Skip to main content

Abstract

The membrane proteins are still the “Wild West” of structural biology. Although more and more membrane proteins structures are determined, their functioning is still difficult to investigate because they are fully functional only in the membranous environments. Several specific methodologies were developed to investigate various aspects of their cellular life but still they are challenging for computational methods. In this chapter we summarize the efforts made on elucidation the structural and dynamical properties of different types of membrane proteins emphasizing on those computational methods which were designed and employed particularly to study membrane proteins including their interactions in complex membranous systems. This chapter was updated in all subsections compared to the 1st edition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chou, K.C., Elrod, D.W.: Prediction of membrane protein types and subcellular locations. Proteins 34(1), 137–153 (1999)

    Article  Google Scholar 

  2. White, S.H., Snaider, C.: http://blanco.biomol.uci.edu/mpstruc/listAll/list

  3. Lomize, M.A., Pogozheva, I.D., Joo, H., Mosberg, H.I., Lomize, A.L.: OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40(Database issue), D370–376 (2012). https://doi.org/10.1093/nar/gkr703

    Article  Google Scholar 

  4. Jayasinghe, S., Hristova, K., White, S.H.: MPtopo: a database of membrane protein topology. Protein Sci. 10(2), 455–458 (2001). https://doi.org/10.1110/ps.43501

    Article  Google Scholar 

  5. Tusnady, G.E., Dosztanyi, Z., Simon, I.: PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank. Nucleic Acids Res. 33(Database issue), D275–278 (2005). https://doi.org/10.1093/nar/gki002

    Article  Google Scholar 

  6. Kozma, D., Simon, I., Tusnady, G.E.: PDBTM: protein data bank of transmembrane proteins after 8 years. Nucleic Acids Res. 41(Database issue), D524–529 (2013). https://doi.org/10.1093/nar/gks1169

    Article  Google Scholar 

  7. Raman, P., Cherezov, V., Caffrey, M.: The membrane protein data bank. Cell. Mol. Life Sci. 63(1), 36–51 (2006). https://doi.org/10.1007/s00018-005-5350-6

    Article  Google Scholar 

  8. Kazius, J., Wurdinger, K., van Iterson, M., Kok, J., Back, T., Ijzerman, A.P.: GPCR NaVa database: natural variants in human G protein-coupled receptors. Hum. Mutat. 29(1), 39–44 (2008). https://doi.org/10.1002/humu.20638

    Article  Google Scholar 

  9. Okuno, Y., Tamon, A., Yabuuchi, H., Niijima, S., Minowa, Y., Tonomura, K., Kunimoto, R., Feng, C.: GLIDA: GPCR—ligand database for chemical genomics drug discovery–database and tools update. Nucleic Acids Res. 36(Database issue), D907–912 (2008). https://doi.org/10.1093/nar/gkm948

    Article  Google Scholar 

  10. Zhang, J., Zhang, Y.: GPCRRD: G protein-coupled receptor spatial restraint database for 3D structure modeling and function annotation. Bioinformatics 26(23), 3004–3005 (2010). https://doi.org/10.1093/bioinformatics/btq563

    Article  Google Scholar 

  11. Tsirigos, K.D., Bagos, P.G., Hamodrakas, S.J.: OMPdb: a database of beta-barrel outer membrane proteins from Gram-negative bacteria. Nucleic Acids Res. 39(Database issue), D324–331 (2011). https://doi.org/10.1093/nar/gkq863

    Article  Google Scholar 

  12. Vroling, B., Sanders, M., Baakman, C., Borrmann, A., Verhoeven, S., Klomp, J., Oliveira, L., de Vlieg, J., Vriend, G.: GPCRDB: information system for G protein-coupled receptors. Nucleic Acids Res. 39(Database issue), D309–319 (2011). https://doi.org/10.1093/nar/gkq1009

    Article  Google Scholar 

  13. Isberg, V., Mordalski, S., Munk, C., Rataj, K., Harpsoe, K., Hauser, A.S., Vroling, B., Bojarski, A.J., Vriend, G., Gloriam, D.E.: GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res. 44(D1), D356–D364 (2016). https://doi.org/10.1093/nar/gkv1178

    Article  Google Scholar 

  14. Pandy-Szekeres, G., Munk, C., Tsonkov, T.M., Mordalski, S., Harpsoe, K., Hauser, A.S., Bojarski, A.J., Gloriam, D.E.: GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res. 46(D1), D440–D446 (2018). https://doi.org/10.1093/nar/gkx1109

    Article  Google Scholar 

  15. Worth, C.L., Kreuchwig, A., Kleinau, G., Krause, G.: GPCR-SSFE: a comprehensive database of G-protein-coupled receptor template predictions and homology models. BMC Bioinform. 12, 185 (2011). https://doi.org/10.1186/1471-2105-12-185

    Article  Google Scholar 

  16. Worth, C.L., Kreuchwig, F., Tiemann, J.K.S., Kreuchwig, A., Ritschel, M., Kleinau, G., Hildebrand, P.W., Krause, G.: GPCR-SSFE 2.0-a fragment-based molecular modeling web tool for Class A G-protein coupled receptors. Nucleic Acids Res. (2017). https://doi.org/10.1093/nar/gkx399

    Article  Google Scholar 

  17. Sharman, J.L., Mpamhanga, C.P., Spedding, M., Germain, P., Staels, B., Dacquet, C., Laudet, V., Harmar, A.J.: IUPHAR-DB: new receptors and tools for easy searching and visualization of pharmacological data. Nucleic Acids Res. 39(Database issue), D534–538 (2011). https://doi.org/10.1093/nar/gkq1062

    Article  Google Scholar 

  18. Harding, S.D., Sharman, J.L., Faccenda, E., Southan, C., Pawson, A.J., Ireland, S., Gray, A.J.G., Bruce, L., Alexander, S.P.H., Anderton, S., Bryant, C., Davenport, A.P., Doerig, C., Fabbro, D., Levi-Schaffer, F., Spedding, M., Davies, J.A., Nc, I.: The IUPHAR/BPS guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Res. (2017). https://doi.org/10.1093/nar/gkx1121

    Article  Google Scholar 

  19. Saier, M.H., Jr., Yen, M.R., Noto, K., Tamang, D.G., Elkan, C.: The transporter classification database: recent advances. Nucleic Acids Res. 37(Database issue), D274–278 (2009). https://doi.org/10.1093/nar/gkn862

    Article  Google Scholar 

  20. Saier, M.H., Jr., Reddy, V.S., Tamang, D.G., Vastermark, A.: The transporter classification database. Nucleic Acids Res. 42(Database issue), D251–258 (2014). https://doi.org/10.1093/nar/gkt1097

    Article  Google Scholar 

  21. Neumann, S., Fuchs, A., Mulkidjanian, A., Frishman, D.: Current status of membrane protein structure classification. Proteins 78(7), 1760–1773 (2010). https://doi.org/10.1002/prot.22692

    Article  Google Scholar 

  22. Bernsel, A., Viklund, H., Elofsson, A.: Remote homology detection of integral membrane proteins using conserved sequence features. Proteins 71(3), 1387–1399 (2008). https://doi.org/10.1002/prot.21825

    Article  Google Scholar 

  23. Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., De Castro, E., Langendijk-Genevaux, P.S., Pagni, M., Sigrist, C.J.: The PROSITE database. Nucleic Acids Res. 34(Database issue), D227–230 (2006). https://doi.org/10.1093/nar/gkj063

    Article  Google Scholar 

  24. Tusnady, G.E., Kalmar, L., Hegyi, H., Tompa, P., Simon, I.: TOPDOM: database of domains and motifs with conservative location in transmembrane proteins. Bioinformatics 24(12), 1469–1470 (2008). https://doi.org/10.1093/bioinformatics/btn202

    Article  Google Scholar 

  25. Senes, A., Engel, D.E., DeGrado, W.F.: Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Curr. Opin. Struct. Biol. 14(4), 465–479 (2004). https://doi.org/10.1016/j.sbi.2004.07.007

    Article  Google Scholar 

  26. Shen, H.B., Yang, J., Chou, K.C.: Fuzzy KNN for predicting membrane protein types from pseudo-amino acid composition. J. Theor. Biol. 240(1), 9–13 (2006). https://doi.org/10.1016/j.jtbi.2005.08.016

    Article  MathSciNet  Google Scholar 

  27. Cai, Y.D., Ricardo, P.W., Jen, C.H., Chou, K.C.: Application of SVM to predict membrane protein types. J. Theor. Biol. 226(4), 373–376 (2004). https://doi.org/10.1016/j.jtbi.2003.08.015

    Article  MathSciNet  Google Scholar 

  28. Wang, S.-Q., Yang, J., Chou, K.-C.: Using stacked generalization to predict membrane protein types based on pseudo-amino acid composition. J. Theor. Biol. 242(4), 941–946 (2006). https://doi.org/10.1016/j.jtbi.2006.05.006

    Article  MathSciNet  Google Scholar 

  29. Cedano, J., Aloy, P., Perez-Pons, J.A., Querol, E.: Relation between amino acid composition and cellular location of proteins. J. Mol. Biol. 266(3), 594–600 (1997). https://doi.org/10.1006/jmbi.1996.0804

    Article  Google Scholar 

  30. Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157(1), 105–132 (1982)

    Article  Google Scholar 

  31. Steitz, T.A., Goldman, A., Engelman, D.M.: Quantitative application of the helical hairpin hypothesis to membrane proteins. Biophys. J. 37(1), 124–125 (1982)

    Article  Google Scholar 

  32. Engelman, D.M., Steitz, T.A.: The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell 23(2), 411–422 (1981)

    Article  Google Scholar 

  33. Hedin, L.E., Illergard, K., Elofsson, A.: An introduction to membrane proteins. J. Proteome Res. 10(8), 3324–3331 (2011). https://doi.org/10.1021/pr200145a

    Article  Google Scholar 

  34. Elofsson, A., von Heijne, G.: Membrane protein structure: prediction versus reality. Annu. Rev. Biochem. 76, 125–140 (2007). https://doi.org/10.1146/annurev.biochem.76.052705.163539

    Article  Google Scholar 

  35. Bernsel, A., Viklund, H., Falk, J., Lindahl, E., von Heijne, G., Elofsson, A.: Prediction of membrane-protein topology from first principles. Proc. Natl. Acad. Sci. U.S.A. 105(20), 7177–7181 (2008)

    Article  Google Scholar 

  36. Attwood, T.K., Findlay, J.B.: Fingerprinting G-protein-coupled receptors. Protein Eng. 7(2), 195–203 (1994)

    Article  Google Scholar 

  37. Fredriksson, R., Lagerström, M.C., Lundin, L.-G., Schiöth, H.B.: The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63(6), 1256–1272 (2003). https://doi.org/10.1124/mol.63.6.1256

    Article  Google Scholar 

  38. Otaki, J.M., Mori, A., Itoh, Y., Nakayama, T., Yamamoto, H.: Alignment-free classification of G-protein-coupled receptors using self-organizing maps. J. Chem. Inf. Model. 46(3), 1479–1490 (2006). https://doi.org/10.1021/ci050382y

    Article  Google Scholar 

  39. Deville, J., Rey, J., Chabbert, M.: An indel in transmembrane helix 2 helps to trace the molecular evolution of class A G-protein-coupled receptors. J. Mol. Evol. 68(5), 475–489 (2009)

    Article  Google Scholar 

  40. Surgand, J.S., Rodrigo, J., Kellenberger, E., Rognan, D.: A chemogenomic analysis of the transmembrane binding cavity of human G-protein-coupled receptors. Proteins 62(2), 509–538 (2006)

    Article  Google Scholar 

  41. Pele, J., Abdi, H., Moreau, M., Thybert, D., Chabbert, M.: Multidimensional scaling reveals the main evolutionary pathways of class A G-protein-coupled receptors. PLoS ONE 6(4), e19094 (2011)

    Article  Google Scholar 

  42. Lu, G., Wang, Z., Jones, A.M., Moriyama, E.N.: 7TMRmine: a Web server for hierarchical mining of 7TMR proteins. BMC Genom. 10, 275 (2009). https://doi.org/10.1186/1471-2164-10-275

    Article  Google Scholar 

  43. Park, K.-J., Gromiha, M.M., Horton, P., Suwa, M.: Discrimination of outer membrane proteins using support vector machines. Bioinformatics 21(23), 4223–4229 (2005). https://doi.org/10.1093/bioinformatics/bti697

    Article  Google Scholar 

  44. Gromiha, M.M., Suwa, M.: Discrimination of outer membrane proteins using machine learning algorithms. Proteins 63(4), 1031–1037 (2006). https://doi.org/10.1002/prot.20929

    Article  Google Scholar 

  45. Gromiha, M.M., Ahmad, S., Suwa, M.: Neural network-based prediction of transmembrane beta-strand segments in outer membrane proteins. J. Comput. Chem. 25(5), 762–767 (2004). https://doi.org/10.1002/jcc.10386

    Article  Google Scholar 

  46. Martelli, P.L., Fariselli, P., Krogh, A., Casadio, R.: A sequence-profile-based HMM for predicting and discriminating beta barrel membrane proteins. Bioinformatics 18(Suppl 1), S46–S53 (2002)

    Article  Google Scholar 

  47. Remmert, M., Linke, D., Lupas, A.N., Soding, J.: HHomp–prediction and classification of outer membrane proteins. Nucleic Acids Res. 37(Web Server issue), W446–451 (2009). https://doi.org/10.1093/nar/gkp325

    Article  Google Scholar 

  48. Garrow, A.G., Agnew, A., Westhead, D.R.: TMB-Hunt: an amino acid composition based method to screen proteomes for beta-barrel transmembrane proteins. BMC Bioinform. 6, 56 (2005). https://doi.org/10.1186/1471-2105-6-56

    Article  Google Scholar 

  49. Gromiha, M.M., Ahmad, S., Suwa, M.: Application of residue distribution along the sequence for discriminating outer membrane proteins. Comput. Biol. Chem. 29(2), 135–142 (2005). https://doi.org/10.1016/j.compbiolchem.2005.02.006

    Article  MATH  Google Scholar 

  50. Yan, R.-X., Chen, Z., Zhang, Z.: Outer membrane proteins can be simply identified using secondary structure element alignment. BMC Bioinform. 12(1), 76 (2011)

    Article  Google Scholar 

  51. Berven, F.S., Flikka, K., Jensen, H.B., Eidhammer, I.: BOMP: a program to predict integral β-barrel outer membrane proteins encoded within genomes of Gram-negative bacteria. Nucleic Acids Res. 32(suppl 2), W394–W399 (2004). https://doi.org/10.1093/nar/gkh351

    Article  Google Scholar 

  52. Freeman, T.C., Wimley, W.C.: A highly accurate statistical approach for the prediction of transmembrane β-barrels. Bioinformatics 26(16), 1965–1974 (2010). https://doi.org/10.1093/bioinformatics/btq308

    Article  Google Scholar 

  53. van Geest, M., Lolkema, J.S.: Membrane topology and insertion of membrane proteins: search for topogenic signals. Microbiol. Mol. Biol. Rev. 64(1), 13–33 (2000). https://doi.org/10.1128/mmbr.64.1.13-33.2000

    Article  Google Scholar 

  54. Fu, D., Libson, A., Miercke, L.J., Weitzman, C., Nollert, P., Krucinski, J., Stroud, R.M.: Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290(5491), 481–486 (2000)

    Article  Google Scholar 

  55. Bendtsen, J.D., Nielsen, H., von Heijne, G., Brunak, S.: Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340(4), 783–795 (2004). https://doi.org/10.1016/j.jmb.2004.05.028

