Skip to main content

Approximate Partial Order Reduction

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10951))

Abstract

We present a new partial order reduction method for reachability analysis of nondeterministic labeled transition systems over metric spaces. Nondeterminism arises from both the choice of the initial state and the choice of actions, and the number of executions to be explored grows exponentially with their length. We introduce a notion of \(\varepsilon \)-independence relation over actions that relates approximately commutative actions; \(\varepsilon \)-equivalent action sequences are obtained by swapping \(\varepsilon \)-independent consecutive action pairs. Our reachability algorithm generalizes individual executions to cover sets of executions that start from different, but \(\delta \)-close initial states, and follow different, but \(\varepsilon \)-independent, action sequences. The constructed over-approximations can be made arbitrarily precise by reducing the \(\delta ,\varepsilon \) parameters. Exploiting both the continuity of actions and their approximate independence, the algorithm can yield an exponential reduction in the number of executions explored. We illustrate this with experiments on consensus, platooning, and distributed control examples.

This work is supported by the grants CAREER 1054247 and CCF 1422798 from the National Science Foundation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abdulla, P., Aronis, S., Jonsson, B., Sagonas, K.: Optimal dynamic partial order reduction. In: ACM SIGPLAN Notices, vol. 49, pp. 373–384. ACM (2014)

    Google Scholar 

  2. Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-order reduction in symbolic state space exploration. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 340–351. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6_34

    Chapter  Google Scholar 

  3. Baier, C., Größer, M., Ciesinski, F.: Partial order reduction for probabilistic systems. QEST 4, 230–239 (2004)

    Google Scholar 

  4. Baier, C., Katoen, J.P., Larsen, K.G.: Principles of Model Checking. MIT press, Cambridge (2008)

    MATH  Google Scholar 

  5. Blondel, V., Hendrickx, J.M., Olshevsky, A., Tsitsiklis, J., et al.: Convergence in multiagent coordination, consensus, and flocking. In: IEEE Conference on Decision and Control, vol. 44, p. 2996. IEEE; 1998 (2005)

    Google Scholar 

  6. Cassez, F., Ziegler, F.: Verification of concurrent programs using trace abstraction refinement. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 233–248. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-7_17

    Chapter  Google Scholar 

  7. Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity and robustness of programs. Commun. ACM 55(8), 107–115 (2012)

    Article  Google Scholar 

  8. Clarke, E., Jha, S., Marrero, W.: Partial order reductions for security protocol verification. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 503–518. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46419-0_34

    Chapter  MATH  Google Scholar 

  9. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using partial order techniques. Int. J. Softw. Tools Technol. Transfer 2(3), 279–287 (1999)

    Article  Google Scholar 

  10. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT press, Cambridge (1999)

    Google Scholar 

  11. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: Computer Aided Verification (CAV) (2010)

    Chapter  Google Scholar 

  12. Donzé, A., Maler, O.: Systematic simulation using sensitivity analysis. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 174–189. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71493-4_16

    Chapter  Google Scholar 

  13. Duggirala, P.S., Mitra, S., Viswanathan, M.: Verification of annotated models from executions. In: EMSOFT (2013)

    Google Scholar 

  14. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 68–82. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_5

    Chapter  Google Scholar 

  15. Fan, C., Huang, Z., Mitra, S.: Approximate partial order reduction (full version), May 2018. https://arxiv.org/abs/1610.06317

  16. Fan, C., Mitra, S.: Bounded verification with on-the-fly discrepancy computation. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 446–463. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24953-7_32

    Chapter  MATH  Google Scholar 

  17. Fang, L., Antsaklis, P.J.: Information consensus of asynchronous discrete-time multi-agent systems. In: Proceedings of the 2005, American Control Conference, pp. 1883–1888. IEEE (2005)

    Google Scholar 

  18. Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2_22

    Chapter  MATH  Google Scholar 

  19. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking software. In: ACM Sigplan Notices, vol. 40, pp. 110–121. ACM (2005)

    Article  Google Scholar 

  20. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Systems: An Approach to the State-Explosion Problem. LNCS, vol. 1032. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60761-7

    Book  MATH  Google Scholar 

  21. Huang, Z., Fan, C., Mereacre, A., Mitra, S., Kwiatkowska, M.: Simulation-based verification of cardiac pacemakers with guaranteed coverage. IEEE Des. Test 32(5), 27–34 (2015)

    Article  Google Scholar 

  22. Huang, Z., Mitra, S.: Proofs from simulations and modular annotations. In: Proceedings of the 17th International Conference on Hybrid systems: Computation and Control, pp. 183–192. ACM (2014)

    Google Scholar 

  23. Kurshan, R., Levin, V., Minea, M., Peled, D., Yenigün, H.: Static partial order reduction. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 345–357. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054182

    Chapter  Google Scholar 

  24. Majumdar, R., Saha, I.: Symbolic robustness analysis. In: 30th IEEE Real-Time Systems Symposium, RTSS 2009, pp. 355–363. IEEE (2009)

    Google Scholar 

  25. Mitra, D.: An asynchronous distributed algorithm for power control in cellular radio systems. In: Holtzman, J.M., Goodman, D.J. (eds.) Wireless and Mobile Communications, pp. 177–186. Springer, Boston (1994)

    Chapter  Google Scholar 

  26. Mitra, S., Chandy, K.M.: A formalized theory for verifying stability and convergence of automata in PVS. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 230–245. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-7_20

    Chapter  MATH  Google Scholar 

  27. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

    Article  Google Scholar 

  28. Peled, D.: Ten years of partial order reduction. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 17–28. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028727

    Chapter  Google Scholar 

  29. Rhee, I.K., Lee, J., Kim, J., Serpedin, E., Wu, Y.C.: Clock synchronization in wireless sensor networks: an overview. Sensors 9(1), 56–85 (2009)

    Article  Google Scholar 

  30. Samanta, R., Deshmukh, J.V., Chaudhuri, S.: Robustness analysis of networked systems. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 229–247. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-9_15

    Chapter  Google Scholar 

  31. Welch, J.L., Lynch, N.: A new fault-tolerant algorithm for clock synchronization. Inf. Comput. 77(1), 1–36 (1988)

    Article  MathSciNet  Google Scholar 

  32. Yang, Y., Chen, X., Gopalakrishnan, G., Kirby, R.M.: Efficient stateful dynamic partial order reduction. In: Havelund, K., Majumdar, R., Palsberg, J. (eds.) SPIN 2008. LNCS, vol. 5156, pp. 288–305. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85114-1_20

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuchu Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, C., Huang, Z., Mitra, S. (2018). Approximate Partial Order Reduction. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds) Formal Methods. FM 2018. Lecture Notes in Computer Science(), vol 10951. Springer, Cham. https://doi.org/10.1007/978-3-319-95582-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95582-7_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95581-0

  • Online ISBN: 978-3-319-95582-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics