski, A., Piela, L.: Theoretical model of prion propagation: a misfolded protein induces misfolding. Proc. Natl. Acad. Sci. USA 102, 7835–7840 (2005)

    Article  Google Scholar 

  104. Marrink, S.J., Tieleman, D.P.: Perspective on the Martini model. Chem. Soc. Rev. 42, 6801–6822 (2013). https://doi.org/10.1039/c3cs60093a

    Article  Google Scholar 

  105. Marszalek, P.E., Lu, H., Li, H., Carrion-Vazquez, M., Oberhauser, A.F., Schulten, K., Fernandez, J.M.: Mechanical unfolding intermediates in titin modules. Nature 402, 100–103 (1999). https://doi.org/10.1038/47083

    Article  Google Scholar 

  106. Mittag, T., Kay, L.E., Forman-Kay, J.D.: Protein dynamics and conformational disorder in molecular recognition. J. Mol. Recognit. 23, 105–116 (2010). https://doi.org/10.1002/jmr.961

    Article  Google Scholar 

  107. Morriss-Andrews, A., Shea, J.E.: Simulations of protein aggregation: insights from atomistic and coarse-grained models. J. Phys. Chem. Lett. 5, 1899–1908 (2014). https://doi.org/10.1021/jz5006847

    Article  Google Scholar 

  108. Morriss-Andrews, A., Shea, J.E.: Computational studies of protein aggregation: methods and applications. Annu. Rev. Phys. Chem. 66, 643–666 (2015). https://doi.org/10.1146/annurev-physchem-040513-103738

    Article  Google Scholar 

  109. Munoz, V., Henry, E.R., Hofrichter, J., Eaton, W.A.: A statistical mechanical model for beta-hairpin kinetics. Proc. Natl. Acad. Sci. U S A 95, 5872–5879 (1998). https://doi.org/10.1073/pnas.95.11.5872

    Article  Google Scholar 

  110. Nasica-Labouze, J., et al.: Amyloid beta protein and Alzheimer’s Disease: when computer simulations complement experimental studies. Chem. Rev. 115, 3518–3563 (2015)

    Article  Google Scholar 

  111. Nguyen, P.H., Li, M.S., Stock, G., Straub, J.E., Thirumalai, D.: Monomer adds to preformed structured oligomers of A beta-peptides by a two-stage dock-lock mechanism. Proc. Natl. Acad. Sci. U.S.A. 104, 111–116 (2007). https://doi.org/10.1073/Pnas.0607440104

    Article  Google Scholar 

  112. Nilsson, J., Persson, B., von Heijne, G.: Comparative analysis of amino acid distributions in integral membrane proteins from 107 genomes. Proteins 60, 606–616 (2005). https://doi.org/10.1002/prot.20583

    Article  Google Scholar 

  113. Norgaard, A.B., Ferkinghoff-Borg, J., Lindorff-Larsen, K.: Experimental parameterization of an energy function for the simulation of unfolded proteins. Biophys. J. 94, 182–192 (2008). https://doi.org/10.1529/biophysj.107.108241

    Article  Google Scholar 

  114. Okazaki, K.-I., Sato, T., Takano, M.: Temperature-enhanced association of proteins due to electrostatic interaction: a coarse-grained simulation of Actin-Myosin binding. J. Am. Chem. Soc. 134, 8918–8925 (2012). https://doi.org/10.1021/ja301447j

    Article  Google Scholar 

  115. Paci, E., Karplus, M.: Unfolding proteins by external forces and temperature: the importance of topology and energetics. Proc. Natl. Acad. Sci. U S A 97, 6521–6526 (2000). https://doi.org/10.1073/pnas.100124597

    Article  Google Scholar 

  116. Peplowski, L., Sikora, M., Nowak, W., Cieplak, M.: Molecular jamming–the cystine slipknot mechanical clamp in all-atom simulations. J. Chem. Phys. 134, 085102 (2011). https://doi.org/10.1063/1.3553801

    Article  Google Scholar 

  117. Perilla, J.R., et al.: Molecular dynamics simulations of large macromolecular complexes. Curr. Opin. Struct. Biol. 31, 64–74 (2015). https://doi.org/10.1016/j.sbi.2015.03.007

    Article  Google Scholar 

  118. Periole, X., Knepp, A.M., Sakmar, T.P., Marrink, S.J., Huber, T.: Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers. J. Am. Chem. Soc. 134, 10959–10965 (2012). https://doi.org/10.1021/ja303286e

