Skip to main content

Corneal Haze, Refractive Surgery, and Implications for Choroidal Neovascularization

  • Chapter
  • First Online:
  • 718 Accesses

Abstract

Visual impairment is a multifactorial issue affecting 285 million people world-wide and influencing their quality of life. Although surgical procedures such as photorefractive keratectomy (PRK), laser in situ keratomileusis (LASIK), laser sub-epithelial keratomileusis (LASEK), and implantation of synthetic intra-ocular lenses have shown promise in correcting refractive errors, post-operative complications represented by blurry vision (corneal haze) are widely recorded, with the duration of the symptom varying with each case from a few days to months. In addition to surgical procedures, corneal injuries such as alkali burns, infections, etc. cause keratocyte apoptosis, which triggers a wound-healing cascade leading to corneal haze. Corneal haze is the result of aggressive wound healing and the formation of scar tissue post-surgery, which involves the differentiation of keratocytes to myofibroblasts causing fibrosis, and unorganized deposition of collagen types IV and VII leading to reduced ocular clarity. Therefore, the goal of future research is to promote wound healing through regeneration without fibrosis, and reducing the oxidative damage caused by reactive oxygen species. Consequently, significant research is being undertaken in reducing these complications, in addition to increasing the efficacy of the existing drug formulations to reduce ocular toxicity, corneal haze, and reduce the rate of wound healing. This chapter presents a comprehensive review of the current treatments available, and new prospects for therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pascolini D, Mariotti SP. Global estimates of visual impairment. Br J Ophthalmol. 2012;96:614–8. bjophthalmol.-300539.

    Article  PubMed  Google Scholar 

  2. Fahd D, de la Cruz J, Jain S, Azar D. Corneal haze after refractive surgery. In: Management of complications in refractive surgery. Berlin: Springer; 2008. p. 179–86.

    Chapter  Google Scholar 

  3. Jester JV, Moller-Pedersen T, Huang J, Sax CM, Kays WT, Cavangh HD, Petroll WM, Piatigorsky J. The cellular basis of corneal transparency: evidence for ‘corneal crystallins. J Cell Sci. 1999;5:613–22.

    Google Scholar 

  4. Shimmura S, Masumizu T, Nakai Y, Urayama K, Shimazaki J, Bissen-Miyajima H, Kohno M, Tsubota K. Excimer laser-induced hydroxyl radical formation and keratocyte death in vitro. Invest Ophthalmol Vis Sci. 1999a;6:1245–9.

    Google Scholar 

  5. Bilgihan A, Bilgihan K, Yis O, Sezer C, Akyol G, Hasanreisoglu B. Effects of topical vitamin E on corneal superoxide dismutase, glutathione peroxidase activities and polymorphonuclear leucocyte infiltration after photorefractive keratectomy. Acta Ophthalmol Scand. 2003b;2:177–80.

    Article  Google Scholar 

  6. Scorolli L, Meduri A, Morara M, Scalinci S, Meduri R. Effect of cytochrome c peroxidase on the corneal epithelial healing process after excimer laser photo-ablation in transgenic mice. Eur Surg Res. Eur Chirurgische Forschung. Recherches Chirurgicales Europeennes. 2006;2:82–7.

    Google Scholar 

  7. Stojanovic A, Nitter TA. Correlation between ultraviolet radiation level and the incidence of late-onset corneal haze after photorefractive keratectomy. J Cataract Refract Surg. 2001;3:404–10.

    Article  Google Scholar 

  8. Ambrósio R, Wilson SE. LASIK vs LASEK vs PRK: advantages and indications. Semin Ophthalmol, Informa UK Ltd UK. 2003;18:2–10.

    Article  Google Scholar 

  9. Roberts TV, Lawless M, Chan CC, Jacobs M, Ng D, Bali SJ, Hodge C, Sutton G. Femtosecond laser cataract surgery: technology and clinical practice. Clin Exp Ophthalmol. 2013;2:180–6.

    Article  Google Scholar 

  10. Ang RT, Dartt DA, Tsubota K. Dry eye after refractive surgery. Curr Opin Ophthalmol. 2001;4:318–22.

    Article  Google Scholar 

  11. Kim SJ, Flach AJ, Jampol LM. Nonsteroidal anti-inflammatory drugs in ophthalmology. Surv Ophthalmol. 2010;2:108–33.

    Article  Google Scholar 

  12. Netto MV, Mohan RR, Ambrósio R Jr, Hutcheon AE, Zieske JD, Wilson SE. Wound healing in the cornea: a review of refractive surgery complications and new prospects for therapy. Cornea. 2005;5:509–22.

    Article  Google Scholar 

  13. Taneri S, Zieske JD, Azar DT. Evolution, techniques, clinical outcomes, and pathophysiology of LASEK: review of the literature. Surv Ophthalmol. 2004;6:576–602.

    Article  Google Scholar 

  14. Kim J, Sah W, Park C, Hahn T, Kim M. Myopic regression after photorefractive keratectomy. Ophthal Surg Lasers. 1996;27(5 Suppl):S435–9.

    CAS  Google Scholar 

  15. Williams DK. Multizone photorefractive keratectomy for high and very high myopia: long-term results. J Cataract Refract Surg. 1997;7:1034–41.

    Article  Google Scholar 

  16. Mohan RR, Hutcheon AE, Choi R, Hong J, Lee J, Mohan RR, Ambrósio R, Zieske JD, Wilson SE. Apoptosis, necrosis, proliferation, and myofibroblast generation in the stroma following LASIK and PRK. Exp Eye Res. 2003;1:71–87.

    Article  Google Scholar 

  17. Spadea L, Fasciani R, Necozione S, Balestrazzi E. Role of the corneal epithelium in refractive changes following laser in situ keratomileusis for high myopia. J Refract Surg. 2000;2:133.

    Google Scholar 

  18. Wilson SE, Liu JJ, Mohan RR. Stromal-epithelial interactions in the cornea. Prog Ret Eye Res. 1999;18:293–309.

    Article  CAS  Google Scholar 

  19. Wilson SE, Mohan RR, Hong J-W, Lee J-S, Choi R, Mohan RR. The wound healing response after laser in situ keratomileusis and photorefractive keratectomy: elusive control of biological variability and effect on custom laser vision correction. Arch Ophthalmol. 2001a;6:889–96.

    Article  Google Scholar 

  20. Wilson SE, Mohan RR, Mohan RR, Ambrósio R, Hong J, Lee J. The corneal wound healing response:: cytokine-mediated interaction of the epithelium, stroma, and inflammatory cells. Prog Ret Eye Res. 2001b;5:625–37.

    Article  Google Scholar 

  21. Nagy ZZ, Hiscott P, Seitz B, Shlötzer-Schrehardt U, Simon M, Süveges I, Naumann GO. Ultraviolet-B enhances corneal stromal response to 193-nm excimer laser treatment. Ophthalmology. 1997;3:375–80.

    Article  Google Scholar 

  22. Netto MV, Mohan RR, Sinha S, Sharma A, Dupps W, Wilson SE. Stromal haze, myofibroblasts, and surface irregularity after PRK. Exp Eye Res. 2006;5:788–97.

    Article  CAS  Google Scholar 

  23. Kuo IC, Lee SM, Hwang DG. Late-onset corneal haze and myopic regression after photorefractive keratectomy (PRK). Cornea. 2004;4:350–5.

    Article  Google Scholar 

  24. Møller-Pedersen T, Cavanagh HD, Petroll WM, Jester JV. Corneal haze development after PRK is regulated by volume of stromal tissue removal. Cornea. 1998;6:627–39.

    Article  Google Scholar 

  25. Nakamura Y, Sotozono C, Kinoshita S. The epidermal growth factor receptor (EGFR): role in corneal wound healing and homeostasis. Exp Eye Res. 2001;5:511–7.

    Article  CAS  Google Scholar 

  26. Serrao S, Lombardo M, Eng FM. Photorefractive keratectomy with and without smoothing: a bilateral study. J Refract Surg. 2003;1:58.

    Google Scholar 

  27. Stramer BM, Zieske JD, Jung J-C, Austin JC, Fini ME. Molecular mechanisms controlling the fibrotic repair phenotype in cornea: implications for surgical outcomes. Invest Ophthalmol Vis Sci. 2003;10:4237–46.

    Article  Google Scholar 

  28. Tang X, Liao Z. A clinical study of correlation between ablation depth and corneal subepithelial haze after photorefractive keratectomy. Chin J Ophthalmol. 1997;3:204–6.

    Google Scholar 

  29. Vinciguerra P, Azzolini M, Airaghi P, Radice P, Vito De Molfetta M. Effect of decreasing surface and interface irregularities after photorefractive keratectomy and laser in situ keratomileusis on optical and functional outcomes. J Refract Surg. 1998;2:S199.

    Google Scholar 

  30. Franzco GS. Accuracy and precision of LASIK flap thickness using the IntraLase femtosecond laser in 1000 consecutive cases. J Refract Surg. 2008;8:802.

    Google Scholar 

  31. Melki SA, Azar DT. LASIK complications: etiology, management, and prevention. Surv Ophthalmol. 2001;2:95–116.

    Article  Google Scholar 

  32. O’Doherty M, Kirwan C, O’Keeffe M, O’Doherty J. Postoperative pain following epi-LASIK, LASEK, and PRK for myopia. J Refract Surg. 2007;2:133.

    Google Scholar 

  33. Pallikaris IG, Katsanevaki VJ, Kalyvianaki MI, Naoumidi II. Advances in subepithelial excimer refractive surgery techniques: Epi-LASIK. Curr Opin Ophthalmol. 2003;4:207–12.

    Article  Google Scholar 

  34. Nordan LT, Slade SG, Kurtz R. Femtosecond laser flap creation for laser in situ keratomileusis: six-month follow-up of initial US clinical series. J Refract Surg. 2003;1:8.

    Google Scholar 

  35. Ratkay-Traub I, Hopp B, Bor Z, Dux L, Becker D, Krenacs T. Regeneration of rabbit cornea following excimer laser photorefractive keratectomy: a study on gap junctions, epithelial junctions and epidermal growth factor receptor expression in correlation with cell proliferation. Exp Eye Res. 2001a;73:291–302.

    Article  CAS  PubMed  Google Scholar 

  36. Ratkay-Traub I, Juhasz T, Horvath C, Suarez C, Kiss K, Ferincz I, Kurtz R. Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation. Ophthalmol Clin North Am. 2001b;2:347–55. viii–ix.

    Google Scholar 

  37. Schallhorn SC, Amesbury EC, Tanzer DJ. Avoidance, recognition, and management of LASIK complications. Am J Ophthalmol. 2006;4:733.

    Article  Google Scholar 

  38. Gimbel HV, Basti S, Kaye GB, Ferensowicz M. Experience during the learning curve of laser in situ keratomileusis. J Cataract Refract Surg. 1996;5:542–50.

    Article  Google Scholar 

  39. Yee RW, Yee SB. Update on laser subepithelial keratectomy (LASEK). Curr Opin Ophthalmol. 2004;4:333–41.

    Article  Google Scholar 

  40. Zhao L-Q, Zhu H, Li L-M. Laser-assisted subepithelial keratectomy versus laser in situ keratomileusis in myopia: a systematic review and meta-analysis. ISRN Ophthalmol. 2014;2014:672146.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Abad J-C, An B, Power WJ, Foster CS, Azar DT, Talamo JH. A prospective evaluation of alcohol-assisted versus mechanical epithelial removal before photorefractive keratectomy. Ophthalmology. 1997;10:1566–75.

    Article  Google Scholar 

  42. Carones F, Fiore T, Brancato R. Mechanical vs. alcohol epithelial removal during photorefractive keratectomy. J Refract Surg. 1999;5:556.

    Google Scholar 

  43. Chen CC, Chang J-H, Lee JB, Javier J, Azar DT. Human corneal epithelial cell viability and morphology after dilute alcohol exposure. Invest Ophthalmol Vis Sci. 2002;8:2593–602.

    Google Scholar 

  44. Espana E, Grueterich M, Tseng SG. Immunofluorescent study on basement membrane proteins and epithelial survival following brief ethanol exposure like LASEK. Invest Ophthalmol Vis Sci. 2002;13:1686.

    Google Scholar 

  45. Kim S-Y, Sah W-J, Lim Y-W, Hahn T-W. Twenty percent alcohol toxicity on rabbit corneal epithelial cells: electron microscopic study. Cornea. 2002;4:388–92.

    Article  Google Scholar 

  46. Long Q, Chu R, Zhou X, Dai J. Correlation between TGF-[beta] 1 in tears and corneal haze following LASEK and Epi-LASIK. J Refract Surg. 2006;7:708.

    Google Scholar 

  47. Azar DT, Ang RT, Lee J-B, Kato T, Chen CC, Jain S, Gabison E, Abad J-C. Laser subepithelial keratomileusis: electron microscopy and visual outcomes of flap photorefractive keratectomy. Curr Opin Ophthalmol. 2001;4:323–8.

    Article  Google Scholar 

  48. Claringbold TV. Laser-assisted subepithelial keratectomy for the correction of myopia. J Cataract Refract Surg. 2002;1:18–22.

    Article  Google Scholar 

  49. Kornilovsky IM. Clinical results after subepithelial photorefractive keratectomy (LASEK). J Refract Surg (Thorofare, NJ: 1995). 2000;17(2 Suppl):S222–3.

    Google Scholar 

  50. Lee JB, Choe C-M, Seong GJ, Gong HY, Kim EK. Laser subepithelial keratomileusis for low to moderate myopia: 6-month follow-up. Jpn J Ophthalmol. 2002;3:299–304.

    Article  Google Scholar 

  51. Scerrati E. Laser in situ keratomileusis vs. laser epithelial keratomileusis (LASIK vs. LASEK). J Refract Surg (Thorofare, NJ: 1995). 2000;17(2 Suppl):219–21.

    Google Scholar 

  52. Dastjerdi MH, Soong HK. LASEK (laser subepithelial keratomileusis). Curr Opin Ophthalmol. 2002;4:261–3.

    Article  Google Scholar 

  53. Qazi MA, Johnson TW, Pepose JS. Development of late-onset subepithelial corneal haze after laser-assisted subepithelial keratectomy with prophylactic intraoperative mitomycin-C: case report and literature review. J Cataract Refract Surg. 2006;9:1573–8.

    Article  Google Scholar 

  54. De Benito-Llopis LM, Teus A, Sánchez-Pina JM, Hernández-Verdejo JL. Comparison between LASEK and LASIK for the correction of low myopia. J Refract Surg. 2007;2:139.

    Google Scholar 

  55. Maycock NJ, Marshall J. Genomics of corneal wound healing: a review of the literature. Acta Ophthalmol. 2014;3:170–e184.

    Article  Google Scholar 

  56. Wilson SE, He Y-G, Weng J, Li Q, McDowall AW, Vital M, Chwang EL. Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing. Exp Eye Res. 1996;4:325–38.

    Article  Google Scholar 

  57. Weng J, Mohan RR, Li Q, Wilson SE. IL-1 upregulates keratinocyte growth factor and hepatocyte growth factor mRNA and protein production by cultured stromal fibroblast cells: interleukin-1 [beta] expression in the cornea. Cornea. 1997;4:465–71.

    Google Scholar 

  58. Strissel KJ, Girard MT, West-Mays JA, Rinehart WB, Cook JR, Brinckerhoff CE, Fini ME. Role of serum amyloid A as an intermediate in the IL-1 and PMA-stimulated signaling pathways regulating expression of rabbit fibroblast collagenase. Exp Cell Res. 1997a;2:275–87.

    Article  Google Scholar 

  59. Strissel KJ, Rinehart WB, Fini ME. Regulation of paracrine cytokine balance controlling collagenase synthesis by corneal cells. Invest Ophthalmol Vis Sci. 1997b;2:546–52.

    Google Scholar 

  60. West-Mays JA, Strissel KJ, Sadow PM, Fini ME. Competence for collagenase gene expression by tissue fibroblasts requires activation of an interleukin 1 alpha autocrine loop. Proc Nat Acad Sci. 1995;15:6768–72.

    Article  Google Scholar 

  61. Sherwin T, Green CR. Stromal wound healing. In: Corneal surgery: theory, technique and tissue. 4th ed. Missouri: Mosby Elsevier; 2009. p. 45–56.

    Google Scholar 

  62. Zieske JD. Extracellular matrix and wound healing. Curr Opin Ophthalmol. 2001;4:237–41.

    Article  Google Scholar 

  63. Bilgihan K, Bilgihan A, Akata F, Hasanreisoğlu B, Türközkan N. Excimer laser corneal surgery and free oxygen radicals. Jpn J Ophthalmol. 1995;2:154–7.

    Google Scholar 

  64. Cejka C, Cejkova J. Oxidative stress to the cornea, changes in corneal optical properties, and advances in treatment of corneal oxidative injuries. Oxid Med Cell Longev. 2015;2015:1–10.

    Article  CAS  Google Scholar 

  65. Hayashi S, Ishimoto S-I, Wu G-S, Wee WR, Rao NA, McDonnell PJ. Oxygen free radical damage in the cornea after excimer laser therapy. Br J Ophthalmol. 1997;2:141–4.

    Article  Google Scholar 

  66. Landry R, Pettit G, Hahn D, Ediger M. Preliminary evidence of free radical formation during argon fluoride excimer laser irradiation of corneal tissue. Lasers Light Ophthalmol. 1994;6:87.

    Google Scholar 

  67. Bilgihan K, Bilgihan A, Adiguzel U, Sezer C, Yis O, Akyol G, Hasanreisoglu B. Keratocyte apoptosis and corneal antioxidant enzyme activities after refractive corneal surgery. Eye. 2002;1:63–8.

    Article  Google Scholar 

  68. Kasetsuwan NF, Wu M, Hsieh F, Sanchez D, McDonnell PJ. EFfect of topical ascorbic acid on free radical tissue damage and inflammatory cell influx in the cornea after excimer laser corneal surgery. Arch Ophthalmol. 1999;5:649–52.

    Article  Google Scholar 

  69. Marks-Hull H, Shiao T-Y, Araki-Sasaki K, Traver R, Vasiliou V. Expression of ALDH3 and NMO1 in human corneal epithelial and breast adenocarcinoma cells. In: Enzymology and molecular biology of carbonyl metabolism 6. New York: Springer; 1997. p. 59–68.

    Google Scholar 

  70. Pappa A, Chen C, Koutalos Y, Townsend AJ, Vasiliou V. Aldh3a1 protects human corneal epithelial cells from ultraviolet-and 4-hydroxy-2-nonenal-induced oxidative damage. Free Radic Biol Med. 2003a;9:1178–89.

    Article  CAS  Google Scholar 

  71. Serbecic N, Beutelspacher SC. Anti-oxidative vitamins prevent lipid-peroxidation and apoptosis in corneal endothelial cells. Cell Tissue Res. 2005;3:465–75.

    Article  CAS  Google Scholar 

  72. Cantore M, Siano S, Coronnello M, Mazzetti L, Franchi-Micheli S, Boldrini E, Ciuffi M, Failli P. Pirenoxine prevents oxidative effects of argon fluoride excimer laser irradiation in rabbit corneas: biochemical, histological and cytofluorimetric evaluations. J Photochem Photobiol B: Biol. 2005;1:35–42.

    Article  CAS  Google Scholar 

  73. Čejková J, Štípek S, Crkovska J, Ardan T, Platenik J, Čejka C, Midelfart A. UV rays, the prooxidant/antioxidant imbalance in the cornea and oxidative eye damage. Physiol Res. 2004a;53:1–10.

    PubMed  Google Scholar 

  74. Čejková J, Vejražka M, Pláteník J, Štípek S. Age-related changes in superoxide dismutase, glutathione peroxidase, catalase and xanthine oxidoreductase/xanthine oxidase activities in the rabbit cornea. Exp Gerontol. 2004b;10:1537–43.

    Article  CAS  Google Scholar 

  75. Shimmura S, Tadano K, Tsubota K. UV dose-dependent caspase activation in a corneal epithelial cell line. Curr Eye Res. 2004;2:85–92.

    Article  Google Scholar 

  76. Atilano SR, Chwa M, Kim DW, Jordan N, Udar N, Coskun P, Jester J, Wallace DC, Kenney MC. Hydrogen peroxide causes mitochondrial DNA damage in corneal epithelial cells. Cornea. 2009;4:426–33.

    Article  Google Scholar 

  77. Lenaz G. Role of mitochondria in oxidative stress and ageing. Biochim et Biophys Acta (BBA)-Bioenergetics. 1998;1:53–67.

    Article  Google Scholar 

  78. Jain S, Hahn TW, McCally RL, Azar DT. Antioxidants reduce corneal light scattering after excimer keratectomy in rabbits. Lasers Surg Med. 1995;2:160–5.

    Article  Google Scholar 

  79. Lassen N, Black WJ, Estey T, Vasiliou V. The role of corneal crystallins in the cellular defense mechanisms against oxidative stress. Semin Cell Dev Biol, Elsevier. 2008;19:100–12.

    Article  CAS  Google Scholar 

  80. Monboisse J, Borel J. Oxidative damage to collagen. In: Free radicals and aging. New York: Springer; 1992. p. 323–7.

    Chapter  Google Scholar 

  81. Ambekar R, Toussaint KC, Johnson AW. The effect of keratoconus on the structural, mechanical, and optical properties of the cornea. J Mech Behav Biomed Mater. 2011;3:223–36.

    Article  Google Scholar 

  82. Chace KV, Carubelli R, Nordquist RE, Rowsey JJ. Effect of oxygen free radicals on corneal collagen. Free Radic Res. 1991;1:591–4.

    Google Scholar 

  83. Ohshima M, Jung S-K, Yasuda T, Sakano Y, Fujimoto D. Active oxygen-induced modification alters properties of collagen as a substratum for fibroblasts. Matrix. 1993;3:187–94.

    Article  Google Scholar 

  84. Yanagiya N, Akiba J, Kado M, Hikichi T, Yoshida A. Effects of peroxynitrite on rabbit cornea. Graefe’s Arch Clin Exp Ophthalmol. 2000;7:584–8.

    Article  Google Scholar 

  85. Downes JE, Swann PG, Holmes RS. Ultraviolet light-induced pathology in the eye: associated changes in ocular aldehyde dehydrogenase and alcohol dehydrogenase activities. Cornea. 1993;3:241–8.

    Article  Google Scholar 

  86. Joyce NC, Zhu CC, Harris DL. Relationship among oxidative stress, DNA damage, and proliferative capacity in human corneal endothelium. Invest Ophthalmol Vis Sci. 2009;5:2116–22.

    Article  Google Scholar 

  87. Cejkova J, Stipek S, Crkovska J, Ardan T. Changes of superoxide dismutase, catalase and glutathione peroxidase in the corneal epithelium after UVB rays. Histochem Biochem Stud. 2000;4:1043–50.

    Google Scholar 

  88. Uma L, Hariharan J, Sharma Y, Balasubramanian D. Effect of UVB radiation on corneal aldehyde dehydrogenase. Curr Eye Res. 1996;6:685–90.

    Article  Google Scholar 

  89. Niizuma T, Ito S, Hayashi M, Futemma M, Utsumi T, Ohashi K. Cooling the cornea to prevent side effects of photorefractive keratectomy. Ophthal Lit. 1995;48:177.

    Google Scholar 

  90. Choi YS, Kim JY, Wee WR, Lee JH. Effect of the application of human amniotic membrane on rabbit corneal wound healing after excimer laser photorefractive keratectomy. Cornea. 1998;4:389–95.

    Article  Google Scholar 

  91. Park WC, Tseng SC. Modulation of acute inflammation and keratocyte death by suturing, blood, and amniotic membrane in PRK. Invest Ophthalmol Vis Sci. 2000;10:2906–14.

    Google Scholar 

  92. Cheung IM, McGhee CN, Sherwin T. A new perspective on the pathobiology of keratoconus: interplay of stromal wound healing and reactive species-associated processes. Clin Exp Optom. 2013;2:188–96.

    Article  Google Scholar 

  93. Kennedy M, Kim KH, Harten B, Brown J, Planck S, Meshul C, Edelhauser H, Rosenbaum JT, Armstrong CA, Ansel JC. Ultraviolet irradiation induces the production of multiple cytokines by human corneal cells. Invest Ophthalmol Vis Sci. 1997;12:2483–91.

    Google Scholar 

  94. Podskochy A, Gan L, Fagerholm P. Apoptosis in UV-exposed rabbit corneas. Cornea. 2000;1:99–103.

    Article  Google Scholar 

  95. Rogers CS, Chan L-M, Sims YS, Byrd KD, Hinton DL, Twining SS. The effects of sub-solar levels of UV-A and UV-B on rabbit corneal and lens epithelial cells. Exp Eye Res. 2004;5:1007–14.

    Article  CAS  Google Scholar 

  96. Atalla LR, Sevanian A, Rao NA. Immunohistochemical localization of glutathione peroxidase in ocular tissue. Curr Eye Res. 1988;10:1023–7.

    Article  Google Scholar 

  97. Behndig A, Svensson B, Marklund SL, Karlsson K. Superoxide dismutase isoenzymes in the human eye. Invest Ophthalmol Vis Sci. 1998;3:471–5.

    Google Scholar 

  98. Mayer U. Comparative investigations of catalase activity in different ocular tissues of cattle and man. Albrecht von Graefes Arch für klinische und Exp Ophthalmol. 1980;4:261–5.

    Article  Google Scholar 

  99. Olofsson EM, Marklund SL, Pedrosa-Domellöf F, Behndig A. Interleukin-1alpha downregulates extracellular-superoxide dismutase in human corneal keratoconus stromal cells. Mol Vis. 2007;13:1285–90.

    CAS  PubMed  Google Scholar 

  100. Berthoud VM, Beyer EC. Oxidative stress, lens gap junctions, and cataracts. Antioxid Redox Signal. 2009;2:339–53.

    Article  CAS  Google Scholar 

  101. Laux-Fenton WT, Donaldson PJ, Kistler J, Green CR. Connexin expression patterns in the rat cornea: molecular evidence for communication compartments. Cornea. 2003;5:457–64.

    Article  Google Scholar 

  102. Håskjold E, Bjerknes R, Refsum SB. Cell kinetics during healing of corneal epithelial wounds. Acta Ophthalmol. 1989;2:174–80.

    Google Scholar 

  103. Sandvig KU, Haaskjold E. The proliferative response during regeneration of a ringshaped defect in the corneal epithelium. Acta Ophthalmol. 1993;1:39–43.

    Google Scholar 

  104. Risek B, Pozzi A, Gilula NB. Modulation of gap junction expression during transient hyperplasia of rat epidermis. J Cell Sci. 1998;10:1395–404.

    Google Scholar 

  105. Shi Y, Tabesh M, Sugrue SP. Role of cell adhesion-associated protein, pinin (DRS/memA), in corneal epithelial migration. Invest Ophthalmol Vis Sci. 2000;6:1337–45.

    Google Scholar 

  106. Grupcheva CN, Laux WT, Rupenthal ID, McGhee J, McGhee C, Green CR. Improved corneal wound healing through modulation of gap junction communication using connexin43-specific antisense oligodeoxynucleotides. Invest Ophthalmol Vis Sci. 2012;3:1130–8.

    Article  CAS  Google Scholar 

  107. Yuan X, Chen Z, Yang Z, Gao J, Zhang A, Wu SM, Jacoby R. Expression pattern of connexins in the corneal and limbal epithelium of a primate. Cornea. 2009;2:194–9.

    Article  Google Scholar 

  108. Gong X, Li E, Klier G, Huang Q, Wu Y, Lei H, Kumar NM, Horwitz J, Gilula NB. Disruption of α 3 connexin gene leads to proteolysis and cataractogenesis in mice. Cell. 1997;6:833–43.

    Article  Google Scholar 

  109. Tsai M-J, Hsu Y-L, Wu K-Y, Yang R-C, Chen Y-J, Yu H-S, Kuo P-L. Heat effect induces production of inflammatory cytokines through heat shock protein 90 pathway in cornea cells. Curr Eye Res. 2013;4:464–71.

    Article  CAS  Google Scholar 

  110. Peterson CW, Carter RT, Bentley E, Murphy CJ, Chandler HL. Heat-shock protein expression in canine corneal wound healing. Vet Ophthalmol. 2015;19:262–6.

    Article  PubMed  CAS  Google Scholar 

  111. Song IS, Kang S-S, Kim E-S, Park H-M, Choi CY, Tchah H, Kim JY. Heat shock protein 27 phosphorylation is involved in epithelial cell apoptosis as well as epithelial migration during corneal epithelial wound healing. Exp Eye Res. 2014;118:36–41.

    Article  CAS  PubMed  Google Scholar 

  112. Arrigo A-P, Firdaus WJ, Mellier G, Moulin M, Paul C, Diaz-Latoud C, Kretz-Remy C. Cytotoxic effects induced by oxidative stress in cultured mammalian cells and protection provided by Hsp27 expression. Methods. 2005;2:126–38.

    Article  CAS  Google Scholar 

  113. Ciocca DR, Oesterreich S, Chamness GC, MCGuire WL, Fuqua SA. Biological and clinical implications of heat shock protein 27000 (Hsp27): a review. J Nat Can Inst. 1993;19:1558–70.

    Article  Google Scholar 

  114. Goldstein AL, Hannappel E, Kleinman HK. Thymosin β 4: actin-sequestering protein moonlights to repair injured tissues. Trends Mol Med. 2005;9:421–9.

    Article  CAS  Google Scholar 

  115. Sanders MC, Goldstein AL, Wang Y-L. Thymosin beta 4 (Fx peptide) is a potent regulator of actin polymerization in living cells. Proc Natl Acad Sci. 1992;89:4678–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sosne G, Christopherson PL, Barrett RP, Fridman R. Thymosin-β4 modulates corneal matrix metalloproteinase levels and polymorphonuclear cell infiltration after alkali injury. Invest Ophthalmol Vis Sci. 2005;7:2388–95.

    Article  Google Scholar 

  117. Girardi M, Sherling MA, Filler RB, Shires J, Theodoridis E, Hayday AC, Tigelaar RE. Anti-inflammatory effects in the skin of thymosin-β4 splice-variants. Immunology. 2003;1:1–7.

    Article  Google Scholar 

  118. Suzuki K, Saito J, Yanai R, Yamada N, Chikama T-i, Seki K, Nishida T. Cell–matrix and cell–cell interactions during corneal epithelial wound healing. Prog Retin Eye Res. 2003;2:113–33.

    Article  CAS  Google Scholar 

  119. Murakami J, Nishida T, Otori T. Coordinated appearance of beta 1 integrins and fibronectin during corneal wound healing. J Lab Clin Med. 1992;1:86–93.

    Google Scholar 

  120. Clark RA, Lanigan JM, DellaPelle P, Manseau E, Dvorak HF, Colvin RB. Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization. J Invest Dermatol. 1982;5:264–9.

    Article  Google Scholar 

  121. Grinnell F, Billingham RE, Burgess L. Distribution of fibronectin during wound healing in vivo. J Invest Dermatol. 1981;3:181–9.

    Article  Google Scholar 

  122. Juhasz I, Murphy G, Yan H-C, Herlyn M, Albelda S. Regulation of extracellular matrix proteins and integrin cell substratum adhesion receptors on epithelium during cutaneous human wound healing in vivo. Am J Pathol. 1993;5:1458.

    Google Scholar 

  123. Nakamura M, Nagano T, Chikama T-I, Nishida T. Up-regulation of phosphorylation of focal adhesion kinase and paxillin by combination of substance P and IGF-1 in SV-40 transformed human corneal epithelial cells. Biochem Biophys Res Commun. 1998;1:16–20.

    Article  Google Scholar 

  124. Dugina V, Fontao L, Chaponnier C, Vasiliev J, Gabbiani G. Focal adhesion features during myofibroblastic differentiation are controlled by intracellular and extracellular factors. J Cell Sci. 2001;18:3285–96.

    Google Scholar 

  125. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002;5:349–63.

    Article  CAS  Google Scholar 

  126. Kolozsvári L, Nógrádi A, Hopp B, Bor Z. UV absorbance of the human cornea in the 240-to 400-nm range. Invest Ophthalmol Vis Sci. 2002;7:2165–8.

    Google Scholar 

  127. Ringvold A. Corneal epithelium and UV-protection of the eye. Acta Ophthalmol Scand. 1998;2:149–53.

    Article  Google Scholar 

  128. Caballero B, Gleason RE, Wurtman RJ. Plasma amino acid concentrations in healthy elderly men and women. Am J Clin Nutr. 1991;5:1249–52.

    Article  Google Scholar 

  129. Shashar N, Harosi FI, Banaszak AT, Hanlon RT. UV radiation blocking compounds in the eye of the cuttlefish Sepia officinalis. Biol Bull. 1998;2:187.

    Article  Google Scholar 

  130. Truscott RJ, Wood AM, Carver JA, Sheil MM, Stutchbury GM, Zhu J, Kilby GW. A new UV-filter compound in human lenses. FEBS Lett. 1994;2:173–6.

    Article  Google Scholar 

  131. Van Heyningen R. The glucoside of 3-hydroxy-kynurenine and other fluorescent compounds in the human lens. The Hurntin lens in relation to cataract. Ciba Foundation Symposium. 2009.

    Google Scholar 

  132. Wood AM, Truscott RJ. Ultraviolet filter compounds in human lenses: 3-hydroxykynurenine glucoside formation. Vis Res. 1994;11:1369–74.

    Article  Google Scholar 

  133. Wood AM, Truscott RJ. UV filters in human lenses: tryptophan catabolism. Exp Eye Res. 1993;3:317–25.

    Article  Google Scholar 

  134. Moroni F. Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur J Pharmacol. 1999;1:87–100.

    Article  Google Scholar 

  135. Malina HZ, Martin XD. Deamination of 3-hydroxykynurenine in bovine lenses: a possible mechanism of cataract formation in general. Graefe’s Arch Clin Exp Ophthalmol. 1995;1:38–44.

    Article  Google Scholar 

  136. Van Heyningen R. Fluorescent glucoside in the human lens. Nature. 1971;230:393–4.

    Article  PubMed  Google Scholar 

  137. Bova LM, Wood AM, Jamie JF, Truscott RJ. UV filter compounds in human lenses: the origin of 4-(2-amino-3-hydroxyphenyl)-4-oxobutanoic acid O- -D-glucoside. Invest Ophthalmol Vis Sci. 1999;40:3237–44.

    CAS  PubMed  Google Scholar 

  138. Garner B, Vazquez S, Griffith R, Lindner RA, Carver JA, Truscott RJ. Identification of glutathionyl-3-hydroxykynurenine glucoside as a novel fluorophore associated with aging of the human lens. J Biol Chem. 1999;30:20847–54.

    Article  Google Scholar 

  139. Serbecic N, Lahdou I, Scheuerle A, Höftberger R, Aboul-Enein F. Function of the tryptophan metabolite, L-kynurenine, in human corneal endothelial cells. Molecular Vision. 2009;15:1312.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Serbecic N, Beutelspacher SC. Indoleamine 2, 3-dioxygenase protects corneal endothelial cells from UV mediated damage. Exp Eye Res. 2006;3:416–26.

    Article  CAS  Google Scholar 

  141. Manzer R, Pappa A, Estey T, Sladek N, Carpenter JF, Vasiliou V. Ultraviolet radiation decreases expression and induces aggregation of corneal ALDH3A1. Chem-Biol Interact. 2003a;143:45–53.

    Article  PubMed  CAS  Google Scholar 

  142. Pappa A, Estey T, Manzer R, Brown D, Vasiliou V. Human aldehyde dehydrogenase 3A1 (ALDH3A1): biochemical characterization and immunohistochemical localization in the cornea. Biochem. J. 2003b;376:615–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Manzer R, Qamar L, Estey T, Pappa A, Petersen DR, Vasiliou V. Molecular cloning and baculovirus expression of the rabbit corneal aldehyde dehydrogenase (ALDH1A1) cDNA. DNA and Cell Biol. 2003b;5:329–38.

    Article  Google Scholar 

  144. Curry S, Brick P, Franks NP. Fatty acid binding to human serum albumin: new insights from crystallographic studies. Biochim et Biophys Acta (BBA)-Mol Cell Biol Lipids. 1999;2:131–40.

    Article  Google Scholar 

  145. Jarabak R, Westley J, Dungan JM, Horowitz P. A chaperone-mimetic effect of serum albumin on rhodanese. J Biochem Toxicol. 1993;1:41–8.

    Article  Google Scholar 

  146. Piatigorsky J. Gene sharing in lens and cornea: facts and implications. Prog Retin Eye Res. 1998;2:145–74.

    Article  Google Scholar 

  147. Zieske J, Bukusoglu G, Yankauckas M. Characterization of a potential marker of corneal epithelial stem cells. Invest Ophthalmol Vis Sci. 1992;1:143–52.

    Google Scholar 

  148. Piatigorsky J. Enigma of the abundant water-soluble cytoplasmic proteins of the cornea: the “refracton” hypothesis. Cornea. 2001;8:853–8.

    Article  Google Scholar 

  149. Mao Y, Liu J, Xiang H, Li DW. Human αA-and αB-crystallins bind to Bax and Bcl-Xs to sequester their translocation during staurosporine-induced apoptosis. Cell Death Differ. 2004;5:512–26.

    Article  CAS  Google Scholar 

  150. Hu W-F, Gong L, Cao Z, Ma H, Ji W, Deng M, Liu M, Hu X-H, Chen P, Yan Q. αA-and αB-crystallins interact with caspase-3 and Bax to guard mouse lens development. Curr Mol Med. 2012;2:177–87.

    Article  Google Scholar 

  151. Lee S-H, Leem H-S, Jeong S-M, Lee K-J. Bevacizumab accelerates corneal wound healing by inhibiting TGF-βexpression in alkali-burned mouse cornea. BMB Rep. 2009;12:800–5.

    Article  Google Scholar 

  152. Matsuda H, Smelser GK. Epithelium and stroma in alkali-burned corneas. Arch Ophthalmol. 1973;5:396–401.

    Article  Google Scholar 

  153. Hackett JM, Lagali N, Merrett K, Edelhauser H, Sun Y, Gan L, Griffith M, Fagerholm P. Biosynthetic corneal implants for replacement of pathologic corneal tissue: performance in a controlled rabbit alkali burn model. Invest Ophthalmol Vis Sci. 2011;2:651–7.

    Article  CAS  Google Scholar 

  154. Ye J, Yao K, Kim J. Mesenchymal stem cell transplantation in a rabbit corneal alkali burn model: engraftment and involvement in wound healing. Eye. 2006;4:482–90.

    Article  Google Scholar 

  155. He J, Bazan NG, Bazan HE. Alkali-induced corneal stromal melting prevention by a novel platelet-activating factor receptor antagonist. Arch Ophthalmol. 2006;1:70–8.

    Article  Google Scholar 

  156. Takahashi H, Igarashi T, Fujimoto C, Ozaki N, Ishizaki M. Immunohistochemical observation of amniotic membrane patching on a corneal alkali burn in vivo. Jpn J Ophthalmol. 2007;1:3–9.

    Article  Google Scholar 

  157. Von Fischern T, Lorenz U, Burchard W-G, Reim M, Schrage NF. Changes in mineral composition of rabbit corneas after alkali burn. Graefe’s Arch Clin Exp Ophthalmol. 1998;7:553–8.

    Article  Google Scholar 

  158. Zhang H, Li C, Baciu PC. Expression of integrins and MMPs during alkaline-burn-induced corneal angiogenesis. Invest Ophthalmol Vis Sci. 2002;4:955–62.

    Google Scholar 

  159. Chung JH, Fagerholm P, Lindström B. The behaviour of corneal epithelium following a standardized alkali wound. Acta Ophthalmol. 1987;5:529–37.

    Google Scholar 

  160. Cheng H-C, Yeh S-I, Tsao Y-P, Kuo P-C. Subconjunctival injection of recombinant AAV-angiostatin ameliorates alkali burn induced corneal angiogenesis. Mol Vis. 2007;13:2344–52.

    PubMed  Google Scholar 

  161. Zhao B, Ma A, Martin FL, Fullwood NJ. An investigation into corneal alkali burns using an organ culture model. Cornea. 2009;5:541–6.

    Article  Google Scholar 

  162. Bhasker S, Kislay R, Rupinder KK, Jagat KR. Evaluation of nanoformulated therapeutics in an ex-vivo bovine corneal irritation model. Toxicol Vitro. 2015;5:917–25.

    Article  CAS  Google Scholar 

  163. Mohan RR, Stapleton WM, Sinha S, Netto MV, Wilson SE. A novel method for generating corneal haze in anterior stroma of the mouse eye with the excimer laser. Exp Eye Res. 2008;2:235–40.

    Article  CAS  Google Scholar 

  164. Drew AF, Schiman HL, Kombrinck KW, Bugge TH, Degen JL, Kaufman AH. Persistent corneal haze after excimer laser photokeratectomy in plasminogen-deficient mice. Invest Ophthalmol Vis Sci. 2000;1:67–72.

    Google Scholar 

  165. Fantes FE, Hanna KD, Waring GO, Pouliquen Y, Thompson KP, Savoldelli M. Wound healing after excimer laser keratomileusis (photorefractive keratectomy) in monkeys. Arch Ophthalmol. 1990;5:665–75.

    Article  Google Scholar 

  166. Foreman D, Pancholi S, Jarvis-Evans J, McLeod D, Boulton M. A simple organ culture model for assessing the effects of growth factors on corneal re-epithelialization. Exp Eye Res. 1996;5:555–64.

    Article  Google Scholar 

  167. Szybalski W, Iyer V. Crosslinking of dna by enzymatically or chemically activated mitomycins and porfiromycins, bifunctionally “alkylating” antibiotics. Fed Proc. 1964;23:946–57.

    CAS  PubMed  Google Scholar 

  168. Mao Y, Varoglu M, Sherman DH. Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic mitomycin C from Streptomyces lavendulae NRRL 2564. Chem Biol. 1999;4:251–63.

    Article  Google Scholar 

  169. Carones F, Vigo L, Scandola E, Vacchini L. Evaluation of the prophylactic use of mitomycin-C to inhibit haze formation after photorefractive keratectomy. J Cataract Refract Surg. 2002;12:2088–95.

    Article  Google Scholar 

  170. Tomasz M. Mitomycin C: small, fast and deadly (but very selective). Chem Biol. 1995;9:575–9.

    Article  Google Scholar 

  171. Hashemi H, Taheri SM, Fotouhi A, Kheiltash A. Evaluation of the prophylactic use of mitomycin-C to inhibit haze formation after photorefractive keratectomy in high myopia: a prospective clinical study. BMC Ophthalmol. 2004;4:12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Morales AJ, Zadok D, Mora-Retana R, Martínez-Gama E, Robledo NE, Chayet AS. Intraoperative mitomycin and corneal endothelium after photorefractive keratectomy. Am J Ophthalmol. 2006;23:400–4.

    Article  CAS  Google Scholar 

  173. Nassiri N, Farahangiz S, Rahnavardi M, Rahmani L, Nassiri N. Corneal endothelial cell injury induced by mitomycin-C in photorefractive keratectomy: nonrandomized controlled trial. J Cataract Refract Surg. 2008;6:902–8.

    Article  Google Scholar 

  174. Bilgihan A, Bilgihan K, Yis O, Safak Yis N, Hasanreisoglu B. The effect of excimer laser keratectomy on corneal glutathione-related enzymes in rabbits. Free Radic Res. 2003a;4:399–403.

    Article  CAS  Google Scholar 

  175. Finzel BC, Poulos TL, Kraut J. Crystal structure of yeast cytochrome c peroxidase refined at 1.7-A resolution. J Biol Chem. 1984;21:13027–36.

    Google Scholar 

  176. Scalinci SZ, Scorolli L, Meduri A, Grenga PL, Corradetti G, Metrangolo C. Effect of basic fibroblast growth factor and cytochrome c peroxidase combination in transgenic mice corneal epithelial healing process after excimer laser photoablation. Clin Ophthalmol (Auckland, N.Z.). 2011;5:215–21.

    Article  CAS  PubMed Central  Google Scholar 

  177. Williams R, Paterson C, Eakins K, Bhattacherjee P. Ascorbic acid inhibits the activity of polymorphonuclear leukocytes in inflamed ocular tissues. Exp Eye Res. 1984;3:261–5.

    Article  Google Scholar 

  178. Stojanovic A, Ringvold A, Nitter T. Ascorbate prophylaxis for corneal haze after photorefractive keratectomy. J Refract Surg. 2003;3:338–43.

    Google Scholar 

  179. John A. Long term results of a prospective randomized bilateral eye comparison trial of higher fluence, shorter duration ultraviolet A radiation, and riboflavin collagen cross linking for progressive keratoconus. Clin Ophthalmol. 2012;6:97–101.

    Google Scholar 

  180. Kanellopoulos AJ, Binder PS. Management of corneal ectasia after LASIK with combined, same-day, topography-guided partial transepithelial PRK and collagen cross-linking: the Athens protocol. J Refract Surg. 2011;5:323–31.

    Article  Google Scholar 

  181. Krueger RR, John Kanellopoulos A. Stability of simultaneous topography-guided photorefractive keratectomy and riboflavin/UVA cross-linking for progressive keratoconus: case reports. J Refract Surg. 2010;10:S827.

    Article  Google Scholar 

  182. Bilgihan K, Adiguzel U, Sezer C, Akyol G, Hasanreisoglu B. Effects of topical vitamin E on keratocyte apoptosis after traditional photorefractive keratectomy. Ophthalmol J Int D’ophtalmol. Int J Ophthalmol. Z fur Augenheilkd. 2000a;3:192–6.

    Google Scholar 

  183. Bilgihan K, Ozdek S, Ozo gcaron C, Gurelik G, Bilgihan A, Hasanreiso B, Gcaron B. Topical vitamin E and hydrocortisone acetate treatment after photorefractive keratectomy. Eye. 2000b;2:231–7.

    Article  Google Scholar 

  184. Vetrugno M, Maino A, Cardia G, Quaranta GM, Cardia L. A randomised, double masked, clinical trial of high dose vitamin A and vitamin E supplementation after photorefractive keratectomy. Br J Ophthalmol. 2001a;5:537–9.

    Article  Google Scholar 

  185. Reimondez-Troitiño S, Csaba N, Alonso M, De La Fuente M. Nanotherapies for the treatment of ocular diseases. Eur J Pharm Biopharm. 2015;95:279–93.

    Article  PubMed  CAS  Google Scholar 

  186. Tomás-Juan J, Larrañaga AM-G, Hanneken L. Corneal regeneration after photorefractive keratectomy: a review. J Optom. 2015;8:149–69.

    Article  PubMed  Google Scholar 

  187. Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm Sinica B. 2016;7:281–91.

    Article  Google Scholar 

  188. Daba KT. Bacteriology and risk factors of bacterial keratitis in Ethiopia. Arch De Med. 2015;9:6.

    Google Scholar 

  189. Deng SX, Penland S, Gupta S, Fiscella R, Edward DP, Tessler HH, Goldstein DA. Methotrexate reduces the complications of endophthalmitis resulting from intravitreal injection compared with dexamethasone in a rabbit model. Invest Opthalmol Vis Sci. 2006;47:1516.

    Article  Google Scholar 

  190. Hao J, Wang X, Bi Y, Teng Y, Wang J, Li F, Li Q, Zhang J, Guo F, Liu J. Fabrication of a composite system combining solid lipid nanoparticles and thermosensitive hydrogel for challenging ophthalmic drug delivery. Colloids Surf B: Biointerfaces. 2014;114:111–20.

    Article  CAS  PubMed  Google Scholar 

  191. Sunkireddy P, Jha SN, Kanwar JR, Yadav SC. Natural antioxidant biomolecules promises future nanomedicine based therapy for cataract. Colloids Surf B: Biointerfaces. 2013;112:554–62.

    Article  CAS  PubMed  Google Scholar 

  192. Gaudana R, Jwala J, Boddu SH, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res. 2009;26:1197.

    Article  CAS  PubMed  Google Scholar 

  193. Yañez-Soto B, Mannis MJ, Schwab IR, Li JY, Leonard BC, Abbott NL, Murphy CJ. Interfacial phenomena and the ocular surface. Ocul Surf. 2014;12:178–201.

    Article  PubMed  Google Scholar 

  194. Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin Drug Deliv. 2008;5:567–81.

    Article  CAS  PubMed  Google Scholar 

  195. Wilson CG, Tan LE. Nanostructures overcoming the ocular barrier: physiological considerations and mechanistic issues. In: Nanostructured biomaterials for overcoming biological barriers, RSC Drug Discovery Series. Cambridge: RSC Publishing Ltd; 2012. p. 173–89.

    Chapter  Google Scholar 

  196. Duvvuri S, Majumdar S, Mitra AK. Role of metabolism in ocular drug delivery. Curr Drug Metabol. 2004;5:507–15.

    Article  CAS  Google Scholar 

  197. Dalkara D, Kolstad KD, Caporale N, Visel M, Klimczak RR, Schaffer DV, Flannery JG. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol Ther. 2009;17:2096–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Deveraux QL, Reed JC. IAP family proteins—suppressors of apoptosis. Genes Dev. 1999;3:239–52.

    Article  Google Scholar 

  199. Jarrin M, Mansergh FC, Boulton ME, Gunhaga L, Wride MA. Survivin expression is associated with lens epithelial cell proliferation and fiber cell differentiation. Mol Vis. 2012;18:2758.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Altieri DC. Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer. 2008;1:61–70.

    Article  CAS  Google Scholar 

  201. Mohan RR, Rodier JT, Sharma A. Corneal gene therapy: basic science and translational perspective. Ocul Surf. 2013;3:150–64.

    Article  Google Scholar 

  202. Li F, Brattain MG. Role of the survivin gene in pathophysiology. Am J Pathol. 2006;1:1–11.

    Article  CAS  Google Scholar 

  203. Altieri DC. Survivin in apoptosis control and cell cycle regulation in cancer. Prog Cell Cycle Res. 2002;5:447–52.

    Google Scholar 

  204. Altieri DC. The case for survivin as a regulator of microtubule dynamics and cell-death decisions. Curr Opin Cell Biol. 2006;6:609–15.

    Article  CAS  Google Scholar 

  205. Rosa J, Canovas P, Islam A, Altieri DC, Doxsey SJ. Survivin modulates microtubule dynamics and nucleation throughout the cell cycle. Mol Biol Cell. 2006;3:1483–93.

    Article  Google Scholar 

  206. Adida C, Crotty PJ, McGrath J, Berrebi D, Diebold J, Altieri DC. Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am J Pathol. 1998;1:43.

    Google Scholar 

  207. Kobayashi K, Hatano M, Otaki M, Ogasawara T, Tokuhisa T. Expression of a murine homologue of the inhibitor of apoptosis protein is related to cell proliferation. Proc Natl Acad Sci. 1999;4:1457–62.

    Article  Google Scholar 

  208. Lovicu FJ, Robinson ML. Development of the ocular lens. New York: Cambridge University Press; 2004.

    Book  Google Scholar 

  209. Mansergh FC, Wride MA, Walker VE, Adams S, Hunter SM, Evans MJ. Gene expression changes during cataract progression in Sparc null mice: differential regulation of mouse globins in the lens. Mol Vis. 2004;10:490–511.

    CAS  PubMed  Google Scholar 

  210. Piatigorsky J. Lens differentiation in vertebrates: a review of cellular and molecular features. Differentiation. 1981;1:134–53.

    Article  Google Scholar 

  211. Wride MA. Cellular and molecular features of lens differentiation: a review of recent advances. Differentiation. 1996;2:77–93.

    Article  Google Scholar 

  212. Santagati MG, La Terra Mule S, Amico C, Pistone M, Rusciano D, Enea V. Lactoferrin expression by bovine ocular surface epithelia: a primary cell culture model to study lactoferrin gene promoter activity. Ophthal Res. 2005;5:270–8.

    Article  CAS  Google Scholar 

  213. Kijlstra A, Jeurissen S, Koning K. Lactoferrin levels in normal human tears. Br J Ophthalmol. 1983;3:199–202.

    Article  Google Scholar 

  214. Mackie I, Seal D. Diagnostic implications of tear protein profiles. Br J Ophthalmol. 1984;5:321–4.

    Article  Google Scholar 

  215. Boukes R, Boonstra A, Breebaart A, Reits D, Glasius E, Luyendyk L, Kijlstra A. Analysis of human tear protein profiles using high performance liquid chromatography (HPLC). Doc Ophthalmol. 1987;1–2:105–13.

    Article  Google Scholar 

  216. Rapacz P, Tedesco J, Donshik PC, Ballow M. Tear lysozyme and lactoferrin levels in giant papillary conjunctivitis and vernal conjunctivitis. Eye Contact Lens. 1998;4:207–9.

    Google Scholar 

  217. Jensen O, Gluud B, Birgens H. The concentration of lactoferrin in tears during post-operative ocular inflammation. Acta Ophthalmol. 1985;3:341–5.

    Google Scholar 

  218. Kuizenga A, van Haeringen NJ, Kijlstra A. Inhibition of hydroxyl radical formation by human tears. Invest Ophthalmol Vis Sci. 1987;2:305–13.

    Google Scholar 

  219. Augustin AJ, Spitznas M, Kaviani N, Meller D, Koch FH, Grus F, Göbbels MJ. Oxidative reactions in the tear fluid of patients suffering from dry eyes. Graefe’s Arch Clin Expl Ophthalmol. 1995;11:694–8.

    Article  Google Scholar 

  220. Shimmura S, Suematsu M, Shimoyama M, Tsubota K, Oguchi Y, Shimurai Y. Subthreshold UV radiation-induced peroxide formation in cultured corneal epithelial cells: the protective effects of lactoferrin. Exp Eye Res. 1996;5:519–26.

    Article  Google Scholar 

  221. da Silva SB, Borges S, Ramos Ó, Pintado M, Ferreira D, Sarmento B. Treating retinopathies–nanotechnology as a tool in protecting antioxidants agents. In: Systems biology of free radicals and antioxidants. Berlin: Springer; 2014. p. 3539–58.

    Chapter  Google Scholar 

  222. Reimondez-Troitiño S, Alcalde I, Csaba N, Íñigo-Portugués A, de la Fuente M, Bech F, Riestra AC, Merayo-Lloves J, Alonso MJ. Polymeric nanocapsules: a potential new therapy for corneal wound healing. Drug Deliv Translat Res. 2016;6:708–21.

    Article  CAS  Google Scholar 

  223. Adijanto J, Naash MI. Nanoparticle-based technologies for retinal gene therapy. Eur J Pharm Biopharm. 2015;95:353–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Chaurasia SS, Lim RR, Lakshminarayanan R, Mohan RR. Nanomedicine approaches for corneal diseases. J Funct Biomater. 2015;6:277–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Badawi AA, El-Laithy HM, El Qidra RK, El Mofty H, El Dally M. Chitosan based nanocarriers for indomethacin ocular delivery. Arch Pharm Res. 2008;31:1040–9.

    Article  CAS  PubMed  Google Scholar 

  226. El-Kamel A. In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. Int J Pharm. 2000;241:47–55.

    Article  Google Scholar 

  227. Budai L, Hajdú M, Budai M, Gróf P, Béni S, Noszál B, Klebovich I, Antal I. Gels and liposomes in optimized ocular drug delivery: studies on ciprofloxacin formulations. Int J Pharm. 2007;343:34–40.

    Article  CAS  PubMed  Google Scholar 

  228. Kompella UB, Sundaram S, Raghava S, Escobar ER. Luteinizing hormone-releasing hormone agonist and transferrin functionalizations enhance nanoparticle delivery in a novel bovine ex vivo eye model. Mol Vis. 2006;12:1185–98.

    CAS  PubMed  Google Scholar 

  229. Liu Z, Li J, Nie S, Liu H, Ding P, Pan W. Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. Int J Pharm. 2006;315:12–7.

    Article  CAS  PubMed  Google Scholar 

  230. Gavini E, Chetoni P, Cossu M, Alvarez MG, Saettone MF, Giunchedi P. PLGA microspheres for the ocular delivery of a peptide drug, vancomycin using emulsification/spray-drying as the preparation method: in vitro/in vivo studies. Eur J Pharm Biopharm. 2004;57:207–12.

    Article  CAS  PubMed  Google Scholar 

  231. Herrero-Vanrell R, Fernandez-Carballido A, Frutos G, Cadorniga R. Enhancement of the mydriatic response to tropicamide by bioadhesive polymers. J Ocul Pharmacol Ther. 2000;16:419–28.

    Article  CAS  PubMed  Google Scholar 

  232. Nien CJ, Flynn KJ, Chang M, Brown D, Jester JV. Reducing peak corneal haze after photorefractive keratectomy in rabbits: prednisolone acetate 1.00% versus cyclosporine A 0.05%. J Cataract Refract Surg. 2011;37:937–44.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Vetrugno M, Maino A, Quaranta GM, Cardia L. The effect of early steroid treatment after PRK on clinical and refractive outcomes. Acta Ophthalmol Scand. 2001b;79:23–7.

    Article  CAS  PubMed  Google Scholar 

  234. Woreta FA, Gupta A, Hochstetler B, Bower KS. Management of post-photorefractive keratectomy pain. Surv Ophthalmol. 2013;58:529–35.

    Article  PubMed  Google Scholar 

  235. Souto EB, Doktorovova S, Gonzalez-Mira E, Egea M, Garcia ML. Feasibility of lipid nanoparticles for ocular delivery of anti-inflammatory drugs. Curr Eye Res. 2010;35:537–52.

    Article  CAS  PubMed  Google Scholar 

  236. Rodríguez-Agirretxe I, Vega SC, Rezola R, Vecino E, Mendicute J, Suarez-Cortes T, Acera A. The PLGA implant as an antimitotic delivery system after experimental trabeculectomy PLGA implant as an antimitotic delivery system. Investigat Ophthalmol Vis Sci. 2013;54:5227–35.

    Article  CAS  Google Scholar 

  237. Akbani I, Bashir M, Shakeel M. Nanomedicine and its role in Ophthalmology. Nanotechnol Ophthalmol. 2014;2:5–11.

    Google Scholar 

  238. Sharma A, Tandon A, Tovey JC, Gupta R, Robertson JD, Fortune JA, Klibanov AM, Cowden JW, Rieger FG, Mohan RR. Polyethylenimine-conjugated gold nanoparticles: Gene transfer potential and low toxicity in the cornea. Nanomed: Nanotechnol, Biol Med. 2011;7:505–13.

    Article  CAS  Google Scholar 

  239. Tandon A, Sharma A, Rodier JT, Klibanov AM, Rieger FG, Mohan RR. BMP7 gene transfer via gold nanoparticles into stroma inhibits corneal fibrosis in vivo. PLoS ONE. 2013;8:e66434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Kim J, Takahashi M, Shimizu T, Shirasawa T, Kajita M, Kanayama A, Miyamoto Y. Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans. Mech Ageing Dev. 2008;129:322–31.

    Article  CAS  PubMed  Google Scholar 

  241. Pissuwan D, Niidome T, Cortie MB. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release. 2011;149:65–71.

    Article  CAS  PubMed  Google Scholar 

  242. Maneewattanapinyo P, Banlunara W, Thammacharoen C, Ekgasit S, Kaewamatawong T. An evaluation of acute toxicity of colloidal silver nanoparticles. J Vet Med Sci. 2011;73:1417–23.

    Article  CAS  PubMed  Google Scholar 

  243. De la Fuente M, Seijo B, Alonso M. Bioadhesive hyaluronan–chitosan nanoparticles can transport genes across the ocular mucosa and transfect ocular tissue. Gene ther. 2008;15:668–76.

    Article  PubMed  CAS  Google Scholar 

  244. Peng C-C, Chauhan A. Extended cyclosporine delivery by silicone–hydrogel contact lenses. J Control Release. 2011;154:267–74.

    Article  CAS  PubMed  Google Scholar 

  245. Wang MX, Adams CP. Biochemical contact lens for treating injured corneal tissue, Google Patents. 2000.

    Google Scholar 

  246. Swaminathan S, Vavia PR, Trotta F, Cavalli R. Nanosponges encapsulating dexamethasone for ocular delivery: formulation design, physicochemical characterization, safety and corneal permeability assessment. J Biomed Nanotechnol. 2013;9:998–1007.

    Article  CAS  PubMed  Google Scholar 

  247. Lee Y-H, Chang S-F, Liaw J. Anti-apoptotic gene delivery with cyclo-(d-Trp-Tyr) peptide nanotube via eye drop following corneal epithelial debridement. Pharmaceutics. 2015;7:122–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Vega-Estrada A, Silvestre-Albero J, Rodriguez AE, Rodriguez-Reinoso F, Gomez-Tejedor JA, Antolinos-Turpin CM, Bataille L, Alio JL. Biocompatibility and biomechanical effect of single wall carbon nanotubes implanted in the corneal stroma: a proof of concept investigation. J Ophthalmol. 2016;2016:4041767.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  249. Müller R, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47:3–19.

    Article  PubMed  Google Scholar 

  250. Smolin G, Okumoto M, Feiler S, Condon D. Idoxuridine-liposome therapy for herpes simplex keratitis. Am J Ophthalmol. 1981;91:220–5.

    Article  CAS  PubMed  Google Scholar 

  251. Sun Y, Fox T, Adhikary G, Kester M, Pearlman E. Inhibition of corneal inflammation by liposomal delivery of short-chain, C-6 ceramide. J Leukocyte Biol. 2008;83:1512–21.

    Article  CAS  PubMed  Google Scholar 

  252. Calabretta MK, Kumar A, McDermott AM, Cai C. Antibacterial activities of poly (amidoamine) dendrimers terminated with amino and poly (ethylene glycol) groups. Biomacromolecules. 2007;8:1807–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Khandare J, Kolhe P, Pillai O, Kannan S, Lieh-Lai M, Kannan RM. Synthesis, cellular transport, and activity of polyamidoamine dendrimer− methylprednisolone conjugates. Bioconjug Chem. 2005;16:330–7.

    Article  CAS  PubMed  Google Scholar 

  254. Tong Y-C, Chang S-F, Kao WW-Y, Liu C-Y, Liaw J. Polymeric micelle gene delivery of bcl-x L via eye drop reduced corneal apoptosis following epithelial debridement. J Control Release. 2010;147:76–83.

    Article  CAS  PubMed  Google Scholar 

  255. Vaishya RD, Khurana V, Patel S, Mitra AK. Controlled ocular drug delivery with nanomicelles. Wiley Interdiscip Rev: Nanomed Nanobiotechnol. 2014;6:422–37.

    CAS  Google Scholar 

  256. De Campos AM, Sánchez A, Gref R, Calvo P, Alonso J. The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. Eur J Pharm Sci. 2003;20:73–81.

    Article  PubMed  CAS  Google Scholar 

  257. Calvo P, Vila-Jato JL, Alonso MJ. Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules, and nanoemulsions, as ocular drug carriers. J Pharm Sci. 1996;85:530–6.

    Article  CAS  PubMed  Google Scholar 

  258. Saw S-M, Katz J, Schein OD, Chew S-J, Chan T-K. Epidemiology of myopia. Epidemiol Rev. 1996;18:175–87.

    Article  CAS  PubMed  Google Scholar 

  259. Cheung CMG, Arnold JJ, Holz FG, Park KH, Lai TY, Larsen M, Mitchell P, Ohno-Matsui K, Chen S-J, Wolf S. Myopic Choroidal Neovascularization: Review, Guidance, and Consensus Statement on Management. Ophthalmology. 2017;124:1690–711.

    Article  PubMed  Google Scholar 

  260. Moriyama M, Ohno-Matsui K, Futagami S, Yoshida T, Hayashi K, Shimada N, Kojima A, Tokoro T, Mochizuki M. Morphology and long-term changes of choroidal vascular structure in highly myopic eyes with and without posterior staphyloma. Ophthalmology. 2007;114:1755–62. e1.

    Article  PubMed  Google Scholar 

  261. Neelam K, Cheung CMG, Ohno-Matsui K, Lai TY, Wong TY. Choroidal neovascularization in pathological myopia. Prog Retin Eye Res. 2012;31:495–525.

    Article  CAS  PubMed  Google Scholar 

  262. Zheng Y-F, Pan C-W, Chay J, Wong TY, Finkelstein E, Saw S-M. The economic cost of myopia in adults aged over 40 years in Singapore cost of myopia in Singapore. Invest Ophthalmol Vis Sci. 2013;54:7532–7.

    Article  PubMed  Google Scholar 

  263. Hotchkiss ML, Fine LS. Pathologic myopia and choroidal neovascularization. Am J Ophthalmol. 1981;91:177–83.

    Article  CAS  PubMed  Google Scholar 

  264. Yoshida T, Ohno-Matsui K, Ohtake Y, Takashima T, Futagami S, Baba T, Yasuzumi K, Tokoro T, Mochizuki M. Long-term visual prognosis of choroidal neovascularization in high myopia: a comparison between age groups1 1The authors have no financial interest in any products/drugs discussed in this article. Ophthalmology. 2002;109:712–9.

    Article  PubMed  Google Scholar 

  265. Ikuno Y, Sayanagi K, Soga K, Sawa M, Gomi F, Tsujikawa M, Tano Y. Lacquer crack formation and choroidal neovascularization in pathologic myopia. Retina. 2008;28:1124–31.

    Article  PubMed  Google Scholar 

  266. Ohno-Matsui K, Yoshida T, Futagami S, Yasuzumi K, Shimada N, Kojima A, Tokoro T, Mochizuki M. Patchy atrophy and lacquer cracks predispose to the development of choroidal neovascularisation in pathological myopia. Br J Ophthalmol. 2003;87:570–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Silva R. Myopic maculopathy: a review. Ophthalmologica. 2012;228:197–213.

    Article  PubMed  Google Scholar 

  268. Curtin BJ, Karlin DB. Axial length measurements and fundus changes of the myopic eye. Am J Ophthalmol. 1971;71:42–53.

    Article  CAS  PubMed  Google Scholar 

  269. Ikuno Y, Jo Y, Hamasaki T, Tano Y. Ocular risk factors for choroidal neovascularization in pathologic myopia. Invest Ophthalmol Vis Sci. 2010;51:3721–5.

    Article  PubMed  Google Scholar 

  270. Seko Y, Seko Y, Fujikura H, Pang J, Tokoro T, Shimokawa H. Induction of vascular endothelial growth factor after application of mechanical stress to retinal pigment epithelium of the rat in vitro. Invest Ophthalmol Vis Sci. 1999;40:3287–91.

    CAS  PubMed  Google Scholar 

  271. Shiose S, Hata Y, Noda Y, Sassa Y, Takeda A, Yoshikawa H, Fujisawa K, Kubota T, Ishibashi T. Fibrinogen stimulates in vitro angiogenesis by choroidal endothelial cells via autocrine VEGF. Graefe’s Arch Clin Exp Ophthalmol. 2004;242:777–83.

    Article  CAS  Google Scholar 

  272. Barteselli G, Lee SN, El-Emam S, Hou H, Ma F, Chhablani J, Conner L, Cheng L, Bartsch D-U, Freeman WR. Macular choroidal volume variations in highly myopic eyes with myopic traction maculopathy and choroidal neovascularization. Retina. 2014;34:880–9.

    Article  PubMed  Google Scholar 

  273. Byeon SH, Kwon OW, Lee SC, Kim SS, Koh HJ. Indocyanine green angiographic features of myopic subfoveal choroidal neovascularization as a prognostic factor after photodynamic therapy. Kor J Ophthalmol. 2006;20:18–25.

    Article  Google Scholar 

  274. Kang HM, Koh HJ. Ocular risk factors for recurrence of myopic choroidal neovascularization: long-term follow-up study. Retina. 2013;33:1613–22.

    Article  PubMed  Google Scholar 

  275. Leveziel N, Yu Y, Reynolds R, Tai A, Meng W, Caillaux V, Calvas P, Rosner B, Malecaze F, Souied EH. Genetic factors for choroidal neovascularization associated with high myopia genetic factors related to myopic CNV. Invest Ophthalmol Vis Sci. 2012;53:5004–9.

    Article  PubMed  PubMed Central  Google Scholar 

  276. Miyake M, Yamashiro K, Akagi-Kurashige Y, Kumagai K, Nakata I, Nakanishi H, Oishi A, Tsujikawa A, Yamada R, Matsuda F. Vascular endothelial growth factor gene and the response to anti-vascular endothelial growth factor treatment for choroidal neovascularization in high myopia. Ophthalmology. 2014;121:225–33.

    Article  PubMed  Google Scholar 

  277. Long Q, Ye J, Li Y, Wang S, Jiang Y. C-reactive protein and complement components in patients with pathological myopia. Optom Vis Sci. 2013;90:501–6.

    Article  PubMed  Google Scholar 

  278. Tong J-P, Chan W-M, Liu DT, Lai TY, Choy K-W, Pang C-P, Lam DS. Aqueous humor levels of vascular endothelial growth factor and pigment epithelium–derived factor in polypoidal choroidal vasculopathy and choroidal neovascularization. Am J Ophthalmol. 2006;141:456–62.

    Article  CAS  PubMed  Google Scholar 

  279. Yamamoto Y, Miyazaki D, Sasaki S-i, Miyake K-i, Kaneda S, Ikeda Y, Baba T, Yamasaki A, Noguchi Y, Inoue Y. Associations of inflammatory cytokines with choroidal neovascularization in highly myopic eyes. Retina. 2015;35:344–50.

    Article  CAS  PubMed  Google Scholar 

  280. Parodi MB, Iacono P, Papayannis A, Sheth S, Bandello F. Laser photocoagulation, photodynamic therapy, and intravitreal bevacizumab for the treatment of juxtafoveal choroidal neovascularization secondary to pathologic myopia. Arch Ophthalmol. 2010;128:437–42.

    Article  CAS  PubMed  Google Scholar 

  281. Virgili G, Menchini F. Laser photocoagulation for choroidal neovascularisation in pathologic myopia. Cochrane Lib. 2005;19:CD004765.

    Google Scholar 

  282. Adelberg DA, Del Priore LV, Kaplan HJ. Surgery for subfoveal membranes in myopia, angioid streaks, and other disorders. Retina. 1995;15:198–205.

    Article  CAS  PubMed  Google Scholar 

  283. Hamelin N, Glacet-Bernard A, Brindeau C, Mimoun G, Coscas G, Soubrane G. Surgical treatment of subfoveal neovascularization in myopia: macular translocation vs surgical remova. Am J Ophthalmol. 2002;133:530–6.

    Article  PubMed  Google Scholar 

  284. Fujikado T, Ohji M, Kusaka S, Hayashi A, Kamei M, Okada AA, Oda K, Tano Y. Visual function after foveal translocation with 360-degree retinotomy and simultaneous torsional muscle surgery in patients with myopic neovascular maculopathy. Am J Ophthalmol. 2001;131:101–10.

    Article  CAS  PubMed  Google Scholar 

  285. Sakimoto S, Sakaguchi H, Ohji M, Gomi F, Ikuno Y, Fujikado T, Kamei M, Nishida K. Consecutive case series with long-term follow-up of full macular translocation for myopic choroidal neovascularisation. Br J Ophthalmol. 2014;98:1221–5. bjophthalmol-2013-304189.

    Article  PubMed  Google Scholar 

  286. Yamada Y, Miyamura N, Suzuma K, Kitaoka T. Long-term follow-up of full macular translocation for choroidal neovascularization. Am J Ophthalmol. 2010;149:453–7. e1.

    Article  PubMed  Google Scholar 

  287. El Matri L, Chebil A, Kort F. Current and emerging treatment options for myopic choroidal neovascularization. Clin Ophthalmol (Auckland, NZ). 2015;9:733.

    Article  CAS  Google Scholar 

  288. Blinder KJ, Blumenkranz MS, Bressler NM, Bressler SB, Donato G, Lewis H, Lim JI, Menchini U, Miller JW, Mones JM. Verteporfin therapy of subfoveal choroidal neovascularization in pathologic myopia: 2-year results of a randomized clinical trial--VIP report no 3. Ophthalmology. 2003;110:667–73.

    Article  PubMed  Google Scholar 

  289. Chew M, Tan C. Treatment options for myopic CNV-Is photodynamic therapy still relevant. Indian J Ophthalmol. 2014;62:834.

    Article  PubMed  PubMed Central  Google Scholar 

  290. Group ViPTS. Photodynamic therapy of subfoveal choroidal neovascularization in pathologic myopia with verteporfin. 1-year results of a randomized clinical trial–VIP report no. 1. Ophthalmology. 2001;108:841.

    Article  Google Scholar 

  291. Pece A, Isola V, Vadalà M, Matranga D. Photodynamic therapy with verteporfin for subfoveal choroidal neovascularization secondary to pathologic myopia: long-term study. Retina. 2006;26:746–51.

    Article  PubMed  Google Scholar 

  292. Ruiz-Moreno J, Amat P, Montero J, Lugo F. Photodynamic therapy to treat choroidal neovascularisation in highly myopic patients: 4 years’ outcome. Br J Ophthalmol. 2008;92:792–4.

    Article  CAS  PubMed  Google Scholar 

  293. Sakaguchi H, Ikuno Y, Gomi F, Kamei M, Sawa M, Tsujikawa M, Oshima Y, Kusaka S, Tano Y. Intravitreal injection of bevacizumab for choroidal neovascularisation associated with pathological myopia. Br J Ophthalmol. 2007;91:161–5.

    Article  CAS  PubMed  Google Scholar 

  294. Yamamoto I, Rogers AH, Reichel E, Yates PA, Duker JS. Intravitreal bevacizumab (Avastin) as treatment for subfoveal choroidal neovascularisation secondary to pathological myopia. Br J Ophthalmol. 2007;91:157–60.

    Article  PubMed  Google Scholar 

  295. Silva RM, Ruiz-Moreno JM, Nascimento J, Carneiro Ã, Rosa P, Barbosa A, Carvalheira F, Abreu JRF, Cunha-vaz JG. Short-term efficacy and safety of intravitreal ranibizumab for myopic choroidal neovascularization. Retina. 2008;28:1117–23.

    Article  PubMed  Google Scholar 

  296. Abd A, Kanwar R, Kanwar J. Aged macular degeneration: current therapeutics for management and promising new drug candidates. Drug Discov Today. 2017;22:1671–9. https://doi.org/10.1016/j.drudis.2017.07.010.

    Article  CAS  PubMed  Google Scholar 

  297. Wong TY, Ohno-Matsui K, Leveziel N, Holz FG, Lai TY, Yu HG, Lanzetta P, Chen Y, Tufail A. Myopic choroidal neovascularisation: current concepts and update on clinical management. Br J Ophthalmol. 2015;99:289–96.

    Article  PubMed  Google Scholar 

  298. Tang R, Tan J, Deng Z, Sz Z, Yb M, Zhang W. Insulin-like growth factor-2 antisense oligonucleotides inhibits myopia by expression blocking of retinal insulin-like growth factor-2 in guinea pig. Clin Exp Ophthalmol. 2012;40:503–11.

    Article  PubMed  Google Scholar 

  299. Hirani A, Grover A, Lee YW, Pathak Y, Sutariya V. Triamcinolone acetonide nanoparticles incorporated in thermoreversible gels for age-related macular degeneration. Pharm Dev Technol. 2016;21:61–7.

    Article  CAS  PubMed  Google Scholar 

  300. Xu X, Weng Y, Xu L, Chen H. Sustained release of Avastin® from polysaccharides cross-linked hydrogels for ocular drug delivery. Int J Biol Macromol. 2013;60:272–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Health and Medical Research Council (NHMRC; APP1050286) and Australia-India Strategic Research Fund (AISRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagat Rakesh Kanwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A., Abd, A.J., Al-Mashahedah, A., Kanwar, J.R. (2018). Corneal Haze, Refractive Surgery, and Implications for Choroidal Neovascularization. In: Patel, J., Sutariya, V., Kanwar, J., Pathak, Y. (eds) Drug Delivery for the Retina and Posterior Segment Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-95807-1_25

Download citation

Publish with us

Policies and ethics