    Article  Google Scholar 

  56. Emanuelsson, O., Brunak, S., von Heijne, G., Nielsen, H.: Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2(4), 953–971 (2007). https://doi.org/10.1038/nprot.2007.131

    Article  Google Scholar 

  57. Kall, L., Krogh, A., Sonnhammer, E.L.: An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics 21(Suppl 1), i251–i257 (2005). https://doi.org/10.1093/bioinformatics/bti1014

    Article  Google Scholar 

  58. Kall, L., Krogh, A., Sonnhammer, E.L.: Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic Acids Res. 35(Web Server issue), W429–432 (2007). https://doi.org/10.1093/nar/gkm256

    Article  Google Scholar 

  59. Viklund, H., Granseth, E., Elofsson, A.: Structural classification and prediction of reentrant regions in alpha-helical transmembrane proteins: application to complete genomes. J. Mol. Biol. 361(3), 591–603 (2006). https://doi.org/10.1016/j.jmb.2006.06.037

    Article  Google Scholar 

  60. Viklund, H., Elofsson, A.: OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics 24(15), 1662–1668 (2008). https://doi.org/10.1093/bioinformatics/btn221

    Article  Google Scholar 

  61. von Heijne, G.: Membrane protein structure prediction: hydrophobicity analysis and the positive-inside rule. J. Mol. Biol. 225(2), 487–494 (1992). https://doi.org/10.1016/0022-2836(92)90934-c

    Article  Google Scholar 

  62. Engelman, D.M., Zaccai, G.: Bacteriorhodopsin is an inside-out protein. Proc. Natl. Acad. Sci. U.S.A. 77(10), 5894–5898 (1980)

    Article  Google Scholar 

  63. Stevens, T.J., Arkin, I.T.: Turning an opinion inside-out: Rees and Eisenberg’s commentary (Proteins 2000;38:121–122) on “Are membrane proteins ‘inside-out’ proteins?” (Proteins 1999;36:135–143). Proteins: Struct. Funct. Bioinf. 40(3), 463–464 (2000)

    Article  Google Scholar 

  64. Adamian, L., Liang, J.: Interhelical hydrogen bonds and spatial motifs in membrane proteins: polar clamps and serine zippers. Proteins 47(2), 209–218 (2002)

    Article  Google Scholar 

  65. Hofmann, K.: TMbase—a database of membrane spanning proteins segments. Biol. Chem. Hoppe-Seyler 374(166) (1993). doi:citeulike-article-id:9087200

    Google Scholar 

  66. Rost, B., Sander, C., Casadio, R., Fariselli, P.: Transmembrane helices predicted at 95% accuracy. Protein Sci. 4(3), 521–533 (1995)

    Article  Google Scholar 

  67. Yachdav, G., Kloppmann, E., Kajan, L., Hecht, M., Goldberg, T., Hamp, T., Honigschmid, P., Schafferhans, A., Roos, M., Bernhofer, M., Richter, L., Ashkenazy, H., Punta, M., Schlessinger, A., Bromberg, Y., Schneider, R., Vriend, G., Sander, C., Ben-Tal, N., Rost, B.: PredictProtein–an open resource for online prediction of protein structural and functional features. Nucleic Acids Res. 42(Web Server issue), W337–343 (2014). https://doi.org/10.1093/nar/gku366

    Article  Google Scholar 

  68. Cserzo, M., Wallin, E., Simon, I., von Heijne, G., Elofsson, A.: Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng. 10(6), 673–676 (1997)

    Article  Google Scholar 

  69. Hirokawa, T., Boon-Chieng, S., Mitaku, S.: SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14(4), 378–379 (1998)

    Article  Google Scholar 

  70. Pasquier, C., Promponas, V.J., Palaios, G.A., Hamodrakas, J.S., Hamodrakas, S.J.: A novel method for predicting transmembrane segments in proteins based on a statistical analysis of the SwissProt database: the PRED-TMR algorithm. Protein Eng. 12(5), 381–385 (1999)

    Article  Google Scholar 

  71. Tusnady, G.E., Simon, I.: The HMMTOP transmembrane topology prediction server. Bioinformatics 17(9), 849–850 (2001)

    Article  Google Scholar 

  72. Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E.L.: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305(3), 567–580 (2001). https://doi.org/10.1006/jmbi.2000.4315

    Article  Google Scholar 

  73. Juretic, D., Zoranic, L., Zucic, D.: Basic charge clusters and predictions of membrane protein topology. J. Chem. Inf. Comput. Sci. 42(3), 620–632 (2002)

    Article  Google Scholar 

  74. Liu, Q., Zhu, Y.S., Wang, B.H., Li, Y.X.: A HMM-based method to predict the transmembrane regions of beta-barrel membrane proteins. Comput. Biol. Chem. 27(1), 69–76 (2003)

    Article  Google Scholar 

  75. Jones, D.T.: Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 23(5), 538–544 (2007). https://doi.org/10.1093/bioinformatics/btl677

    Article  Google Scholar 

  76. Peters, C., Tsirigos, K.D., Shu, N., Elofsson, A.: Improved topology prediction using the terminal hydrophobic helices rule. Bioinformatics 32(8), 1158–1162 (2016). https://doi.org/10.1093/bioinformatics/btv709

    Article  Google Scholar 

  77. Viklund, H., Bernsel, A., Skwark, M., Elofsson, A.: SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology. Bioinformatics 24(24), 2928–2929 (2008)

    Article  Google Scholar 

  78. Snider, C., Jayasinghe, S., Hristova, K., White, S.H.: MPEx: a tool for exploring membrane proteins. Protein Sci. 18(12), 2624–2628 (2009). https://doi.org/10.1002/pro.256

    Article  Google Scholar 

  79. Bernsel, A., Viklund, H., Hennerdal, A., Elofsson, A.: TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res. 37(Web Server issue), W465–468 (2009). https://doi.org/10.1093/nar/gkp363

    Article  Google Scholar 

  80. Tsirigos, K.D., Peters, C., Shu, N., Kall, L., Elofsson, A.: The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res. 43(W1), W401–W407 (2015). https://doi.org/10.1093/nar/gkv485

    Article  Google Scholar 

  81. Klammer, M., Messina, D.N., Schmitt, T., Sonnhammer, E.L.: MetaTM—a consensus method for transmembrane protein topology prediction. BMC Bioinform. 10, 314 (2009). https://doi.org/10.1186/1471-2105-10-314

    Article  Google Scholar 

  82. Ahmad, S., Singh, Y.H., Paudel, Y., Mori, T., Sugita, Y., Mizuguchi, K.: Integrated prediction of one-dimensional structural features and their relationships with conformational flexibility in helical membrane proteins. BMC Bioinform. 11, 533 (2010). https://doi.org/10.1186/1471-2105-11-533

    Article  Google Scholar 

  83. Jacoboni, I., Martelli, P.L., Fariselli, P., De Pinto, V., Casadio, R.: Prediction of the transmembrane regions of beta-barrel membrane proteins with a neural network-based predictor. Protein Sci. 10(4), 779–787 (2001). https://doi.org/10.1110/ps.37201

    Article  Google Scholar 

  84. Bagos, P.G., Liakopoulos, T.D., Spyropoulos, I.C., Hamodrakas, S.J.: PRED-TMBB: a web server for predicting the topology of beta-barrel outer membrane proteins. Nucleic Acids Res. 32(Web Server issue), W400–404 (2004). https://doi.org/10.1093/nar/gkh417

    Article  Google Scholar 

  85. Natt, N.K., Kaur, H., Raghava, G.P.: Prediction of transmembrane regions of beta-barrel proteins using ANN- and SVM-based methods. Proteins: Struct. Funct. Bioinf. 56(1), 11–18 (2004). https://doi.org/10.1002/prot.20092

    Article  Google Scholar 

  86. Bagos, P.G., Liakopoulos, T.D., Hamodrakas, S.J.: Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method. BMC Bioinform. 6, 7 (2005). https://doi.org/10.1186/1471-2105-6-7

    Article  Google Scholar 

  87. Bigelow, H., Rost, B.: PROFtmb: a web server for predicting bacterial transmembrane beta barrel proteins. Nucleic Acids Res. 34(Web Server issue), W186–188 (2006). https://doi.org/10.1093/nar/gkl262

    Article  Google Scholar 

  88. Waldispuhl, J., Berger, B., Clote, P., Steyaert, J.M.: Predicting transmembrane beta-barrels and interstrand residue interactions from sequence. Proteins 65(1), 61–74 (2006). https://doi.org/10.1002/prot.21046

    Article  Google Scholar 

  89. Randall, A., Cheng, J., Sweredoski, M., Baldi, P.: TMBpro: secondary structure, beta-contact and tertiary structure prediction of transmembrane beta-barrel proteins. Bioinformatics 24(4), 513–520 (2008). https://doi.org/10.1093/bioinformatics/btm548

    Article  Google Scholar 

  90. Hayat, S., Elofsson, A.: BOCTOPUS: improved topology prediction of transmembrane beta barrel proteins. Bioinformatics 28(4), 516–522 (2012). https://doi.org/10.1093/bioinformatics/btr710

    Article  Google Scholar 

  91. Hayat, S., Peters, C., Shu, N., Tsirigos, K.D., Elofsson, A.: Inclusion of dyad-repeat pattern improves topology prediction of transmembrane beta-barrel proteins. Bioinformatics 32(10), 1571–1573 (2016). https://doi.org/10.1093/bioinformatics/btw025

    Article  Google Scholar 

  92. Eisenberg, D., Weiss, R.M., Terwilliger, T.C.: The hydrophobic moment detects periodicity in protein hydrophobicity. Proc. Natl. Acad. Sci. U.S.A. 81(1), 140–144 (1984)

    Article  Google Scholar 

  93. Claros, M.G., von Heijne, G.: TopPred II: an improved software for membrane protein structure predictions. Comput. Appl. Biosci. 10(6), 685–686 (1994)

    Google Scholar 

  94. Jayasinghe, S., Hristova, K., White, S.H.: Energetics, stability, and prediction of transmembrane helices. J. Mol. Biol. 312(5), 927–934 (2001). https://doi.org/10.1006/jmbi.2001.5008

    Article  Google Scholar 

  95. Koehler, J., Woetzel, N., Staritzbichler, R., Sanders, C.R., Meiler, J.: A unified hydrophobicity scale for multispan membrane proteins. Proteins 76(1), 13–29 (2009). https://doi.org/10.1002/prot.22315

    Article  Google Scholar 

  96. Deber, C.M., Wang, C., Liu, L.P., Prior, A.S., Agrawal, S., Muskat, B.L., Cuticchia, A.J.: TM Finder: a prediction program for transmembrane protein segments using a combination of hydrophobicity and nonpolar phase helicity scales. Protein Sci. 10(1), 212–219 (2001). https://doi.org/10.1110/ps.30301

    Article  Google Scholar 

  97. Zhou, H., Zhou, Y.: Predicting the topology of transmembrane helical proteins using mean burial propensity and a hidden-Markov-model-based method. Protein Sci. 12(7), 1547–1555 (2003). https://doi.org/10.1110/ps.0305103

    Article  Google Scholar 

  98. Ganapathiraju, M., Balakrishnan, N., Reddy, R., Klein-Seetharaman, J.: Transmembrane helix prediction using amino acid property features and latent semantic analysis. BMC Bioinform. 9(Suppl 1), S4 (2008)

    Article  Google Scholar 

  99. Persson, B., Argos, P.: Prediction of membrane protein topology utilizing multiple sequence alignments. J. Protein Chem. 16(5), 453–457 (1997)

    Article  Google Scholar 

  100. Shen, H., Chou, J.J.: MemBrain: improving the accuracy of predicting transmembrane helices. PLoS ONE 3(6), e2399 (2008). https://doi.org/10.1371/journal.pone.0002399

    Article  Google Scholar 

  101. Cserzo, M., Bernassau, J.M., Simon, I., Maigret, B.: New alignment strategy for transmembrane proteins. J. Mol. Biol. 243(3), 388–396 (1994). https://doi.org/10.1006/jmbi.1994.1666

    Article  Google Scholar 

  102. Kitsas, I.K., Panas, S.M., Hadjileontiadis, L.J.: Linear discrimination of transmembrane from non-transmembrane segments in proteins using higher-order crossings. Conf Proc IEEE Eng Med Biol Soc 1, 5818–5821 (2006)

    Article  Google Scholar 

  103. Lio, P., Vannucci, M.: Wavelet change-point prediction of transmembrane proteins. Bioinformatics 16(4), 376–382 (2000)

    Article  Google Scholar 

  104. Nugent, T., Jones, D.T.: Transmembrane protein topology prediction using support vector machines. BMC Bioinform. 10, 159 (2009). https://doi.org/10.1186/1471-2105-10-159

    Article  Google Scholar 

  105. Osmanbeyoglu, H.U., Wehner, J.A., Carbonell, J.G., Ganapathiraju, M.K.: Active machine learning for transmembrane helix prediction. BMC Bioinform. 11 Suppl 1, S58 (2010). https://doi.org/10.1186/1471-2105-11-s1-s58

    Article  Google Scholar 

  106. Schulz, G.E.: Beta-Barrel membrane proteins. Curr. Opin. Struct. Biol. 10(4), 443–447 (2000). https://doi.org/10.1016/s0959-440x(00)00120-2

    Article  Google Scholar 

  107. Bagos, P.G., Liakopoulos, T.D., Spyropoulos, I.C., Hamodrakas, S.J.: A Hidden Markov Model method, capable of predicting and discriminating beta-barrel outer membrane proteins. BMC Bioinform. 5, 29 (2004). https://doi.org/10.1186/1471-2105-5-29

    Article  Google Scholar 

  108. Ou, Y., Chen, S., Gromiha, M.M.: Prediction of membrane spanning segments and topology in β-barrel membrane proteins at better accuracy. J. Comput. Chem. 31(1), 217–223 (2010)

    Article  Google Scholar 

  109. Gromiha, M.M., Suwa, M.: A simple statistical method for discriminating outer membrane proteins with better accuracy. Bioinformatics 21(7), 961–968 (2005). https://doi.org/10.1093/bioinformatics/bti126

    Article  Google Scholar 

  110. Park, Y., Hayat, S., Helms, V.: Prediction of the burial status of transmembrane residues of helical membrane proteins. BMC Bioinform. 8, 302 (2007). https://doi.org/10.1186/1471-2105-8-302

    Article  Google Scholar 

  111. Yuan, Z., Zhang, F., Davis, M.J., Boden, M., Teasdale, R.D.: Predicting the solvent accessibility of transmembrane residues from protein sequence. J. Proteome Res. 5(5), 1063–1070 (2006). https://doi.org/10.1021/pr050397b

    Article  Google Scholar 

  112. Illergard, K., Callegari, S., Elofsson, A.: MPRAP: an accessibility predictor for a-helical transmembrane proteins that performs well inside and outside the membrane. BMC Bioinform. 11, 333 (2010). https://doi.org/10.1186/1471-2105-11-333

    Article  Google Scholar 

  113. Beuming, T., Weinstein, H.: A knowledge-based scale for the analysis and prediction of buried and exposed faces of transmembrane domain proteins. Bioinformatics 20(12), 1822–1835 (2004). https://doi.org/10.1093/bioinformatics/bth143

    Article  Google Scholar 

  114. von Heijne, G.: Proline kinks in transmembrane alpha-helices. J. Mol. Biol. 218(3), 499–503 (1991)

    Article  Google Scholar 

  115. Yohannan, S., Faham, S., Yang, D., Whitelegge, J.P., Bowie, J.U.: The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors. Proc. Natl. Acad. Sci. U.S.A. 101(4), 959–963 (2004)

    Article  Google Scholar 

  116. Meruelo, A.D., Samish, I., Bowie, J.U.: TMKink: a method to predict transmembrane helix kinks. Protein Sci. 20(7), 1256–1264 (2011). https://doi.org/10.1002/pro.653

    Article  Google Scholar 

  117. Kneissl, B., Mueller, S.C., Tautermann, C.S., Hildebrandt, A.: String kernels and high-quality data set for improved prediction of kinked helices in alpha-helical membrane proteins. J. Chem. Inf. Model. 51(11), 3017–3025 (2011). https://doi.org/10.1021/ci200278w

    Article  Google Scholar 

  118. Göbel, U., Sander, C., Schneider, R., Valencia, A.: Correlated mutations and residue contacts in proteins. Proteins: Struct. Funct. Bioinf. 18(4), 309–317 (1994)

    Article  Google Scholar 

  119. Latek, D., Kolinski, A.: Contact prediction in protein modeling: scoring, folding and refinement of coarse-grained models. BMC Struct. Biol. 8, 36 (2008). https://doi.org/10.1186/1472-6807-8-36

    Article  Google Scholar 

  120. Michino, M., Brooks 3rd, C.L.: Predicting structurally conserved contacts for homologous proteins using sequence conservation filters. Proteins 77(2), 448–453 (2009). https://doi.org/10.1002/prot.22456

    Article  Google Scholar 

  121. Fuchs, A., Martin-Galiano, A.J., Kalman, M., Fleishman, S., Ben-Tal, N., Frishman, D.: Co-evolving residues in membrane proteins. Bioinformatics 23(24), 3312–3319 (2007). https://doi.org/10.1093/bioinformatics/btm515

    Article  Google Scholar 

  122. Taylor, W.R., Jones, D.T., Green, N.M.: A method for alpha-helical integral membrane protein fold prediction. Proteins 18(3), 281–294 (1994). https://doi.org/10.1002/prot.340180309

    Article  Google Scholar 

  123. Walters, R.F., DeGrado, W.F.: Helix-packing motifs in membrane proteins. Proc. Natl. Acad. Sci. U.S.A. 103(37), 13658–13663 (2006). https://doi.org/10.1073/pnas.0605878103

    Article  Google Scholar 

  124. Langosch, D., Heringa, J.: Interaction of transmembrane helices by a knobs-into-holes packing characteristic of soluble coiled coils. Proteins 31(2), 150–159 (1998)

    Article  Google Scholar 

  125. Russ, W.P., Engelman, D.M.: The GxxxG motif: a framework for transmembrane helix-helix association. J. Mol. Biol. 296(3), 911–919 (2000). https://doi.org/10.1006/jmbi.1999.3489

    Article  Google Scholar 

  126. Pilpel, Y., Ben-Tal, N., Lancet, D.: kPROT: a knowledge-based scale for the propensity of residue orientation in transmembrane segments. Application to membrane protein structure prediction. J. Mol. Biol. 294(4), 921–935 (1999). https://doi.org/10.1006/jmbi.1999.3257

    Article  Google Scholar 

  127. Lo, A., Chiu, Y.Y., Rodland, E.A., Lyu, P.C., Sung, T.Y., Hsu, W.L.: Predicting helix-helix interactions from residue contacts in membrane proteins. Bioinformatics 25(8), 996–1003 (2009). https://doi.org/10.1093/bioinformatics/btp114

    Article  Google Scholar 

  128. MacKenzie, K.R., Engelman, D.M.: Structure-based prediction of the stability of transmembrane helix-helix interactions: the sequence dependence of glycophorin A dimerization. Proc. Natl. Acad. Sci. U.S.A. 95(7), 3583–3590 (1998)

    Article  Google Scholar 

  129. Hildebrand, P.W., Lorenzen, S., Goede, A., Preissner, R.: Analysis and prediction of helix-helix interactions in membrane channels and transporters. Proteins 64(1), 253–262 (2006). https://doi.org/10.1002/prot.20959

    Article  Google Scholar 

  130. Rose, A., Lorenzen, S., Goede, A., Gruening, B., Hildebrand, P.W.: RHYTHM–a server to predict the orientation of transmembrane helices in channels and membrane-coils. Nucleic Acids Res. 37(Web Server issue), W575–580 (2009). https://doi.org/10.1093/nar/gkp418

    Article  Google Scholar 

  131. Isberg, V., de Graaf, C., Bortolato, A., Cherezov, V., Katritch, V., Marshall, F.H., Mordalski, S., Pin, J.P., Stevens, R.C., Vriend, G., Gloriam, D.E.: Generic GPCR residue numbers—aligning topology maps while minding the gaps. Trends Pharmacol. Sci. 36(1), 22–31 (2015). https://doi.org/10.1016/j.tips.2014.11.001

    Article  Google Scholar 

  132. Kolinski, A., Skolnick, J.: Reduced models of proteins and their applications. Polymer 45(2), 511–524 (2004). https://doi.org/10.1016/j.polymer.2003.10.064

    Article  Google Scholar 

  133. Yarov-Yarovoy, V., Schonbrun, J., Baker, D.: Multipass membrane protein structure prediction using Rosetta. Proteins 62(4), 1010–1025 (2006). https://doi.org/10.1002/prot.20817

    Article  Google Scholar 

  134. Wu, H.H., Chen, C.C., Chen, C.M.: Replica exchange Monte-Carlo simulations of helix bundle membrane proteins: rotational parameters of helices. J. Comput. Aided Mol. Des. 26(3), 363–374 (2012). https://doi.org/10.1007/s10822-012-9562-1

    Article  Google Scholar 

  135. Ueno, Y., Kawasaki, K., Saito, O., Arai, M., Suwa, M.: Folding elastic transmembrane helices to fit in a low-resolution image by electron microscopy. J. Bioinform. Comput. Biol. 9(Suppl 1), 37–50 (2011)

    Article  Google Scholar 

  136. Hurwitz, N., Pellegrini-Calace, M., Jones, D.T.: Towards genome-scale structure prediction for transmembrane proteins. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361(1467), 465–475 (2006). https://doi.org/10.1098/rstb.2005.1804

    Article  Google Scholar 

  137. Porter, J.R., Weitzner, B.D., Lange, O.F.: A framework to simplify combined sampling strategies in Rosetta. PLoS ONE 10(9), e0138220 (2015). https://doi.org/10.1371/journal.pone.0138220

    Article  Google Scholar 

  138. Weiner, B.E., Woetzel, N., Karakas, M., Alexander, N., Meiler, J.: BCL:MP-fold: folding membrane proteins through assembly of transmembrane helices. Structure 21(7), 1107–1117 (2013). https://doi.org/10.1016/j.str.2013.04.022

    Article  Google Scholar 

  139. Pellegrini-Calace, M., Carotti, A., Jones, D.T.: Folding in lipid membranes (FILM): a novel method for the prediction of small membrane protein 3D structures. Proteins 50(4), 537–545 (2003). https://doi.org/10.1002/prot.10304

    Article  Google Scholar 

  140. Pieper, U., Webb, B.M., Barkan, D.T., Schneidman-Duhovny, D., Schlessinger, A., Braberg, H., Yang, Z., Meng, E.C., Pettersen, E.F., Huang, C.C., Datta, R.S., Sampathkumar, P., Madhusudhan, M.S., Sjolander, K., Ferrin, T.E., Burley, S.K., Sali, A.: ModBase, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res. 39(Database issue), D465–474 (2011). https://doi.org/10.1093/nar/gkq1091

    Article  Google Scholar 

  141. Kelm, S., Shi, J., Deane, C.M.: MEDELLER: homology-based coordinate generation for membrane proteins. Bioinformatics 26(22), 2833–2840 (2010). https://doi.org/10.1093/bioinformatics/btq554

    Article  Google Scholar 

  142. Miszta, P., Pasznik, P., Jakowiecki, J., Sztyler, A., Latek, D., Filipek, S.: GPCRM: a homology modelling web service with triple membrane-fitted quality assessment of GPCR models. Nucleic Acids Res. 46(W1), W387–W395 (2018). https://doi.org/10.1093/nar/gky429

    Article  Google Scholar 

  143. Rodríguez, D., Bello, X., Gutiérrez-de-Terán, H.: Molecular modelling of G protein-coupled receptors through the web. Mol. Inform. 31(5), 334–341 (2012)

    Article  Google Scholar 

  144. Sandal, M., Duy, T.P., Cona, M., Zung, H., Carloni, P., Musiani, F., Giorgetti, A.: GOMoDo: a GPCRs online modeling and docking webserver. PLoS ONE 8(9), e74092 (2013). https://doi.org/10.1371/journal.pone.0074092

    Article  Google Scholar 

  145. Latek, D., Pasznik, P., Carlomagno, T., Filipek, S.: Towards improved quality of GPCR models by usage of multiple templates and profile-profile comparison. PLoS ONE 8(2), e56742 (2013). https://doi.org/10.1371/journal.pone.0056742

    Article  Google Scholar 

  146. Ng, P.C., Henikoff, J.G., Henikoff, S.: PHAT: a transmembrane-specific substitution matrix. Predicted hydrophobic and transmembrane. Bioinformatics 16(9), 760–766 (2000)

    Article  Google Scholar 

  147. Muller, T., Rahmann, S., Rehmsmeier, M.: Non-symmetric score matrices and the detection of homologous transmembrane proteins. Bioinformatics 17(Suppl 1), S182–S189 (2001)

    Article  Google Scholar 

  148. Jimenez-Morales, D., Adamian, L., Liang, J.: Detecting remote homologues using scoring matrices calculated from the estimation of amino acid substitution rates of beta-barrel membrane proteins. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1347–1350 (2008)

    Google Scholar 

  149. Pirovano, W., Feenstra, K.A., Heringa, J.: PRALINETM: a strategy for improved multiple alignment of transmembrane proteins. Bioinformatics 24(4), 492–497 (2008). https://doi.org/10.1093/bioinformatics/btm636

    Article  Google Scholar 

  150. Hill, J.R., Kelm, S., Shi, J., Deane, C.M.: Environment specific substitution tables improve membrane protein alignment. Bioinformatics 27(13), i15–i23 (2011). https://doi.org/10.1093/bioinformatics/btr230

    Article  Google Scholar 

  151. Forrest, L.R., Tang, C.L., Honig, B.: On the accuracy of homology modeling and sequence alignment methods applied to membrane proteins. Biophys. J. 91(2), 508–517 (2006). https://doi.org/10.1529/biophysj.106.082313

    Article  Google Scholar 

  152. Shafrir, Y., Guy, H.R.: STAM: simple transmembrane alignment method. Bioinformatics 20(5), 758–769 (2004). https://doi.org/10.1093/bioinformatics/btg482

    Article  Google Scholar 

  153. Kufareva, I., Rueda, M., Katritch, V., Stevens, R.C., Abagyan, R.: Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment. Structure 19(8), 1108–1126 (2011)

    Article  Google Scholar 

  154. Khafizov, K., Staritzbichler, R., Stamm, M., Forrest, L.R.: A study of the evolution of inverted-topology repeats from LeuT-fold transporters using AlignMe. Biochemistry 49(50), 10702–10713 (2010). https://doi.org/10.1021/bi101256x

    Article  Google Scholar 

  155. Rychlewski, L., Jaroszewski, L., Li, W., Godzik, A.: Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Sci. 9(2), 232–241 (2000). https://doi.org/10.1110/ps.9.2.232

    Article  Google Scholar 

  156. Fiser, A., Sali, A.: Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol. 374, 461–491 (2003). https://doi.org/10.1016/S0076-6879(03)74020-8

    Article  Google Scholar 

  157. Krieger, E., Darden, T., Nabuurs, S.B., Finkelstein, A., Vriend, G.: Making optimal use of empirical energy functions: Force-field parameterization in crystal space. Proteins: Struct. Funct. Bioinf. 57(4), 678–683 (2004)

    Article  Google Scholar 

  158. Schwede, T., Kopp, J., Guex, N., Peitsch, M.C.: SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31(13), 3381–3385 (2003)

    Article  Google Scholar 

  159. Raman, S., Vernon, R., Thompson, J., Tyka, M., Sadreyev, R., Pei, J., Kim, D., Kellogg, E., DiMaio, F., Lange, O., Kinch, L., Sheffler, W., Kim, B.-H., Das, R., Grishin, N.V., Baker, D.: Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins: Struct. Funct. Bioinf. 77(S9), 89–99 (2009)

    Article  Google Scholar 

  160. Zhang, Y.: I-TASSER server for protein 3D structure prediction. BMC Bioinform. 9, 40 (2008). https://doi.org/10.1186/1471-2105-9-40

    Article  Google Scholar 

  161. Latek, D.: Rosetta Broker for membrane protein structure prediction: concentrative nucleoside transporter 3 and corticotropin-releasing factor receptor 1 test cases. BMC Struct. Biol. 17(1), 8 (2017). https://doi.org/10.1186/s12900-017-0078-8

    Article  Google Scholar 

  162. Recanatini, M., Cavalli, A., Masetti, M.: Modeling HERG and its interactions with drugs: recent advances in light of current potassium channel simulations. ChemMedChem 3(4), 523–535 (2008). https://doi.org/10.1002/cmdc.200700264

    Article  Google Scholar 

  163. Latek, D., Kolinski, M., Ghoshdastider, U., Debinski, A., Bombolewski, R., Plazinska, A., Jozwiak, K., Filipek, S.: Modeling of ligand binding to G protein coupled receptors: cannabinoid CB1, CB2 and adrenergic beta 2 AR. J. Mol. Model. 17(9), 2353–2366 (2011). https://doi.org/10.1007/s00894-011-0986-7

    Article  Google Scholar 

  164. Arora, B., Coudrat, T., Wootten, D., Christopoulos, A., Noronha, S.B., Sexton, P.M.: Prediction of loops in G protein-coupled receptor homology models: effect of imprecise surroundings and constraints. J. Chem. Inf. Model. 56(4), 671–686 (2016). https://doi.org/10.1021/acs.jcim.5b00554

    Article  Google Scholar 

  165. Shen, M.Y., Sali, A.: Statistical potential for assessment and prediction of protein structures. Protein Sci. 15(11), 2507–2524 (2006). https://doi.org/10.1110/ps.062416606

    Article  Google Scholar 

  166. Hildebrand, P.W., Goede, A., Bauer, R.A., Gruening, B., Ismer, J., Michalsky, E., Preissner, R.: SuperLooper–a prediction server for the modeling of loops in globular and membrane proteins. Nucleic Acids Res. 37(Web Server issue), W571–574 (2009). https://doi.org/10.1093/nar/gkp338

    Article  Google Scholar 

  167. Jamroz, M., Kolinski, A.: Modeling of loops in proteins: a multi-method approach. BMC Struct. Biol. 10, 5 (2010). https://doi.org/10.1186/1472-6807-10-5

    Article  Google Scholar 

  168. Canutescu, A.A., Dunbrack Jr., R.L.: Cyclic coordinate descent: a robotics algorithm for protein loop closure. Protein Sci. 12(5), 963–972 (2003). https://doi.org/10.1110/ps.0242703

    Article  Google Scholar 

  169. Kolinski, M., Filipek, S.: Study of a structurally similar kappa opioid receptor agonist and antagonist pair by molecular dynamics simulations. J. Mol. Model. 16(10), 1567–1576 (2010). https://doi.org/10.1007/s00894-010-0678-8

    Article  Google Scholar 

  170. Mandell, D.J., Coutsias, E.A., Kortemme, T.: Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat. Methods 6(8), 551–552 (2009). https://doi.org/10.1038/nmeth0809-551

    Article  Google Scholar 

  171. Jacobson, M.P., Pincus, D.L., Rapp, C.S., Day, T.J., Honig, B., Shaw, D.E., Friesner, R.A.: A hierarchical approach to all-atom protein loop prediction. Proteins 55(2), 351–367 (2004). https://doi.org/10.1002/prot.10613

    Article  Google Scholar 

  172. Heim, A.J., Li, Z.: Developing a high-quality scoring function for membrane protein structures based on specific inter-residue interactions. J. Comput. Aided Mol. Des. 26(3), 301–309 (2012). https://doi.org/10.1007/s10822-012-9556-z

    Article  Google Scholar 

  173. Ray, A., Lindahl, E., Wallner, B.: Model quality assessment for membrane proteins. Bioinformatics 26(24), 3067–3074 (2010). https://doi.org/10.1093/bioinformatics/btq581

    Article  Google Scholar 

  174. Gao, C., Stern, H.A.: Scoring function accuracy for membrane protein structure prediction. Proteins 68(1), 67–75 (2007). https://doi.org/10.1002/prot.21421

    Article  Google Scholar 

  175. Law, R.J., Capener, C., Baaden, M., Bond, P.J., Campbell, J., Patargias, G., Arinaminpathy, Y., Sansom, M.S.: Membrane protein structure quality in molecular dynamics simulation. J. Mol. Graph. Model. 24(2), 157–165 (2005). https://doi.org/10.1016/j.jmgm.2005.05.006

    Article  Google Scholar 

  176. Woetzel, N., Karakas, M., Staritzbichler, R., Muller, R., Weiner, B.E., Meiler, J.: BCL:score–knowledge based energy potentials for ranking protein models represented by idealized secondary structure elements. PLoS ONE 7(11), e49242 (2012). https://doi.org/10.1371/journal.pone.0049242

    Article  Google Scholar 

  177. Latek, D., Bajda, M., Filipek, S.: A hybrid approach to structure and function modeling of G protein-coupled receptors. J. Chem. Inf. Model. 56(4), 630–641 (2016). https://doi.org/10.1021/acs.jcim.5b00451

    Article  Google Scholar 

  178. Mordalski, S., Witek, J., Smusz, S., Rataj, K., Bojarski, A.J.: Multiple conformational states in retrospective virtual screening—homology models vs. crystal structures: beta-2 adrenergic receptor case study. J. Cheminform. 7, 13 (2015). https://doi.org/10.1186/s13321-015-0062-x

    Article  Google Scholar 

  179. Coudrat, T., Simms, J., Christopoulos, A., Wootten, D., Sexton, P.M.: Improving virtual screening of G protein-coupled receptors via ligand-directed modeling. PLoS Comput. Biol. 13(11), e1005819 (2017). https://doi.org/10.1371/journal.pcbi.1005819

    Article  Google Scholar 

  180. Kufareva, I., Katritch, V., Participants of GPCR DOCK 2013, Stevens, R.C., Abagyan, R.: Advances in GPCR modeling evaluated by the GPCR Dock 2013 assessment: meeting new challenges. Structure 22(8), 1120–1139 (2014). https://doi.org/10.1016/j.str.2014.06.012

    Article  Google Scholar 

  181. Bissantz, C., Bernard, P., Hibert, M., Rognan, D.: Protein-based virtual screening of chemical databases. II. Are homology models of G-protein coupled receptors suitable targets? Proteins 50(1), 5–25 (2003). https://doi.org/10.1002/prot.10237

    Article  Google Scholar 

  182. Barth, P., Schonbrun, J., Baker, D.: Toward high-resolution prediction and design of transmembrane helical protein structures. Proc. Natl. Acad. Sci. U.S.A. 104(40), 15682–15687 (2007). https://doi.org/10.1073/pnas.0702515104

    Article  Google Scholar 

  183. Barth, P., Wallner, B., Baker, D.: Prediction of membrane protein structures with complex topologies using limited constraints. Proc. Natl. Acad. Sci. U.S.A. 106(5), 1409–1414 (2009). https://doi.org/10.1073/pnas.0808323106

    Article  Google Scholar 

  184. Michino, M., Chen, J., Stevens, R.C., Brooks 3rd, C.L.: FoldGPCR: structure prediction protocol for the transmembrane domain of G protein-coupled receptors from class A. Proteins 78(10), 2189–2201 (2010). https://doi.org/10.1002/prot.22731

    Article  Google Scholar 

  185. Abrol, R., Griffith, A.R., Bray, J.K., Goddard, W.A.r.: Structure prediction of G protein-coupled receptors and their ensemble of functionally important conformations. Complementary experimental and computational techniques to study membrane protein structure, dynamics and interactions (Methods in Molecular Biology) (2011)

    Google Scholar 

  186. Shacham, S., Marantz, Y., Bar-Haim, S., Kalid, O., Warshaviak, D., Avisar, N., Inbal, B., Heifetz, A., Fichman, M., Topf, M., Naor, Z., Noiman, S., Becker, O.M.: PREDICT modeling and in-silico screening for G-protein coupled receptors. Proteins 57(1), 51–86 (2004). https://doi.org/10.1002/prot.20195

    Article  Google Scholar 

  187. Abrol, R., Bray, J.K., Goddard 3rd, W.A.: Bihelix: towards de novo structure prediction of an ensemble of G-protein coupled receptor conformations. Proteins 80(2), 505–518 (2011). https://doi.org/10.1002/prot.23216

    Article  Google Scholar 

  188. Trabanino, R.J., Hall, S.E., Vaidehi, N., Floriano, W.B., Kam, V.W., Goddard 3rd, W.A.: First principles predictions of the structure and function of g-protein-coupled receptors: validation for bovine rhodopsin. Biophys. J. 86(4), 1904–1921 (2004). https://doi.org/10.1016/S0006-3495(04)74256-3

    Article  Google Scholar 

  189. Chun, L., Zhang, W.H., Liu, J.F.: Structure and ligand recognition of class C GPCRs. Acta Pharmacol. Sin. 33(3), 312–323 (2012). https://doi.org/10.1038/aps.2011.186

    Article  Google Scholar 

  190. Nussinov, R., Tsai, C.J., Csermely, P.: Allo-network drugs: harnessing allostery in cellular networks. Trends Pharmacol. Sci. 32(12), 686–693 (2011). https://doi.org/10.1016/j.tips.2011.08.004

    Article  Google Scholar 

  191. Canals, M., Sexton, P.M., Christopoulos, A.: Allostery in GPCRs: ‘MWC’ revisited. Trends Biochem. Sci. 36(12), 663–672 (2011). https://doi.org/10.1016/j.tibs.2011.08.005

    Article  Google Scholar 

  192. Levinthal, C., Wodak, S.J., Kahn, P., Dadivanian, A.K.: Hemoglobin interaction in sickle cell fibers. I: theoretical approaches to the molecular contacts. Proc Natl Acad Sci U S A 72(4), 1330–1334 (1975)

    Article  Google Scholar 

  193. Brylinski, M., Konieczny, L., Roterman, I.: Ligation site in proteins recognized in silico. Bioinformation 1(4), 127–129 (2006)

    Article  Google Scholar 

  194. Soga, S., Shirai, H., Kobori, M., Hirayama, N.: Use of amino acid composition to predict ligand-binding sites. J. Chem. Inf. Model. 47(2), 400–406 (2007). https://doi.org/10.1021/Ci6002202

    Article  Google Scholar 

  195. Koczyk, G., Wyrwicz, L.S., Rychlewski, L.: LigProf: a simple tool for in silico prediction of ligand-binding sites. J. Mol. Model. 13(3), 445–455 (2007). https://doi.org/10.1007/s00894-006-0165-4

    Article  Google Scholar 

  196. Lo, Y.T., Wang, H.W., Pai, T.W., Tzou, W.S., Hsu, H.H., Chang, H.T.: Protein-ligand binding region prediction (PLB-SAVE) based on geometric features and CUDA acceleration. BMC Bioinform. 14 Suppl 4, S4 (2013). https://doi.org/10.1186/1471-2105-14-s4-s4

    Article  Google Scholar 

  197. Chang, D.T., Weng, Y.Z., Lin, J.H., Hwang, M.J., Oyang, Y.J.: Protemot: prediction of protein binding sites with automatically extracted geometrical templates. Nucleic Acids Res 34(Web Server issue), W303–309 (2006). https://doi.org/10.1093/nar/gkl344

    Article  Google Scholar 

  198. Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., Liang, J.: CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 34, W116–W118 (2006). https://doi.org/10.1093/Nar/Gkl282

    Article  Google Scholar 

  199. Chang, D.T., Oyang, Y.J., Lin, J.H.: MEDock: a web server for efficient prediction of ligand binding sites based on a novel optimization algorithm. Nucleic Acids Res. 33(Web Server issue), W233–238 (2005)

    Article  Google Scholar 

  200. Brady Jr., G.P., Stouten, P.F.: Fast prediction and visualization of protein binding pockets with PASS. J. Comput. Aided Mol. Des. 14(4), 383–401 (2000)

    Article  Google Scholar 

  201. Molecular Operating Environment (MOE), 2013.08. Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7 (2017)

    Google Scholar 

  202. Dimitropoulos, D., Ionides, J., Henrick, K.: Using PDBeChem to search the PDB ligand dictionary. Curr. Protoc. Bioinform. 14.13.11–14.13.13 (2006)

    Google Scholar 

  203. Irwin, J.J., Sterling, T., Mysinger, M.M., Bolstad, E.S., Coleman, R.G.: ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model. (2012). https://doi.org/10.1021/ci3001277

    Article  Google Scholar 

  204. Sterling, T., Irwin, J.J.: ZINC 15–Ligand discovery for everyone. J. Chem. Inf. Model. 55(11), 2324–2337 (2015). https://doi.org/10.1021/acs.jcim.5b00559

    Article  Google Scholar 

  205. Li, Q., Cheng, T., Wang, Y., Bryant, S.H.: PubChem as a public resource for drug discovery. Drug Discov. Today 15(23–24), 1052–1057 (2010). https://doi.org/10.1016/j.drudis.2010.10.003

    Article  Google Scholar 

  206. Kim, S., Thiessen, P.A., Bolton, E.E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B.A., Wang, J., Yu, B., Zhang, J., Bryant, S.H.: PubChem substance and compound databases. Nucleic Acids Res. 44(D1), D1202–D1213 (2016). https://doi.org/10.1093/nar/gkv951

    Article  Google Scholar 

  207. Liu, T., Lin, Y., Wen, X., Jorissen, R.N., Gilson, M.K.: BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 35(Database issue), D198–201 (2007). https://doi.org/10.1093/nar/gkl999

    Article  Google Scholar 

  208. Gaulton, A., Bellis, L.J., Bento, A.P., Chambers, J., Davies, M., Hersey, A., Light, Y., McGlinchey, S., Michalovich, D., Al-Lazikani, B., Overington, J.P.: ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40(Database issue), D1100–1107 (2012). https://doi.org/10.1093/nar/gkr777

    Article  Google Scholar 

  209. Zsoldos, Z., Reid, D., Simon, A., Sadjad, B.S., Johnson, A.P.: eHITS: an innovative approach to the docking and scoring function problems. Curr. Protein Pept. Sci. 7(5), 421–435 (2006)

    Article  Google Scholar 

  210. Vaque, M., Ardrevol, A., Blade, C., Salvado, M.J., Blay, M., Fernandez-Larrea, J., Arola, L., Pujadas, G.: Protein-ligand docking: a review of recent advances and future perspectives. Curr. Pharm. Anal. 4(1), 1–19 (2008)

    Article  Google Scholar 

  211. Curco, D., Rodriguez-Ropero, F., Aleman, C.: Force-field parametrization of retro-inverso modified residues: development of torsional and electrostatic parameters. J. Comput. Aided Mol. Des. 20(1), 13–25 (2006). https://doi.org/10.1007/s10822-005-9032-0

    Article  Google Scholar 

  212. Bohm, H.J.: The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J. Comput. Aided Mol. Des. 6(1), 61–78 (1992)

    Article  Google Scholar 

  213. Ewing, T.J.A., Kuntz, I.D.: Critical evaluation of search algorithms for automated molecular docking and database screening. J. Comput. Chem. 18(9), 1175–1189 (1997)

    Article  Google Scholar 

  214. Rarey, M., Kramer, B., Lengauer, T., Klebe, G.: A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261(3), 470–489 (1996)

    Article  Google Scholar 

  215. Mizutani, M.Y., Tomioka, N., Itai, A.: Rational automatic search method for stable docking models of protein and ligand. J. Mol. Biol. 243(2), 310–326 (1994)

    Article  Google Scholar 

  216. Halgren, T.A., Murphy, R.B., Friesner, R.A., Beard, H.S., Frye, L.L., Pollard, W.T., Banks, J.L.: Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 47(7), 1750–1759 (2004). https://doi.org/10.1021/jm030644s

    Article  Google Scholar 

  217. Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz, D.T., Repasky, M.P., Knoll, E.H., Shelley, M., Perry, J.K., Shaw, D.E., Francis, P., Shenkin, P.S.: Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47(7), 1739–1749 (2004). https://doi.org/10.1021/jm0306430

    Article  Google Scholar 

  218. McGann, M.R., Almond, H.R., Nicholls, A., Grant, J.A., Brown, F.K.: Gaussian docking functions. Biopolymers 68(1), 76–90 (2003). https://doi.org/10.1002/bip.10207

    Article  Google Scholar 

  219. Abagyan, R., Totrov, M., Kuznetsov, D.: Icm - a new method for protein modeling and design—applications to docking and structure prediction from the distorted native conformation. J. Comput. Chem. 15(5), 488–506 (1994)

    Article  Google Scholar 

  220. McMartin, C., Bohacek, R.S.: QXP: powerful, rapid computer algorithms for structure-based drug design. J. Comput. Aided Mol. Des. 11(4), 333–344 (1997)

    Article  Google Scholar 

  221. Trosset, J.Y., Scheraga, H.A.: PRODOCK: software package for protein modeling and docking. J. Comput. Chem. 20(4), 412–427 (1999)

    Article  Google Scholar 

  222. Liu, M., Wang, S.M.: MCDOCK: A Monte Carlo simulation approach to the molecular docking problem. J. Comput. Aided Mol. Des. 13(5), 435–451 (1999)

    Article  Google Scholar 

  223. Jones, G., Willett, P., Glen, R.C., Leach, A.R., Taylor, R.: Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267(3), 727–748 (1997)

    Article  Google Scholar 

  224. Namasivayam, V., Gunther, R.: A fast flexible molecular docking program based on swarm intelligence. Chem. Biol. Drug Des. 70(6), 475–484 (2007). https://doi.org/10.1111/j.1747-0285.2007.00588.x

    Article  Google Scholar 

  225. Grosdidier, A., Zoete, V., Michielin, O.: SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 39, W270–W277 (2011). https://doi.org/10.1093/Nar/Gkr366

    Article  Google Scholar 

  226. Pasznik, P., Rutkowska, E., Niewieczerzal, S., Cielecka-Piontek, J., Filipek, S., Latek, D.: GUT-DOCK—a web-service to predict off-target interactions of drugs with gut hormone GPCRs. Submitted

    Google Scholar 

  227. Labbe, C.M., Rey, J., Lagorce, D., Vavrusa, M., Becot, J., Sperandio, O., Villoutreix, B.O., Tuffery, P., Miteva, M.A.: MTiOpenScreen: a web server for structure-based virtual screening. Nucleic Acids Res. 43(W1), W448–W454 (2015). https://doi.org/10.1093/nar/gkv306

    Article  Google Scholar 

  228. Wang, R.X., Liu, L., Lai, L.H., Tang, Y.Q.: SCORE: a new empirical method for estimating the binding affinity of a protein-ligand complex. J. Mol. Model. 4(12), 379–394 (1998)

    Article  Google Scholar 

  229. Eldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V., Mee, R.P.: Empirical scoring functions.1. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J. Comput. Aided Mol. Des. 11(5), 425–445 (1997)

    Article  Google Scholar 

  230. Gohlke, H., Hendlich, M., Klebe, G.: Knowledge-based scoring function to predict protein-ligand interactions. J. Mol. Biol. 295(2), 337–356 (2000)

    Article  Google Scholar 

  231. DeWitte, R.S., Shakhnovich, E.: SMoG: De novo design method based on simple, fast and accurate free energy estimates. Abstr. Pap. Am. Chem. Soc. 214, 6-Comp (1997)

    Google Scholar 

  232. DeWitte, R.S., Ishchenko, A.V., Shakhnovich, E.I.: SMoG: De novo design method based on simple, fast, and accurate free energy estimates.2. Case studies in molecular design. J. Am. Chem. Soc. 119(20), 4608–4617 (1997)

    Article  Google Scholar 

  233. Mitchell, J.B.O., Laskowski, R.A., Alex, A., Thornton, J.M.: BLEEP—potential of mean force describing protein-ligand interactions: I. Generating potential. J. Comput. Chem. 20(11), 1165–1176 (1999)

    Article  Google Scholar 

  234. Mitchell, J.B.O., Laskowski, R.A., Alex, A., Forster, M.J., Thornton, J.M.: BLEEP - Potential of mean force describing protein-ligand interactions: II. Calculation of binding energies and comparison with experimental data. J. Comput. Chem. 20(11), 1177–1185 (1999)

    Article  Google Scholar 

  235. Mooij, W.T.M., Verdonk, M.L.: General and targeted statistical potentials for protein-ligand interactions. Proteins 61(2), 272–287 (2005). https://doi.org/10.1002/Prot.20588

    Article  Google Scholar 

  236. Sherman, W., Day, T., Jacobson, M.P., Friesner, R.A., Farid, R.: Novel procedure for modeling ligand/receptor induced fit effects. J. Med. Chem. 49(2), 534–553 (2006). https://doi.org/10.1021/Jm050540c

    Article  Google Scholar 

  237. Hanson, M.A., Roth, C.B., Jo, E., Griffith, M.T., Scott, F.L., Reinhart, G., Desale, H., Clemons, B., Cahalan, S.M., Schuerer, S.C., Sanna, M.G., Han, G.W., Kuhn, P., Rosen, H., Stevens, R.C.: Crystal structure of a lipid G protein-coupled receptor. Science 335(6070), 851–855 (2012). https://doi.org/10.1126/science.1215904

    Article  Google Scholar 

  238. Shoichet, B.K., Kobilka, B.K.: Structure-based drug screening for G-protein-coupled receptors. Trends Pharmacol. Sci. 33(5), 268–272 (2012). https://doi.org/10.1016/j.tips.2012.03.007

    Article  Google Scholar 

  239. Kandt, C., Schlitter, J., Gerwert, K.: Dynamics of water molecules in the bacteriorhodopsin trimer in explicit lipid/water environment. Biophys. J. 86(2), 705–717 (2004). https://doi.org/10.1016/S0006-3495(04)74149-1

    Article  Google Scholar 

  240. Lemkul, J.A., Allen, W.J., Bevan, D.R.: Practical considerations for building GROMOS-compatible small-molecule topologies. J. Chem. Inf. Model. 50(12), 2221–2235 (2010). https://doi.org/10.1021/Ci100335w

    Article  Google Scholar 

  241. Malde, A.K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P.C., Oostenbrink, C., Mark, A.E.: An automated force field topology builder (ATB) and repository: Version 1.0. J. Chem. Theory Comput. 7(12), 4026–4037 (2011). https://doi.org/10.1021/ct200196m

    Article  Google Scholar 

  242. Schuttelkopf, A.W., van Aalten, D.M.F.: PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. Sect. D-Biol. Crystallogr. 60, 1355–1363 (2004). https://doi.org/10.1107/S0907444904011679

    Article  Google Scholar 

  243. Zoete, V., Cuendet, M.A., Grosdidier, A., Michielin, O.: SwissParam: a fast force field generation tool for small organic molecules. J. Comput. Chem. 32(11), 2359–2368 (2011). https://doi.org/10.1002/jcc.21816

    Article  Google Scholar 

  244. Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., Mackerell Jr., A.D.: CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31(4), 671–690 (2010). https://doi.org/10.1002/jcc.21367

    Article  Google Scholar 

  245. Ribeiro, A.A.S.T., Horta, B.A.C., de Alencastro, R.B.: MKTOP: a program for automatic construction of molecular topologies. J. Brazil Chem. Soc. 19(7), 1433–1435 (2008)

    Article  Google Scholar 

  246. Sousa da Silva, A.W.V., W.F.; Laue, E: ACPYPE—AnteChamber PYthon Parser interfacE. In

    Google Scholar 

  247. Sousa da Silva, A.W., Vranken, W.F.: ACPYPE—anteChamber PYthon parser interfacE. BMC Res. Notes 5, 367 (2012). https://doi.org/10.1186/1756-0500-5-367

    Article  Google Scholar 

  248. Jakalian, A., Jack, D.B., Bayly, C.I.: Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 23(16), 1623–1641 (2002). https://doi.org/10.1002/Jcc.10128

    Article  Google Scholar 

  249. Caleman, C., van Maaren, P.J., Hong, M.Y., Hub, J.S., Costa, L.T., van der Spoel, D.: Force field benchmark of organic liquids: density, enthalpy of vaporization, heat capacities, surface tension, isothermal compressibility, volumetric expansion coefficient, and dielectric constant. J. Chem. Theory Comput. 8(1), 61–74 (2012). https://doi.org/10.1021/Ct200731v

    Article  Google Scholar 

  250. van der Spoel, D., van Maaren, P.J., Caleman, C.: GROMACS molecule & liquid database. Bioinformatics 28(5), 752–753 (2012). https://doi.org/10.1093/bioinformatics/bts020

    Article  Google Scholar 

  251. Domanski, J., Stansfeld, P.J., Sansom, M.S., Beckstein, O.: Lipidbook: a public repository for force-field parameters used in membrane simulations. J. Membr. Biol. 236(3), 255–258 (2010). https://doi.org/10.1007/s00232-010-9296-8

    Article  Google Scholar 

  252. Adamian, L., Naveed, H., Liang, J.: Lipid-binding surfaces of membrane proteins: evidence from evolutionary and structural analysis. Biochim. Biophys. Acta 1808(4), 1092–1102 (2011). https://doi.org/10.1016/j.bbamem.2010.12.008

    Article  Google Scholar 

  253. Opekarova, M., Tanner, W.: Specific lipid requirements of membrane proteins—a putative bottleneck in heterologous expression. Biochim. Biophys. Acta-Biomembr. 1610(1), 11–22 (2003). https://doi.org/10.1016/S0005-2736(02)00708-3

    Article  Google Scholar 

  254. Sanders, C.R., Mittendorf, K.F.: Tolerance to changes in membrane lipid composition as a selected trait of membrane proteins. Biochemistry 50(37), 7858–7867 (2011). https://doi.org/10.1021/bi2011527

    Article  Google Scholar 

  255. Berger, C., Ho, J.T.C., Kimura, T., Hess, S., Gawrisch, K., Yeliseev, A.: Preparation of stable isotope-labeled peripheral cannabinoid receptor CB2 by bacterial fermentation. Protein Expr. Purif. 70(2), 236–247 (2010). https://doi.org/10.1016/j.pep.2009.12.011

    Article  Google Scholar 

  256. Soubias, O., Gawrisch, K.: The role of the lipid matrix for structure and function of the GPCR rhodopsin. Biochim. Biophys. Acta 1818(2), 234–240 (2012). https://doi.org/10.1016/j.bbamem.2011.08.034

    Article  Google Scholar 

  257. Lee, S.Y., Lee, A., Chen, J.Y., MacKinnon, R.: Structure of the KvAP voltage-dependent K+ channel and its dependence on the lipid membrane. Proc. Natl. Acad. Sci. U.S.A. 102(43), 15441–15446 (2005). https://doi.org/10.1073/pnas.0507651102

    Article  Google Scholar 

  258. Oostenbrink, C., Villa, A., Mark, A.E., Van Gunsteren, W.F.: A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25(13), 1656–1676 (2004). https://doi.org/10.1002/jcc.20090

    Article  Google Scholar 

  259. Scott, W.R.P., Hunenberger, P.H., Tironi, I.G., Mark, A.E., Billeter, S.R., Fennen, J., Torda, A.E., Huber, T., Kruger, P., van Gunsteren, W.F.: The GROMOS biomolecular simulation program package. J. Phys. Chem. A 103(19), 3596–3607 (1999)

    Article  Google Scholar 

  260. Foloppe, N., MacKerell, A.D.: All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem. 21(2), 86–104 (2000)

    Article  Google Scholar 

  261. Klauda, J.B., Venable, R.M., Freites, J.A., O’Connor, J.W., Tobias, D.J., Mondragon-Ramirez, C., Vorobyov, I., MacKerell Jr., A.D., Pastor, R.W.: Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114(23), 7830–7843 (2010). https://doi.org/10.1021/jp101759q

    Article  Google Scholar 

  262. MacKerell, A.D., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M.: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102(18), 3586–3616 (1998)

    Article  Google Scholar 

  263. Wang, J.M., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development and testing of a general amber force field. J. Comput. Chem. 25(9), 1157–1174 (2004)

    Article  Google Scholar 

  264. Jorgensen, W.L., Maxwell, D.S., TiradoRives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)

    Article  Google Scholar 

  265. Kaminski, G.A., Friesner, R.A., Tirado-Rives, J., Jorgensen, W.L.: Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105(28), 6474–6487 (2001). https://doi.org/10.1021/Jp003919d

    Article  Google Scholar 

  266. Jambeck, J.P., Lyubartsev, A.P.: Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J. Phys. Chem. B 116(10), 3164–3179 (2012). https://doi.org/10.1021/jp212503e

    Article  Google Scholar 

  267. Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P., de Vries, A.H.: The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111(27), 7812–7824 (2007). https://doi.org/10.1021/jp071097f

    Article  Google Scholar 

  268. Sansom, M.S.P., Scott, K.A., Bond, P.J.: Coarse-grained simulation: a high-throughput computational approach to membrane proteins. Biochem. Soc. Trans. 36, 27–32 (2008). https://doi.org/10.1042/Bst0360027

    Article  Google Scholar 

  269. Scott, K.A., Bond, P.J., Ivetac, A., Chetwynd, A.P., Khalid, S., Sansom, M.S.P.: Coarse-grained MD simulations of membrane protein-bilayer self-assembly. Structure 16(4), 621–630 (2008). https://doi.org/10.1016/j.str.2008.01.014

    Article  Google Scholar 

  270. Berendsen, H.J.C., van der Spoel, D., van Drunen, R.: GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91(1–3), 43–56 (1995)

    Article  Google Scholar 

  271. Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4(3), 435–447 (2008)

    Article  Google Scholar 

  272. Lindahl, E., Hess, B., van der Spoel, D.: GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model. 7(8), 306–317 (2001)

    Article  Google Scholar 

  273. Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C.: GROMACS: fast, flexible, and free. J. Comput. Chem. 26(16), 1701–1718 (2005). https://doi.org/10.1002/jcc.20291

    Article  Google Scholar 

  274. Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., Lindahl, E.: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015). https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  275. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005)

    Article  Google Scholar 

  276. Brooks, B.R., III, C.L.B., Jr, A.D.M., Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A.R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R.W., Post, C.B., Pu, J.Z., Schaefer, M., Tidor, B., Venable, R.M., Woodcock, H.L., Wu, X., Yang, W., York, D.M., Karplus, M.: CHARMM: the biomolecular simulation program. J. Comput. Chem. 30(10), 1545–1614 (2009)

    Article  Google Scholar 

  277. Case, D.A., Cheatham, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M., Onufriev, A., Simmerling, C., Wang, B., Woods, R.J.: The amber biomolecular simulation programs. J. Comput. Chem. 26(16), 1668–1688 (2005). https://doi.org/10.1002/Jcc.20290

    Article  Google Scholar 

  278. Jo, S., Kim, T., Iyer, V.G., Im, W.: CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29(11), 1859–1865 (2008). https://doi.org/10.1002/jcc.20945

    Article  Google Scholar 

  279. Jo, S., Lim, J.B., Klauda, J.B., Im, W.: CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys. J. 97(1), 50–58 (2009). https://doi.org/10.1016/j.bpj.2009.04.013

    Article  Google Scholar 

  280. Jo, S., Kim, T., Im, W.: Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS ONE 2(9), e880 (2007). https://doi.org/10.1371/journal.pone.0000880

    Article  Google Scholar 

  281. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. Model. 14(1), 33–38 (1996)

    Article  Google Scholar 

  282. Kandt, C., Ash, W.L., Tieleman, D.P.: Setting up and running molecular dynamics simulations of membrane proteins. Methods 41(4), 475–488 (2007). https://doi.org/10.1016/j.ymeth.2006.08.006

    Article  Google Scholar 

  283. Wolf, M.G., Hoefling, M., Aponte-Santamaria, C., Grubmuller, H., Groenhof, G.: g_membed: efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J. Comput. Chem. 31(11), 2169–2174 (2010). https://doi.org/10.1002/jcc.21507

    Article  Google Scholar 

  284. Krieger, E., Darden, T., Nabuurs, S.B., Finkelstein, A., Vriend, G.: Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins 57(4), 678–683 (2004)

    Article  Google Scholar 

  285. Wassenaar, T.A., Ingolfsson, H.I., Bockmann, R.A., Tieleman, D.P., Marrink, S.J.: Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. J. Chem. Theory Comput. 11(5), 2144–2155 (2015). https://doi.org/10.1021/acs.jctc.5b00209

    Article  Google Scholar 

  286. Wassenaar, T.A., Pluhackova, K., Bockmann, R.A., Marrink, S.J., Tieleman, D.P.: Going backward: a flexible geometric approach to reverse transformation from coarse grained to atomistic models. J. Chem. Theory Comput. 10(2), 676–690 (2014). https://doi.org/10.1021/ct400617g

    Article  Google Scholar 

  287. Stansfeld, P.J., Goose, J.E., Caffrey, M., Carpenter, E.P., Parker, J.L., Newstead, S., Sansom, M.S.: MemProtMD: automated insertion of membrane protein structures into explicit lipid membranes. Structure 23(7), 1350–1361 (2015). https://doi.org/10.1016/j.str.2015.05.006

    Article  Google Scholar 

  288. Qi, Y., Ingolfsson, H.I., Cheng, X., Lee, J., Marrink, S.J., Im, W.: CHARMM-GUI Martini maker for coarse-grained simulations with the Martini force field. J. Chem. Theory Comput. 11(9), 4486–4494 (2015). https://doi.org/10.1021/acs.jctc.5b00513

    Article  Google Scholar 

  289. Wu, E.L., Cheng, X., Jo, S., Rui, H., Song, K.C., Davila-Contreras, E.M., Qi, Y., Lee, J., Monje-Galvan, V., Venable, R.M., Klauda, J.B., Im, W.: CHARMM-GUI membrane builder toward realistic biological membrane simulations. J. Comput. Chem. 35(27), 1997–2004 (2014). https://doi.org/10.1002/jcc.23702

    Article  Google Scholar 

  290. Ribeiro, J.V., Bernardi, R.C., Rudack, T., Stone, J.E., Phillips, J.C., Freddolino, P.L., Schulten, K.: QwikMD—integrative molecular dynamics toolkit for novices and experts. Sci. Rep. 6, 26536 (2016). https://doi.org/10.1038/srep26536

    Article  Google Scholar 

  291. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J Mol Graph 14(1), 33–38, 27–38 (1996)

    Article  Google Scholar 

  292. Doerr, S., Harvey, M.J., Noe, F., De Fabritiis, G.: HTMD: high-throughput molecular dynamics for molecular discovery. J. Chem. Theory Comput. 12(4), 1845–1852 (2016). https://doi.org/10.1021/acs.jctc.6b00049

    Article  Google Scholar 

  293. Lu, H., Isralewitz, B., Krammer, A., Vogel, V., Schulten, K.: Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys. J. 75(2), 662–671 (1998). https://doi.org/10.1016/S0006-3495(98)77556-3

    Article  Google Scholar 

  294. Kappel, C., Grubmuller, H.: Velocity-dependent mechanical unfolding of bacteriorhodopsin is governed by a dynamic interaction network. Biophys. J. 100(4), 1109–1119 (2011). https://doi.org/10.1016/j.bpj.2011.01.004

    Article  Google Scholar 

  295. Grubmuller, H., Heymann, B., Tavan, P.: Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force. Science 271(5251), 997–999 (1996)

    Article  Google Scholar 

  296. Wriggers, W., Schulten, K.: Stability and dynamics of G-actin: back-door water diffusion and behavior of a subdomain 3/4 loop. Biophys. J. 73(2), 624–639 (1997). https://doi.org/10.1016/S0006-3495(97)78098-6

    Article  Google Scholar 

  297. Izrailev, S., Stepaniants, S., Isralewitz, B., Kosztin, D., Lu, H., Molnar, F., Wriggers, W., Schulten, K.: Steered molecular dynamics. In: Deuflhard, P., Hermans, J., Leimkuhler, B., Mark, A.E., Reich, S., Skeel, R.D. (eds.) Computational Molecular Dynamics: Challenges, Methods, Ideas, vol. 4. pp. 39–65. Springer, Berlin (1998)

    Chapter  MATH  Google Scholar 

  298. Izrailev, S., Stepaniants, S., Balsera, M., Oono, Y., Schulten, K.: Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys. J. 72(4), 1568–1581 (1997). https://doi.org/10.1016/S0006-3495(97)78804-0

    Article  Google Scholar 

  299. Fanelli, F., Seeber, M.: Structural insights into retinitis pigmentosa from unfolding simulations of rhodopsin mutants. FASEB J. 24(9), 3196–3209 (2010). https://doi.org/10.1096/fj.09-151084

    Article  Google Scholar 

  300. Isralewitz, B., Izrailev, S., Schulten, K.: Binding pathway of retinal to bacterio-opsin: a prediction by molecular dynamics simulations. Biophys. J. 73(6), 2972–2979 (1997). https://doi.org/10.1016/S0006-3495(97)78326-7

    Article  Google Scholar 

  301. Wroblowski, B., Diaz, J.F., Schlitter, J., Engelborghs, Y.: Modelling pathways of alpha-chymotrypsin activation and deactivation. Protein Eng. 10(10), 1163–1174 (1997)

    Article  Google Scholar 

  302. Cheng, X., Wang, H., Grant, B., Sine, S.M., McCammon, J.A.: Targeted molecular dynamics study of C-loop closure and channel gating in nicotinic receptors. PLoS Comput. Biol. 2(9), e134 (2006). https://doi.org/10.1371/journal.pcbi.0020134

    Article  Google Scholar 

  303. Grayson, P., Tajkhorshid, E., Schulten, K.: Mechanisms of selectivity in channels and enzymes studied with interactive molecular dynamics. Biophys. J. 85(1), 36–48 (2003). https://doi.org/10.1016/S0006-3495(03)74452-X

    Article  Google Scholar 

  304. Sabbadin, D., Moro, S.: Supervised molecular dynamics (SuMD) as a helpful tool to depict GPCR-ligand recognition pathway in a nanosecond time scale. J. Chem. Inf. Model. 54(2), 372–376 (2014). https://doi.org/10.1021/ci400766b

    Article  Google Scholar 

  305. Jakowiecki, J., Filipek, S.: Hydrophobic ligand entry and exit pathways of the CB1 cannabinoid receptor. J. Chem. Inf. Model. 56(12), 2457–2466 (2016). https://doi.org/10.1021/acs.jcim.6b00499

    Article  Google Scholar 

  306. Deganutti, G., Cuzzolin, A., Ciancetta, A., Moro, S.: Understanding allosteric interactions in G protein-coupled receptors using supervised molecular dynamics: a prototype study analysing the human A3 adenosine receptor positive allosteric modulator LUF6000. Bioorg. Med. Chem. 23(14), 4065–4071 (2015). https://doi.org/10.1016/j.bmc.2015.03.039

    Article  Google Scholar 

  307. Deganutti, G., Moro, S.: Supporting the identification of novel fragment-based positive allosteric modulators using a supervised molecular dynamics approach: a retrospective analysis considering the human A2A adenosine receptor as a key example. Molecules 22(5) (2017). https://doi.org/10.3390/molecules22050818

  308. Paoletta, S., Sabbadin, D., von Kugelgen, I., Hinz, S., Katritch, V., Hoffmann, K., Abdelrahman, A., Strassburger, J., Baqi, Y., Zhao, Q., Stevens, R.C., Moro, S., Muller, C.E., Jacobson, K.A.: Modeling ligand recognition at the P2Y12 receptor in light of X-ray structural information. J. Comput. Aided Mol. Des. 29(8), 737–756 (2015). https://doi.org/10.1007/s10822-015-9858-z

    Article  Google Scholar 

  309. Cuzzolin, A., Sturlese, M., Deganutti, G., Salmaso, V., Sabbadin, D., Ciancetta, A., Moro, S.: Deciphering the complexity of ligand-protein recognition pathways using supervised molecular dynamics (SuMD) simulations. J. Chem. Inf. Model. 56(4), 687–705 (2016). https://doi.org/10.1021/acs.jcim.5b00702

    Article  Google Scholar 

  310. Fotiadis, D., Liang, Y., Filipek, S., Saperstein, D.A., Engel, A., Palczewski, K.: Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421(6919), 127–128 (2003). https://doi.org/10.1038/421127a

    Article  Google Scholar 

  311. Gorman, P.M., Kim, S., Guo, M., Melnyk, R.A., McLaurin, J., Fraser, P.E., Bowie, J.U., Chakrabartty, A.: Dimerization of the transmembrane domain of amyloid precursor proteins and familial Alzheimer’s disease mutants. BMC Neurosci. 9, 17 (2008). https://doi.org/10.1186/1471-2202-9-17

    Article  Google Scholar 

  312. George, S.R., O’Dowd, B.F., Lee, S.P.: G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat. Rev. Drug Discov. 1(10), 808–820 (2002). https://doi.org/10.1038/nrd913

    Article  Google Scholar 

  313. De Strooper, B.: Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron 38(1), 9–12 (2003)

    Article  Google Scholar 

  314. Janin, J.: Protein-protein docking tested in blind predictions: the CAPRI experiment. Mol. BioSyst. 6(12), 2351–2362 (2010). https://doi.org/10.1039/c005060c

    Article  Google Scholar 

  315. Moreira, I.S., Fernandes, P.A., Ramos, M.J.: Protein-protein docking dealing with the unknown. J. Comput. Chem. 31(2), 317–342 (2010). https://doi.org/10.1002/jcc.21276

    Article  Google Scholar 

  316. Zacharias, M.: Accounting for conformational changes during protein-protein docking. Curr. Opin. Struct. Biol. 20(2), 180–186 (2010). https://doi.org/10.1016/j.sbi.2010.02.001

    Article  Google Scholar 

  317. Comeau, S.R., Gatchell, D.W., Vajda, S., Camacho, C.J.: ClusPro: a fully automated algorithm for protein-protein docking. Nucleic Acids Res. 32(Web Server issue), W96–99 (2004). https://doi.org/10.1093/nar/gkh354

    Article  Google Scholar 

  318. Comeau, S.R., Gatchell, D.W., Vajda, S., Camacho, C.J.: ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20(1), 45–50 (2004)

    Article  Google Scholar 

  319. Kozakov, D., Brenke, R., Comeau, S.R., Vajda, S.: PIPER: an FFT-based protein docking program with pairwise potentials. Proteins 65(2), 392–406 (2006). https://doi.org/10.1002/prot.21117

    Article  Google Scholar 

  320. Kozakov, D., Beglov, D., Bohnuud, T., Mottarella, S.E., Xia, B., Hall, D.R., Vajda, S.: How good is automated protein docking? Proteins 81(12), 2159–2166 (2013). https://doi.org/10.1002/prot.24403

    Article  Google Scholar 

  321. Kozakov, D., Hall, D.R., Xia, B., Porter, K.A., Padhorny, D., Yueh, C., Beglov, D., Vajda, S.: The ClusPro web server for protein-protein docking. Nat. Protoc. 12(2), 255–278 (2017). https://doi.org/10.1038/nprot.2016.169

    Article  Google Scholar 

  322. Tovchigrechko, A., Vakser, I.A.: GRAMM-X public web server for protein-protein docking. Nucleic Acids Res. 34(Web Server issue), W310–314 (2006). https://doi.org/10.1093/nar/gkl206

    Article  Google Scholar 

  323. Pierce, B.G., Hourai, Y., Weng, Z.: Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS ONE 6(9), e24657 (2011). https://doi.org/10.1371/journal.pone.0024657

    Article  Google Scholar 

  324. Chen, R., Li, L., Weng, Z.: ZDOCK: an initial-stage protein-docking algorithm. Proteins 52(1), 80–87 (2003). https://doi.org/10.1002/prot.10389

    Article  Google Scholar 

  325. Li, L., Chen, R., Weng, Z.: RDOCK: refinement of rigid-body protein docking predictions. Proteins 53(3), 693–707 (2003). https://doi.org/10.1002/prot.10460

    Article  Google Scholar 

  326. Chaudhury, S., Gray, J.J.: Conformer selection and induced fit in flexible backbone protein-protein docking using computational and NMR ensembles. J. Mol. Biol. 381(4), 1068–1087 (2008). https://doi.org/10.1016/j.jmb.2008.05.042

    Article  Google Scholar 

  327. Lyskov, S., Gray, J.J.: The RosettaDock server for local protein-protein docking. Nucleic Acids Res. 36(Web Server issue), W233–238 (2008). https://doi.org/10.1093/nar/gkn216

    Article  Google Scholar 

  328. Gray, J.J., Moughon, S., Wang, C., Schueler-Furman, O., Kuhlman, B., Rohl, C.A., Baker, D.: Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J. Mol. Biol. 331(1), 281–299 (2003)

    Article  Google Scholar 

  329. Lyskov, S., Chou, F.C., Conchuir, S.O., Der, B.S., Drew, K., Kuroda, D., Xu, J., Weitzner, B.D., Renfrew, P.D., Sripakdeevong, P., Borgo, B., Havranek, J.J., Kuhlman, B., Kortemme, T., Bonneau, R., Gray, J.J., Das, R.: Serverification of molecular modeling applications: the Rosetta Online Server that Includes Everyone (ROSIE). PLoS ONE 8(5), e63906 (2013). https://doi.org/10.1371/journal.pone.0063906

    Article  Google Scholar 

  330. Chaudhury, S., Berrondo, M., Weitzner, B.D., Muthu, P., Bergman, H., Gray, J.J.: Benchmarking and analysis of protein docking performance in Rosetta v3.2. PLoS ONE 6(8), e22477 (2011). https://doi.org/10.1371/journal.pone.0022477

    Article  Google Scholar 

  331. de Vries, S.J., van Dijk, M., Bonvin, A.M.: The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc. 5(5), 883–897 (2010). https://doi.org/10.1038/nprot.2010.32

    Article  Google Scholar 

  332. Karaca, E., Melquiond, A.S., de Vries, S.J., Kastritis, P.L., Bonvin, A.M.: Building macromolecular assemblies by information-driven docking: introducing the HADDOCK multibody docking server. Mol. Cell. Proteomics: MCP 9(8), 1784–1794 (2010). https://doi.org/10.1074/mcp.M000051-MCP201

    Article  Google Scholar 

  333. de Vries, S.J., van Dijk, A.D., Krzeminski, M., van Dijk, M., Thureau, A., Hsu, V., Wassenaar, T., Bonvin, A.M.: HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets. Proteins 69(4), 726–733 (2007). https://doi.org/10.1002/prot.21723

    Article  Google Scholar 

  334. Dominguez, C., Boelens, R., Bonvin, A.M.: HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125(7), 1731–1737 (2003). https://doi.org/10.1021/ja026939x

    Article  Google Scholar 

  335. van Zundert, G.C.P., Rodrigues, J., Trellet, M., Schmitz, C., Kastritis, P.L., Karaca, E., Melquiond, A.S.J., van Dijk, M., de Vries, S.J., Bonvin, A.: The HADDOCK2.2 Web Server: user-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 428(4), 720–725 (2016). https://doi.org/10.1016/j.jmb.2015.09.014

    Article  Google Scholar 

  336. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., Wolfson, H.J.: PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 33(Web Server issue), W363–367 (2005). https://doi.org/10.1093/nar/gki481

    Article  Google Scholar 

  337. Casciari, D., Seeber, M., Fanelli, F.: Quaternary structure predictions of transmembrane proteins starting from the monomer: a docking-based approach. BMC Bioinform. 7, 340 (2006). https://doi.org/10.1186/1471-2105-7-340

    Article  Google Scholar 

  338. Canals, M., Marcellino, D., Fanelli, F., Ciruela, F., de Benedetti, P., Goldberg, S.R., Neve, K., Fuxe, K., Agnati, L.F., Woods, A.S., Ferre, S., Lluis, C., Bouvier, M., Franco, R.: Adenosine A2A-dopamine D2 receptor-receptor heteromerization: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J. Biol. Chem. 278(47), 46741–46749 (2003). https://doi.org/10.1074/jbc.M306451200

    Article  Google Scholar 

  339. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Le Trong, I., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M., Miyano, M.: Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289(5480), 739–745 (2000)

    Article  Google Scholar 

  340. Lichtarge, O., Bourne, H.R., Cohen, F.E.: An evolutionary trace method defines binding surfaces common to protein families. J. Mol. Biol. 257(2), 342–358 (1996)

    Article  Google Scholar 

  341. Madabushi, S., Gross, A.K., Philippi, A., Meng, E.C., Wensel, T.G., Lichtarge, O.: Evolutionary trace of G protein-coupled receptors reveals clusters of residues that determine global and class-specific functions. J. Biol. Chem. 279(9), 8126–8132 (2004). https://doi.org/10.1074/jbc.M312671200

    Article  Google Scholar 

  342. Gouldson, P.R., Higgs, C., Smith, R.E., Dean, M.K., Gkoutos, G.V., Reynolds, C.A.: Dimerization and domain swapping in g-protein-coupled receptors: a computational study. Neuropsychopharmacology 23(4), S60–S77 (2000)

    Article  Google Scholar 

  343. Dean, M.K., Higgs, C., Smith, R.E., Bywater, R.P., Snell, C.R., Scott, P.D., Upton, G.J.G., Howe, T.J., Reynolds, C.A.: Dimerization of G-protein-coupled receptors. J. Med. Chem. 44(26), 4595–4614 (2001)

    Article  Google Scholar 

  344. Gobel, U., Sander, C., Schneider, R., Valencia, A.: Correlated mutations and residue contacts in proteins. Proteins 18(4), 309–317 (1994)

    Article  Google Scholar 

  345. Gouldson, P.R., Dean, M.K., Snell, C.R., Bywater, R.P., Gkoutos, G., Reynolds, C.A.: Lipid-facing correlated mutations and dimerization in G-protein coupled receptors. Protein Eng. 14(10), 759–767 (2001)

    Article  Google Scholar 

  346. Filizola, M., Olmea, O., Weinstein, H.: Prediction of heterodimerization interfaces of G-protein coupled receptors with a new subtractive correlated mutation method. Protein Eng. 15(11), 881–885 (2002)

    Article  Google Scholar 

  347. Park, K., Kim, D.: Structure-based rebuilding of coevolutionary information reveals functional modules in rhodopsin structure. Biochim. Biophys. Acta (2012). https://doi.org/10.1016/j.bbapap.2012.05.015

    Article  Google Scholar 

  348. Noivirt, O., Eisenstein, M., Horovitz, A.: Detection and reduction of evolutionary noise in correlated mutation analysis. Protein Eng. Des. Sel. 18(5), 247–253 (2005). https://doi.org/10.1093/protein/gzi029

    Article  Google Scholar 

  349. Roux, B.: Implicit solvent models. In: Becker, O.M., MacKerell Jr, A.D., Roux, B. (eds.) Computational Biochemistry and Biophysics. CRC Press (2001)

    Google Scholar 

  350. Jackson, J.D.: Classical Electrodynamics. New York (1975)

    Google Scholar 

  351. Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media. Butterworth-Heinenann, Boston (1982)

    Google Scholar 

  352. Still, W.C., Tempczyk, A., Hawley, R.C., Hendrickson, T.: Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 112, 6127–6129 (1990)

    Article  Google Scholar 

  353. Lee, B., Richards, F.M.: The interpretation of protein structures: estimation of static accesibility. J. Mol. Biol. 55, 379–400 (1971)

    Article  Google Scholar 

  354. Lee, M.S., Salsbury, F.R., Brooks, C.L.: Novel generalized Born methods. J. Chem. Phys. 116(24), 10606–10614 (2002). https://doi.org/10.1063/1.1480013

    Article  Google Scholar 

  355. Gallicchio, E., Levy, R.M.: AGBNP: an analytic implicit solvent model suitable for molecular dynamics simulations and high-resolution modeling. J. Comput. Chem. 25(4), 479–499 (2004). https://doi.org/10.1002/Jcc.10400

    Article  Google Scholar 

  356. Lee, M.S., Feig, M., Salsbury, F.R., Brooks, C.L.: New analytic approximation to the standard molecular volume definition and its application to generalized born calculations. J. Comput. Chem. 24(11), 1348–1356 (2003). https://doi.org/10.1002/Jcc.10272

    Article  Google Scholar 

  357. Lazaridis, T., Karplus, M.: Effective energy function for proteins in solution. Proteins 35(2), 133–152 (1999)

    Article  Google Scholar 

  358. Spassov, V.Z., Yan, L., Szalma, S.: Introducing an implicit membrane in generalized Born/solvent accessibility continuum solvent models. J. Phys. Chem. B 106(34), 8726–8738 (2002). https://doi.org/10.1021/Jp020674r

    Article  Google Scholar 

  359. Tanizaki, S., Feig, M.: A generalized Born formalism for heterogeneous dielectric environments: Application to the implicit modeling of biological membranes. J. Chem. Phys. 122(12) (2005). doi:Artn 124706. https://doi.org/10.1063/1.1865992

  360. Lazaridis, T.: Effective energy function for proteins in lipid membranes. Proteins 52(2), 176–192 (2003)

    Article  Google Scholar 

  361. Lazaridis, T., Karplus, M.: Discrimination of the native from misfolded protein models with an energy function including implicit solvation. J. Mol. Biol. 288(3), 477–487 (1999)

    Article  Google Scholar 

  362. Felts, A.K., Gallicchio, E., Wallqvist, A., Levy, R.M.: Distinguishing native conformations of proteins from decoys with an effective free energy estimator based on the OPLS all-atom force field and the surface generalized born solvent model. Proteins 48(2), 404–422 (2002). https://doi.org/10.1002/Prot.10171

    Article  Google Scholar 

  363. Rohl, C.A., Strauss, C.E., Misura, K.M., Baker, D.: Protein structure prediction using Rosetta. Methods Enzymol. 383, 66–93 (2004). https://doi.org/10.1016/S0076-6879(04)83004-0

    Article  Google Scholar 

  364. Davis, I.W., Baker, D.: RosettaLigand docking with full ligand and receptor flexibility. J. Mol. Biol. 385(2), 381–392 (2009). https://doi.org/10.1016/j.jmb.2008.11.010

    Article  Google Scholar 

  365. Im, W., Feig, M., Brooks, C.L.: An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins. Biophys. J. 85(5), 2900–2918 (2003)

    Article  Google Scholar 

  366. Im, W., Brooks, C.L.: Interfacial folding and membrane insertion of designed peptides studied by molecular dynamics simulations. Proc. Natl. Acad. Sci. U.S.A. 102(19), 6771–6776 (2005). https://doi.org/10.1073/pnas.0408135102

    Article  Google Scholar 

  367. Ulmschneider, J.P., Ulmschneider, M.B.: Folding Simulations of the transmembrane helix of virus protein U in an implicit membrane model. J. Chem. Theory Comput. 3(6), 2335–2346 (2007). https://doi.org/10.1021/Ct700103k

    Article  Google Scholar 

  368. Mottamal, M., Lazaridis, T.: Voltage-dependent energetics of alamethicin monomers in the membrane. Biophys. Chem. 122(1), 50–57 (2006). https://doi.org/10.1016/j.bpc.2006.02.005

    Article  Google Scholar 

  369. Seeber, M., Fanelli, F., Paci, E., Caflisch, A.: Sequential unfolding of individual helices of bacterioopsin observed in molecular dynamics simulations of extraction from the purple membrane. Biophys. J. 91(9), 3276–3284 (2006). https://doi.org/10.1529/biophysj.106.088591

    Article  Google Scholar 

  370. Park, P.S.H., Sapra, K.T., Jastrzebska, B., Maeda, T., Maeda, A., Pulawski, W., Kono, M., Lem, J., Crouch, R.K., Filipek, S., Muller, D.J., Palczewski, K.: Modulation of molecular interactions and function by rhodopsin palmitylation. Biochemistry 48(20), 4294–4304 (2009)

    Article  Google Scholar 

  371. Ewald, P.P.: Die Berchnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 64, 253–287 (1921)

    Article  MATH  Google Scholar 

  372. Zhan, H., Lazaridis, T.: Influence of the membrane dipole potential on peptide binding to lipid bilayers. Biophys. Chem. 161, 1–7 (2012). https://doi.org/10.1016/j.bpc.2011.10.002

    Article  Google Scholar 

  373. Zagrovic, B., Pande, V.: Solvent viscosity dependence of the folding rate of a small protein: distributed computing study. J. Comput. Chem. 24(12), 1432–1436 (2003). https://doi.org/10.1002/Jcc.10297

    Article  Google Scholar 

  374. Lee, M.S., Olson, M.A.: Evaluation of poisson solvation models using a hybrid explicit/implicit solvent method. J. Phys. Chem. B 109(11), 5223–5236 (2005). https://doi.org/10.1021/Jp046377z

    Article  Google Scholar 

  375. Kelly, C.P., Cramer, C.J., Truhlar, D.G.: Adding explicit solvent molecules to continuum solvent calculations for the calculation of aqueous acid dissociation constants. J. Phys. Chem. A 110(7), 2493–2499 (2006). https://doi.org/10.1021/J055336f

    Article  Google Scholar 

  376. Stagg, S.M., Harvey, S.C.: Exploring the flexibility of ribosome recycling factor using molecular dynamics. Biophys. J. 89(4), 2659–2666 (2005). https://doi.org/10.1529/biophysj.104.052373

    Article  Google Scholar 

  377. Bast, T., Hentschke, R.: Molecular dynamics simulation of a micellar system. J. Mol. Model. 2(9), 330–340 (1996)

    Article  Google Scholar 

  378. Freddolino, P.L., Arkhipov, A.S., Larson, S.B., McPherson, A., Schulten, K.: Molecular dynamics simulations of the complete satellite tobacco mosaic virus. Structure 14(3), 437–449 (2006). https://doi.org/10.1016/j.str.2005.11.014

    Article  Google Scholar 

  379. Levitt, M.: A simplified representation of protein conformations for rapid simulation of protein folding. J. Mol. Biol. 104(1), 59–107 (1976)

    Article  MathSciNet  Google Scholar 

  380. Levitt, M., Warshel, A.: Computer simulation of protein folding. Nature 253(5494), 694–698 (1975)

    Article  Google Scholar 

  381. Levinthal, C.: Are there pathways for protein folding? J. Chim. Phys. 65, 44–45 (1968)

    Article  Google Scholar 

  382. Taketomi, H., Ueda, Y., Go, N.: Studies on protein folding, unfolding and fluctuations by computer simulation. I. The effect of specific amino acid sequence represented by specific inter-unit interactions. Int. J. Pept. Protein Res. 7(6), 445–459 (1975)

    Article  Google Scholar 

  383. Ueda, Y., Taketomi, H., Gō, N.: Studies on protein folding, unfolding, and fluctuations by computer simulation. II. A. Three-dimensional lattice model of lysozyme. Biopolymers 17(6), 1531–1548 (1978)

    Article  Google Scholar 

  384. Go, N., Taketomi, H.: Studies on protein folding, unfolding and fluctuations by computer simulation. III. Effect of short-range interactions. Int. J. Pept. Protein Res. 13(3), 235–252 (1979)

    Article  Google Scholar 

  385. Go, N., Taketomi, H.: Studies on protein folding, unfolding and fluctuations by computer simulation. IV. Hydrophobic interactions. Int. J. Pept. Protein Res. 13(5), 447–461 (1979)

    Article  Google Scholar 

  386. Gay, J.G., Berne, B.J.: Modification of the overlap potential to mimic a linear site-site potential. J. Chem. Phys. 74(6), 3316–3319 (1981)

    Article  Google Scholar 

  387. Berne, B.J., Pechukas, P.: Gaussian model potentials for molecular interactions. J. Chem. Phys. 56(8), 4213–4216 (1972)

    Article  Google Scholar 

  388. Smith, G.D., Paul, W.: United atom force field for molecular dynamics simulations of 1,4-Polybutadiene based on quantum chemistry calculations on model molecules. J. Phys. Chem. A 102(7), 1200–1208 (1998)

    Article  Google Scholar 

  389. Kale, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N., Phillips, J., Shinozaki, A., Varadarajan, K., Schulten, K.: NAMD2: greater scalability for parallel molecular dynamics. J. Comput. Phys. 151(1), 283–312 (1999)

    Article  MATH  Google Scholar 

  390. Takada, S.: Coarse-grained molecular simulations of large biomolecules. Curr. Opin. Struct. Biol. 22(2), 130–137 (2012)

    Article  Google Scholar 

  391. Tozzini, V.: Coarse-grained models for proteins. Curr. Opin. Struct. Biol. 15(2), 144–150 (2005)

    Article  Google Scholar 

  392. Rader, A.J.: Coarse-grained models: getting more with less. Curr. Opin. Pharmacol. 10(6), 753–759 (2010)

    Article  Google Scholar 

  393. Lindahl, E., Sansom, M.S.: Membrane proteins: molecular dynamics simulations. Curr. Opin. Struct. Biol. 18(4), 425–431 (2008)

    Article  Google Scholar 

  394. Shrivastava, I.H., Bahar, I.: Common mechanism of pore opening shared by five different potassium channels. Biophys. J. 90(11), 3929–3940 (2006)

    Article  Google Scholar 

  395. Cieplak, M., Filipek, S., Janovjak, H., Krzysko, K.A.: Pulling single bacteriorhodopsin out of a membrane: comparison of simulation and experiment. Biochem. Biophys. Acta. 1758(4), 537–544 (2006)

    Article  Google Scholar 

  396. Orlandini, E., Seno, F., Banavar, J.R., Laio, A., Maritan, A.: Deciphering the folding kinetics of transmembrane helical proteins. Proc. Natl. Acad. Sci. U.S.A. 97(26), 14229–14234 (2000)

    Article  Google Scholar 

  397. Marrink, S.J., de Vries, A.H., Mark, A.E.: Coarse grained model for semiquantitative lipid simulations. J. Phys. Chem. B 108(2), 750–760 (2004)

    Article  Google Scholar 

  398. Monticelli, L., Kandasamy, S.K., Periole, X., Larson, R.G., Tieleman, D.P., Marrink, S.-J.: The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theory Comput. 4(5), 819–834 (2008). https://doi.org/10.1021/ct700324x

    Article  Google Scholar 

  399. Yesylevskyy, S.O., Schafer, L.V., Sengupta, D., Marrink, S.J.: Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput. Biol. 6(6), e1000810 (2010)

    Article  Google Scholar 

  400. Holdbrook, D.A., Leung, Y.M., Piggot, T.J., Marius, P., Williamson, P.T., Khalid, S.: Stability and membrane orientation of the fukutin transmembrane domain: a combined multiscale molecular dynamics and circular dichroism study. Biochemistry 49(51), 10796–10802 (2010)

    Article  Google Scholar 

  401. Schafer, L.V., de Jong, D.H., Holt, A., Rzepiela, A.J., de Vries, A.H., Poolman, B., Killian, J.A., Marrink, S.J.: Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes. Proc. Natl. Acad. Sci. U.S.A. 108(4), 1343–1348 (2010)

    Article  Google Scholar 

  402. Periole, X., Huber, T., Marrink, S.J., Sakmar, T.P.: G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. J. Am. Chem. Soc. 129(33), 10126–10132 (2007)

    Article  Google Scholar 

  403. Bond, P.J., Sansom, M.S.P.: Bilayer deformation by the Kv channel voltage sensor domain revealed by self-assembly simulations. Proc Natl Acad Sci USA 104(8), 2631–2636 (2007). https://doi.org/10.1073/pnas.0606822104

    Article  Google Scholar 

  404. Arnarez, C., Uusitalo, J.J., Masman, M.F., Ingolfsson, H.I., de Jong, D.H., Melo, M.N., Periole, X., de Vries, A.H., Marrink, S.J.: Dry Martini, a coarse-grained force field for lipid membrane simulations with implicit solvent. J. Chem. Theory Comput. 11(1), 260–275 (2015). https://doi.org/10.1021/ct500477k

    Article  Google Scholar 

  405. Shih, A.Y., Arkhipov, A., Freddolino, P.L., Schulten, K.: Coarse grained protein-lipid model with application to lipoprotein particles. J. Phys. Chem. B 110(8), 3674–3684 (2006)

    Article  Google Scholar 

  406. Spijker, P., van Hoof, B., Debertrand, M., Markvoort, A.J., Vaidehi, N., Hilbers, P.A.: Coarse grained molecular dynamics simulations of transmembrane protein-lipid systems. Int. J. Mol. Sci. 11(6), 2393–2420 (2010)

    Article  Google Scholar 

  407. Markvoort, A.J., Pieterse, K., Steijaert, M.N., Spijker, P., Hilbers, P.A.: The bilayer-vesicle transition is entropy driven. J. Phys. Chem. B 109(47), 22649–22654 (2005)

    Article  Google Scholar 

  408. Kar, P., Gopal, S.M., Cheng, Y.M., Panahi, A., Feig, M.: Transferring the PRIMO coarse-grained force field to the membrane environment: simulations of membrane proteins and helix-helix association. J. Chem. Theory Comput. 10(8), 3459–3472 (2014). https://doi.org/10.1021/ct500443v

    Article  Google Scholar 

  409. Kar, P., Gopal, S.M., Cheng, Y.M., Predeus, A., Feig, M.: PRIMO: a transferable coarse-grained force field for proteins. J. Chem. Theory Comput. 9(8), 3769–3788 (2013). https://doi.org/10.1021/ct400230y