    Article  Google Scholar 

  119. Plaxco, K.W., Simons, K.T., Baker, D.: Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol. 277, 985–994 (1998). https://doi.org/10.1006/jmbi.1998.1645

    Article  Google Scholar 

  120. Pulawski, W., Jamroz, M., Kolinski, M., Kolinski, A., Kmiecik, S.: Coarse-Grained simulations of membrane insertion and folding of small helical proteins using the CABS model. J. Chem. Inf. Model. 56, 2207–2215 (2016). https://doi.org/10.1021/acs.jcim.6b00350

    Article  Google Scholar 

  121. Rathore, N., Knotts, T.A.T., de Pablo, J.J.: Confinement effects on the thermodynamics of protein folding: Monte Carlo simulations. Biophys. J. 90, 1767–1773 (2006). https://doi.org/10.1529/biophysj.105.071076

    Article  Google Scholar 

  122. Rauscher, S., Gapsys, V., Gajda, M.J., Zweckstetter, M., de Groot, B.L., Grubmuller, H.: Structural ensembles of intrinsically disordered proteins depend strongly on force field: a comparison to experiment. J. Chem. Theor. Comput. 11, 5513–5524 (2015). https://doi.org/10.1021/acs.jctc.5b00736

    Article  Google Scholar 

  123. Rauscher, S., Pomès, R.: Molecular simulations of protein disorder. This paper is one of a selection of papers published in this special issue entitled “Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting—Protein Folding: Principles and Diseases” and has undergone the Journal’s usual peer review process. Biochem. Cell Biol. 88, 269–290 (2010). https://doi.org/10.1139/o09-169

    Article  Google Scholar 

  124. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M., Gaub, H.E.: Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997). https://doi.org/10.1126/science.276.5315.1109

    Article  Google Scholar 

  125. Rojas, A., Liwo, A., Browne, D., Scheraga, H.A.: Mechanism of fiber assembly: treatment of a beta peptide aggregation with a coarse-grained united-residue force field. J. Mol. Biol. 404, 537–552 (2010)

    Article  Google Scholar 

  126. Ruprecht, J.J., Mielke, T., Vogel, R., Villa, C., Schertler, G.F.: Electron crystallography reveals the structure of metarhodopsin I. EMBO J. 23, 3609–3620 (2004). https://doi.org/10.1038/sj.emboj.7600374

    Article  Google Scholar 

  127. Russel, D., Lasker, K., Phillips, J., Schneidman-Duhovny, D., Velazquez-Muriel, J.A., Sali, A.: The structural dynamics of macromolecular processes. Curr. Opin. Cell Biol. 21, 97–108 (2009). https://doi.org/10.1016/j.ceb.2009.01.022

    Article  Google Scholar 

  128. Rydzewski, J., Nowak, W.: Ligand diffusion in proteins via enhanced sampling in molecular dynamics. Phys. Life Rev. (2017). https://doi.org/10.1016/j.plrev.2017.03.003

    Article  Google Scholar 

  129. Sansom, M.S., Scott, K.A., Bond, P.J.: Coarse-grained simulation: a high-throughput computational approach to membrane proteins. Biochem. Soc. Trans. 36, 27–32 (2008). https://doi.org/10.1042/BST0360027

    Article  Google Scholar 

  130. Saunders, M.G., Voth, G.A.: Coarse-graining of multiprotein assemblies. Curr. Opin. Struct. Biol. 22, 144–150 (2012). https://doi.org/10.1016/j.sbi.2012.01.003

    Article  Google Scholar 

  131. Schafer, K., Oestereich, M., Gauss, J., Diezemann, G.: Force probe simulations using a hybrid scheme with virtual sites. J. Chem. Phys. 147 (2017)

    Google Scholar 

  132. Scheraga, H.A., Khalili, M., Liwo, A.: Protein-folding dynamics: overview of molecular simulation techniques. Annu. Rev. Phys. Chem. 58, 57–83 (2007). https://doi.org/10.1146/annurev.physchem.58.032806.104614

    Article  Google Scholar 

  133. Schlick, T., Collepardo-Guevara, R., Halvorsen, L.A., Jung, S., Xiao, X.: Biomolecularmodeling and simulation: a field coming of age. Q. Rev. Biophys. 44, 191–228 (2011). https://doi.org/10.1017/S0033583510000284

    Article  Google Scholar 

  134. Schwaiger, I., Kardinal, A., Schleicher, M., Noegel, A.A., Rief, M.: A mechanical unfolding intermediate in an actin-crosslinking protein. Nat. Struct. Mol. Biol. 11, 81–85 (2004)

    Article  Google Scholar 

  135. Schwaiger, I., Kardinal, A., Schleicher, M., Noegel, A.A., Rief, M.: A mechanical unfolding intermediate in an actin-crosslinking protein. Nat. Struct. Mol. Biol. 11, 81–85 (2004). https://doi.org/10.1038/nsmb705

    Article  Google Scholar 

  136. Scott, K.A., Bond, P.J., Ivetac, A., Chetwynd, A.P., Khalid, S., Sansom, M.S.: Coarse-grained MD simulations of membrane protein-bilayer self-assembly. Structure 16, 621–630 (2008). https://doi.org/10.1016/j.str.2008.01.014

    Article  Google Scholar 

  137. Sen, T.Z., Kloster, M., Jernigan, R.L., Kolinski, A., Bujnicki, J.M., Kloczkowski, A.: Predicting the complex structure and functional motions of the outer membrane transporter and signal transducer FecA. Biophys. J. 94, 2482–2491 (2008). https://doi.org/10.1529/biophysj.107.116046

    Article  Google Scholar 

  138. Sengupta, D., Marrink, S.J.: Lipid-mediated interactions tune the association of glycophorin A helix and its disruptive mutants in membranes. Phys. Chem. Chem. Phys. 12, 12987–12996 (2010). https://doi.org/10.1039/c0cp00101e

    Article  Google Scholar 

  139. Serohijos, A.W., Chen, Y., Ding, F., Elston, T.C., Dokholyan, N.V.: A structural model reveals energy transduction in dynein. Proc. Natl. Acad. Sci. U S A 103, 18540–18545 (2006). https://doi.org/10.1073/pnas.0602867103

    Article  Google Scholar 

  140. Shoemaker, B.A., Portman, J.J., Wolynes, P.G.: Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc. Natl. Acad. Sci. 97, 8868–8873 (2000). https://doi.org/10.1073/pnas.160259697

    Article  Google Scholar 

  141. Sieben, C., et al.: Influenza virus binds its host cell using multiple dynamic interactions. Proc. Natl. Acad. Sci. U S A 109, 13626–13631 (2012). https://doi.org/10.1073/pnas.1120265109

    Article  Google Scholar 

  142. Sieradzan, A.K., Jakubowski, R.: Introduction of steered molecular dynamics into UNRES coarse-grained simulations package. J. Comput. Chem. 38, 553–562 (2017)

    Article  Google Scholar 

  143. Sikora, M., Cieplak, M.: Mechanical stability of multidomain proteins and novel mechanical clamps. Proteins 79, 1786–1799 (2011). https://doi.org/10.1002/prot.23001

    Article  Google Scholar 

  144. Sikora, M., Sulkowska, J.I., Witkowski, B.S., Cieplak, M.: BSDB: the biomolecule stretching database. Nucleic Acids Res. 39, D443–D450 (2011). https://doi.org/10.1093/nar/gkq851

    Article  Google Scholar 

  145. Simmons, R.M., Finer, J.T., Chu, S., Spudich, J.A.: Quantitative measurements of force and displacement using an optical trap. Biophys. J. 70, 1813–1822 (1996). https://doi.org/10.1016/S0006-3495(96)79746-1

    Article  Google Scholar 

  146. Smith, S.O., et al.: Implications of threonine hydrogen bonding in the glycophorin A transmembrane helix dimer. Biophys. J. 82, 2476–2486 (2002). https://doi.org/10.1016/S0006-3495(02)75590-2

    Article  Google Scholar 

  147. Smith, S.B., Cui, Y., Bustamante, C.: Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996). https://doi.org/10.1126/science.271.5250.795

    Article  Google Scholar 

  148. Spijker, P., van Hoof, B., Debertrand, M., Markvoort, A.J., Vaidehi, N., Hilbers, P.A.: Coarse grained molecular dynamics simulations of transmembrane protein-lipid systems. Int. J. Mol. Sci. 11, 2393–2420 (2010). https://doi.org/10.3390/ijms11062393

    Article  Google Scholar 

  149. Stossel, T.P., Condeelis, J., Cooley, L., Hartwig, J.H., Noegel, A., Schleicher, M., Shapiro, S.S.: Filamins as integrators of cell mechanics and signalling. Nat. Rev. Mol. Cell Biol. 2, 138–145 (2001). https://doi.org/10.1038/35052082

    Article  Google Scholar 

  150. Sulkowska, J.I., Sulkowski, P., Onuchic, J.N.: Jamming proteins with slipknots and their free energy landscape. Phys. Rev. Lett. 103, 268103 (2009). https://doi.org/10.1103/PhysRevLett.103.268103

    Article  Google Scholar 

  151. Sulkowska, J.I., Sulkowski, P., Szymczak, P., Cieplak, M.: Untying knots in proteins. J. Am. Chem. Soc. 132, 13954–13956 (2010). https://doi.org/10.1021/Ja102441z

    Article  Google Scholar 

  152. Sulkowska, J.I., Cieplak, M.: Mechanical stretching of proteins - a theoretical survey of the protein data bank. J. Phys.-Condens. Mat. 19 (2007). https://doi.org/10.1088/0953-8984/19/28/283201

    Google Scholar 

  153. Szilagyi, A., Gyorffy, D., Zavodszky, P.: The twilight zone between protein order and disorder. Biophys. J. 95, 1612–1626 (2008). https://doi.org/10.1529/biophysj.108.131151

    Article  Google Scholar 

  154. Szymczak, P., Janovjak, H.: Periodic forces trigger a complex mechanical response in ubiquitin. J. Mol. Biol. 390, 443–456 (2009). https://doi.org/10.1016/j.jmb.2009.04.071

    Article  Google Scholar 

  155. Takada, S.: Coarse-grained molecular simulations of large biomolecules. Curr. Opin. Struct. Biol. 22, 130–137 (2012). https://doi.org/10.1016/j.sbi.2012.01.010

    Article  Google Scholar 

  156. Takagi, F., Koga, N., Takada, S.: How protein thermodynamics and folding mechanisms are altered by the chaperonin cage: molecular simulations. Proc. Natl. Acad. Sci. U.S.A. 100, 11367–11372 (2003). https://doi.org/10.1073/pnas.1831920100

    Article  Google Scholar 

  157. Taylor, W.R., Katsimitsoulia, Z.: A coarse-grained molecular model for actin-myosin simulation. J. Mol. Graph. Model. 29, 266–279 (2010). https://doi.org/10.1016/j.jmgm.2010.06.004

    Article  Google Scholar 

  158. Thirumalai, D., Reddy, G., Straub, J.E.: Role of water in protein aggregation and amyloid polymorphism. Acc. Chem. Res. 45, 83–92 (2012). https://doi.org/10.1021/ar2000869

    Article  Google Scholar 

  159. Turjanski, A.G., Gutkind, J.S., Best, R.B., Hummer, G.: Binding-induced folding of a natively unstructured transcription factor. PLoS Comput. Biol. 4, e1000060 (2008). https://doi.org/10.1371/journal.pcbi.1000060

    Article  MathSciNet  Google Scholar 

  160. Uversky, V.N.: Introduction to intrinsically disordered proteins (IDPs). Chem. Rev. 114, 6557–6560 (2014). https://doi.org/10.1021/cr500288y

    Article  Google Scholar 

  161. Uversky, V.N., Gillespie, J.R., Fink, A.L.: Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins: Struct. Funct. Bioinf. 41, 415–427 (2000). https://doi.org/10.1002/1097-0134(20001115)41:3%3c415:aid-prot130%3e3.0.co;2-7

    Article  Google Scholar 

  162. Vajda, S., Kozakov, D.: Convergence and combination of methods in protein-protein docking. Curr. Opin. Struct. Biol. 19, 164–170 (2009). https://doi.org/10.1016/j.sbi.2009.02.008

    Article  Google Scholar 

  163. Valbuena, A., et al.: On the remarkable mechanostability of scaffoldins and the mechanical clamp motif. Proc. Natl. Acad. Sci. U S A 106, 13791–13796 (2009). https://doi.org/10.1073/pnas.0813093106

    Article  Google Scholar 

  164. Vendruscolo, M., Dobson, C.M.: Protein dynamics: Moore’s law in molecular biology. Curr. Biol. 21, R68–R70 (2011). https://doi.org/10.1016/j.cub.2010.11.062

    Article  Google Scholar 

  165. Verkhivker, G.M.: Protein conformational transitions coupled to binding in molecular recognition of unstructured proteins: Deciphering the effect of intermolecular interactions on computational structure prediction of the p27Kip1 protein bound to the cyclin A–cyclin-dependent kinase 2 complex. Proteins: Struct. Funct. Bioinf. 58, 706–716 (2005). https://doi.org/10.1002/prot.20351

    Article  Google Scholar 

  166. Verkhivker, G.M., Bouzida, D., Gehlhaar, D.K., Rejto, P.A., Freer, S.T., Rose, P.W.: Simulating disorder–order transitions in molecular recognition of unstructured proteins: where folding meets binding. Proc. Natl. Acad. Sci. 100, 5148–5153 (2003). https://doi.org/10.1073/pnas.0531373100

    Article  Google Scholar 

  167. Vogel, V., Sheetz, M.: Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7, 265–275 (2006). https://doi.org/10.1038/nrm1890

    Article  Google Scholar 

  168. Wang, Y.M., Latshaw, D.C., Hall, C.K.: Aggregation of A beta(17-36) in the presence of naturally occurring phenolic inhibitors using coarse-grained simulations. J. Mol. Biol. 429, 3893–3908 (2017)

    Article  Google Scholar 

  169. Wang, J., Wang, Y., Chu, X., Hagen, S.J., Han, W., Wang, E.: Multi-scaled explorations of binding-induced folding of intrinsically disordered protein inhibitor IA3 to its target enzyme. PLoS Comput. Biol. 7, e1001118 (2011). https://doi.org/10.1371/journal.pcbi.1001118

    Article  Google Scholar 

  170. West, D.K., Olmsted, P.D., Paci, E.: Mechanical unfolding revisited through a simple but realistic model. J. Chem. Phys. 124 (2006). https://doi.org/10.1063/1.2185100

    Article  Google Scholar 

  171. Wolynes, P.G., Onuchic, J.N., Thirumalai, D.: Navigating the folding routes. Science 267, 1619–1620 (1995). https://doi.org/10.1126/science.7886447

    Article  Google Scholar 

  172. Wright, P.E., Dyson, H.J.: Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J. Mol. Biol. 293, 321–331 (1999). https://doi.org/10.1006/jmbi.1999.3110

    Article  Google Scholar 

  173. Yao, X.Q., Kenzaki, H., Murakami, S., Takada, S.: Drug export and allosteric coupling in a multidrug transporter revealed by molecular simulations. Nat. Commun. 1, 117 (2010). https://doi.org/10.1038/ncomms1116

    Article  Google Scholar 

  174. Zacharias, M.: Accounting for conformational changes during protein-protein docking. Curr. Opin. Struct. Biol. 20, 180–186 (2010). https://doi.org/10.1016/j.sbi.2010.02.001

    Article  Google Scholar 

  175. Zhang, J., Muthukumar, M.: Simulations of nucleation and elongation of amyloid fibrils. J. Chem. Phys. 130, 035102 (2009). https://doi.org/10.1063/1.3050295

    Article  Google Scholar 

  176. Zhmurov, A., Dima, R.I., Kholodov, Y., Barsegov, V.: Sop-GPU: accelerating biomolecular simulations in the centisecond timescale using graphics processors. Proteins 78, 2984–2999 (2010). https://doi.org/10.1002/prot.22824

    Article  Google Scholar 

  177. Zhou, H.-X.: Polymer models of protein stability, folding, and interactions†. Biochemistry 43, 2141–2154 (2004). https://doi.org/10.1021/bi036269n

    Article  Google Scholar 

  178. Zhou, H.X., Dill, K.A.: Stabilization of proteins in confined spaces. Biochemistry 40, 11289–11293 (2001). https://doi.org/10.3410/f.1002736.29765

    Article  Google Scholar 

  179. Zhou, J., Thorpe, I.F., Izvekov, S., Voth, G.A.: Coarse-grained peptide modeling using a systematic multiscale approach. Biophys. J. 92, 4289–4303 (2007). https://doi.org/10.1529/biophysj.106.094425

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Joanna Sulkowska for critical reading of the section “Mechanical Unfolding and Refolding of Proteins and their Complexes” of the manuscript. We acknowledge partial support from: Foundation for Polish Science TEAM project (TEAM/2011-7/6) co-financed by the European Regional Development Fund operated within the Innovative Economy Operational Program; Polish National Science Center (NCN) on the basis of a decision DEC-2011/01/D/NZ2/05314; Polish National Science Center (NCN) Grant No. NN301071140, Polish Ministry of Science and Higher Education Grant No. IP2011024371, Polish National Science Center (NCN) Grant (MAESTRO 2014/14/A/ST6/00088). M. Kouza acknowledges the Polish Ministry of Science and Higher Education for financial support through ‘‘Mobilnosc Plus’’ Program No. 1287/MOB/IV/2015/0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Kmiecik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kmiecik, S., Wabik, J., Kolinski, M., Kouza, M., Kolinski, A. (2019). Protein Dynamics Simulations Using Coarse-Grained Models. In: Liwo, A. (eds) Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes. Springer Series on Bio- and Neurosystems, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-95843-9_3

Download citation

Publish with us

Policies and ethics