    Article  Google Scholar 

  410. Kar, P., Feig, M.: Hybrid all-atom/coarse-grained simulations of proteins by direct coupling of CHARMM and PRIMO force fields. J. Chem. Theory Comput. 13(11), 5753–5765 (2017). https://doi.org/10.1021/acs.jctc.7b00840

    Article  Google Scholar 

  411. Májek, P., Elber, R.: A coarse-grained potential for fold recognition and molecular dynamics simulations of proteins. Proteins: Struct. Funct. Bioinf. 76(4), 822–836 (2009). https://doi.org/10.1002/prot.22388

    Article  Google Scholar 

  412. Terstegen, F., Buss, V.: All-trans- and 11-cis-retinal, their N-methyl Schiff base and N-methyl protonated Schiff base derivatives: a comparative ab initio study. Theochem-J Mol Struc 369, 53–65 (1996)

    Article  Google Scholar 

  413. Terstegen, F., Buss, V.: Geometries and interconversion pathways of free and protonated beta-ionone Schiff bases. An ab initio study of photoreceptor chromophore model compounds. Chem. Phys. 225(1–3), 163–171 (1997). https://doi.org/10.1016/s0301-0104(97)00194-8

    Article  Google Scholar 

  414. Terstegen, F., Carter, E.A., Buss, V.: Interconversion pathways of the protonated beta-ionone Schiff base: An ab initio molecular dynamics study. Int. J. Quantum Chem. 75(3), 141–145 (1999). https://doi.org/10.1002/(sici)1097-461x(1999)75:3%3c141::aid-qua4%3e3.3.co;2-0

    Article  Google Scholar 

  415. Terstegen, F., Buss, V.: Influence of DFT-calculated electron correlation on energies and geometries of retinals and of retinal derivatives related to the bacteriorhodopsin and rhodopsin chromophores. Theochem-J. Mol. Struc. 430, 209–218 (1998)

    Article  Google Scholar 

  416. Bifone, A., deGroot, H.J.M., Buda, F.: Ab initio molecular dynamics of retinals. Chem. Phys. Lett. 248(3–4), 165–172 (1996). https://doi.org/10.1016/0009-2614(95)01312-1

    Article  Google Scholar 

  417. Buda, F., deGroot, H.J.M., Bifone, A.: Charge localization and dynamics in rhodopsin. Phys. Rev. Lett. 77(21), 4474–4477 (1996). https://doi.org/10.1103/PhysRevLett.77.4474

    Article  Google Scholar 

  418. Bifone, A., deGroot, H.J.M., Buda, F.: Energy storage in the primary photoproduct of vision. J. Phys. Chem. B 101(15), 2954–2958 (1997). https://doi.org/10.1021/jp9623397

    Article  Google Scholar 

  419. La Penna, G., Buda, F., Bifone, A., de Groot, H.J.M.: The transition state in the isomerization of rhodopsin. Chem. Phys. Lett. 294(6), 447–453 (1998). https://doi.org/10.1016/s0009-2614(98)00870-7

    Article  Google Scholar 

  420. Garavelli, M., Negri, F., Olivucci, M.: Initial excited-state relaxation of the isolated 11-cis protonated schiff base of retinal: evidence for in-plane motion from ab initio quantum chemical simulation of the resonance Raman spectrum. J. Am. Chem. Soc. 121(5), 1023–1029 (1999). https://doi.org/10.1021/ja981719y

    Article  Google Scholar 

  421. Gozem, S., Melaccio, F., Lindh, R., Krylov, A.I., Granovsky, A.A., Angeli, C., Olivucci, M.: Mapping the excited state potential energy surface of a retinal chromophore model with multireference and equation-of-motion coupled-cluster methods. J. Chem. Theory Comput. 9(10), 4495–4506 (2013). https://doi.org/10.1021/ct400460h

    Article  Google Scholar 

  422. Sugihara, M., Buss, V., Entel, P., Elstner, M., Frauenheim, T.: 11-cis-retinal protonated Schiff base: influence of the protein environment on the geometry of the rhodopsin chromophore. Biochemistry 41(51), 15259–15266 (2002). https://doi.org/10.1021/bi020533f

    Article  Google Scholar 

  423. Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, T., Suhai, S., Seifert, G.: Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 58(11), 7260–7268 (1998). https://doi.org/10.1103/PhysRevB.58.7260

    Article  Google Scholar 

  424. Hufen, J., Sugihara, M., Buss, V.: How the counterion affects ground- and excited-state properties of the rhodopsin chromophore. J. Phys. Chem. B 108(52), 20419–20426 (2004). https://doi.org/10.1021/jp046147k

    Article  Google Scholar 

  425. Tachikawa, H., Kawabata, H.: Effects of the residues on the excitation energies of protonated Schiff base of retinal (PSBR) in bR: A TD-DFT study. J. Photochem. Photobiol. B-Biol. 79(3), 191–195 (2005). https://doi.org/10.1016/j.jphotobiol.2005.01.004

    Article  Google Scholar 

  426. Sugihara, M., Buss, V., Entel, P., Hafner, J.: The nature of the complex counterion of the chromophore in rhodopsin. J. Phys. Chem. B 108(11), 3673–3680 (2004). https://doi.org/10.1021/jp0362786

    Article  Google Scholar 

  427. Blomgren, F., Larsson, S.: Exploring the potential energy surface of retinal, a comparison of the performance of different methods. J. Comput. Chem. 26(7), 738–742 (2005). https://doi.org/10.1002/jcc.20210

    Article  Google Scholar 

  428. Maseras, F., Morokuma, K.: IMOMM—a new integrated ab-initio plus molecular mechanics geometry optimization scheme of equilibrium structures and transition-states. J. Comput. Chem. 16(9), 1170–1179 (1995). https://doi.org/10.1002/jcc.540160911

    Article  Google Scholar 

  429. Warshel, A., Levitt, M.: Theoretical studies of enzymic reactions—dielectric, electrostatic and steric stabilization of carbonium-ion in reaction of lysozyme. J. Mol. Biol. 103(2), 227–249 (1976). https://doi.org/10.1016/0022-2836(76)90311-9

    Article  Google Scholar 

  430. Gascon, J.A., Batista, V.S.: QM/MM study of energy storage and molecular rearrangements due to the primary event in vision. Biophys. J. 87(5), 2931–2941 (2004)

    Article  Google Scholar 

  431. Gascon, J.A., Sproviero, E.M., Batista, V.S.: QM/MM study of the NMR spectroscopy of the retinyl chromophore in visual rhodopsin. J. Chem. Theory Comput. 1(4), 674–685 (2005). https://doi.org/10.1021/ct0500850

    Article  Google Scholar 

  432. Gascon, J.A., Sproviero, E.M., Batista, V.S.: Computational studies of the primary phototransduction event in visual rhodopsin. Acc. Chem. Res. 39(3), 184–193 (2006). https://doi.org/10.1021/ar050027t

    Article  Google Scholar 

  433. Illingworth, C.J.R., Gooding, S.R., Winn, P.J., Jones, G.A., Ferenczy, G.G., Reynolds, C.A.: Classical polarization in hybrid QM/MM methods. J. Phys. Chem. A 110(20), 6487–6497 (2006). https://doi.org/10.1021/jp046944i

    Article  Google Scholar 

  434. Altun, A., Yokoyama, S., Morokuma, K.: Spectral tuning in visual pigments: an ONIOM(QM: MM) study on bovine rhodopsin and its mutants. J. Phys. Chem. B 112(22), 6814–6827 (2008). https://doi.org/10.1021/jp709730b

    Article  Google Scholar 

  435. Wiliam Hernandez-Rodriguez, E., Sanchez-Garcia, E., Crespo-Otero, R., Lilian Montero-Alejo, A., Alberto Montero, L., Thiel, W.: Understanding rhodopsin mutations linked to the retinitis pigmentosa disease: a QM/MM and DFT/MRCI Study. J. Phys. Chem. B 116(3), 1060–1076 (2012). https://doi.org/10.1021/jp2037334

    Article  Google Scholar 

  436. Manathunga, M., Yang, X., Luk, H.L., Gozem, S., Frutos, L.M., Valentini, A., Ferre, N., Olivucci, M.: Probing the photodynamics of rhodopsins with reduced retinal chromophores. J. Chem. Theory Comput. 12(2), 839–850 (2016). https://doi.org/10.1021/acs.jctc.5b00945

    Article  Google Scholar 

  437. Gozem, S., Luk, H.L., Schapiro, I., Olivucci, M.: Theory and simulation of the ultrafast double-bond isomerization of biological chromophores. Chem. Rev. 117(22), 13502–13565 (2017). https://doi.org/10.1021/acs.chemrev.7b00177

    Article  Google Scholar 

  438. Stewart, J.J.P.: Application of localized molecular orbitals to the solution of semiempirical self-consistent field equations. Int. J. Quantum Chem. 58(2), 133–146 (1996). https://doi.org/10.1002/(sici)1097-461x(1996)58:2%3c133::aid-qua2%3e3.0.co;2-z

    Article  MathSciNet  Google Scholar 

  439. Daniels, A.D., Millam, J.M., Scuseria, G.E.: Semiempirical methods with conjugate gradient density matrix search to replace diagonalization for molecular systems containing thousands of atoms. J. Chem. Phys. 107(2), 425–431 (1997). https://doi.org/10.1063/1.474404

    Article  Google Scholar 

  440. Dixon, S.L., Merz, K.M.: Fast, accurate semiempirical molecular orbital calculations for macromolecules. J. Chem. Phys. 107(3), 879–893 (1997). https://doi.org/10.1063/1.474386

    Article  Google Scholar 

  441. Stewart, J.J.P.: Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J. Mol. Model. 13(12), 1173–1213 (2007). https://doi.org/10.1007/s00894-007-0233-4

    Article  Google Scholar 

  442. Rezac, J., Fanfrlik, J., Salahub, D., Hobza, P.: Semiempirical quantum chemical PM6 method augmented by dispersion and H-bonding correction terms reliably describes various types of noncovalent complexes. J. Chem. Theory Comput. 5(7), 1749–1760 (2009). https://doi.org/10.1021/ct9000922

    Article  Google Scholar 

  443. Rezac, J., Hobza, P.: Advanced corrections of hydrogen bonding and dispersion for semiempirical quantum mechanical methods. J. Chem. Theory Comput. 8(1), 141–151 (2012). https://doi.org/10.1021/ct200751e

    Article  Google Scholar 

  444. Ren, L., Martin, C.H., Wise, K.J., Gillespie, N.B., Luecke, H., Lanyi, J.K., Spudich, J.L., Birge, R.R.: Molecular mechanism of spectral tuning in sensory rhodopsin II. Biochemistry 40(46), 13906–13914 (2001). https://doi.org/10.1021/bi0116487

    Article  Google Scholar 

  445. Lee, I., Greenbaum, E., Budy, S., Hillebrecht, J.R., Birge, R.R., Stuart, J.A.: Photoinduced surface potential change of bacteriorhodopsin mutant D96N measured by scanning surface potential microscopy. J. Phys. Chem. B 110(22), 10982–10990 (2006). https://doi.org/10.1021/jp052948r

    Article  Google Scholar 

  446. Stewart, J.J.P.: Application of the PM6 method to modeling proteins. J. Mol. Model. 15(7), 765–805 (2009). https://doi.org/10.1007/s00894-008-0420-y

    Article  Google Scholar 

  447. Ohno, K., Kamiya, N., Asakawa, N., Inoue, Y., Sakurai, M.: Application of an integrated MOZYME plus DFT method to pKa calculations for proteins. Chem. Phys. Lett. 341(3–4), 387–392 (2001). https://doi.org/10.1016/s0009-2614(01)00499-7

    Article  Google Scholar 

  448. Yoda, M., Inoue, Y., Sakurai, M.: Effect of protein environment on pK(a) shifts in the active site of photoactive yellow protein. J. Phys. Chem. B 107(51), 14569–14575 (2003). https://doi.org/10.1021/jp0364102

    Article  Google Scholar 

  449. Gross, K.C., Seybold, P.G., Hadad, C.M.: Comparison of different atomic charge schemes for predicting pK(a) variations in substituted anilines and phenols. Int. J. Quantum Chem. 90(1), 445–458 (2002). https://doi.org/10.1002/qua.10108

    Article  Google Scholar 

  450. Mulliken, R.S.: Electronic population analysis on LCAO-MO molecular wave functions.1. J. Chem. Phys. 23(10), 1833–1840 (1955). https://doi.org/10.1063/1.1740588

    Article  Google Scholar 

  451. Reed, A.E., Weinstock, R.B., Weinhold, F.: Natural-population analysis. J. Chem. Phys. 83(2), 735–746 (1985). https://doi.org/10.1063/1.449486

    Article  Google Scholar 

  452. Wang, B., Ford, G.P.: Atomic charges derived from a fast and accurate method for electrostatic potentials based on modified AM1 calculations. J. Comput. Chem. 15(2), 200–207 (1994). https://doi.org/10.1002/jcc.540150210

    Article  Google Scholar 

  453. Khan, H.M., Grauffel, C., Broer, R., MacKerell Jr., A.D., Havenith, R.W., Reuter, N.: Improving the force field description of tyrosine-choline cation-pi interactions: QM investigation of Phenol-N(Me)4(+) interactions. J. Chem. Theory Comput. 12(11), 5585–5595 (2016). https://doi.org/10.1021/acs.jctc.6b00654

    Article  Google Scholar 

  454. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19(14), 1639–1662 (1998)

    Article  Google Scholar 

  455. Bikadi, Z., Hazai, E.: Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. J. Cheminform. 1 (2009). https://doi.org/10.1186/1758-2946-1-15

    Article  Google Scholar 

  456. Fanfrlik, J., Bronowska, A.K., Rezac, J., Prenosil, O., Konvalinka, J., Hobza, P.: A reliable Docking/scoring scheme based on the semiempirical quantum mechanical PM6-DH2 method accurately covering dispersion and H-bonding: HIV-1 protease with 22 ligands. J. Phys. Chem. B 114(39), 12666–12678 (2010). https://doi.org/10.1021/jp1032965

    Article  Google Scholar 

  457. Sharma, V., Belevich, G., Gamiz-Hernandez, A.P., Rog, T., Vattulainen, I., Verkhovskaya, M.L., Wikstrom, M., Hummer, G., Kaila, V.R.: Redox-induced activation of the proton pump in the respiratory complex I. Proc Natl Acad Sci USA 112(37), 11571–11576 (2015). https://doi.org/10.1073/pnas.1503761112

    Article  Google Scholar 

  458. Maffeo, C., Bhattacharya, S., Yoo, J., Wells, D., Aksimentiev, A.: Modeling and simulation of ion channels. Chem. Rev. 112(12), 6250–6284 (2012). https://doi.org/10.1021/cr3002609

    Article  Google Scholar 

  459. Kutzner, C., Kopfer, D.A., Machtens, J.P., de Groot, B.L., Song, C., Zachariae, U.: Insights into the function of ion channels by computational electrophysiology simulations. Biochim. Biophys. Acta 1858(7 Pt B), 1741–1752 (2016). https://doi.org/10.1016/j.bbamem.2016.02.006

    Article  Google Scholar 

  460. Sadhu, B., Sundararajan, M., Bandyopadhyay, T.: Selectivity of a singly permeating ion in nonselective NaK channel: combined QM and MD based investigations. J. Phys. Chem. B 119(40), 12783–12797 (2015). https://doi.org/10.1021/acs.jpcb.5b05996

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sławomir Filipek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Latek, D. et al. (2019). Modeling of Membrane Proteins. In: Liwo, A. (eds) Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes. Springer Series on Bio- and Neurosystems, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-95843-9_12

Download citation

Publish with us

Policies and ethics