Skip to main content

Cosmology

  • Chapter
  • First Online:
Book cover Lecture Notes in Cosmology

Part of the book series: UNITEXT for Physics ((UNITEXTPH))

Abstract

In this Chapter we present an overview of cosmology, addressing its most important aspects and presenting some observational experiments and open problems.

And that inverted Bowl we call the Sky,

Whereunder crawling coop’t we live and die,

Lift not thy hands to It for help—for It,

Rolls impotently on as Thou or I

Omar Khayyám, Rubáiyát

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We shall not address BAO extensively in these notes, but only mention them in Chap. 10. Together with weak lensing, BAO are another powerful observable upon which present and future missions are planned.

  2. 2.

    The events detected by the LIGO-Virgo collaboration originated from merging of black holes or neutron stars. Thus are not part of the primordial GW background.

References

  • Abbott, T.M.C., et al.: Dark energy survey year 1 results: cosmological constraints from galaxy clustering and weak lensing (2017d)

    Google Scholar 

  • Abbott, B.P., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016b)

    Article  ADS  MathSciNet  Google Scholar 

  • Abbott, B.P., et al.: GW151226: observation of gravitational waves from a 22-Solar-Mass binary black hole coalescence. Phys. Rev. Lett. 116(24), 241103 (2016a)

    Article  ADS  Google Scholar 

  • Abbott, B.P., et al.: A gravitational-wave standard siren measurement of the Hubble constant. Nature 551(7678), 85–88 (2017b)

    ADS  Google Scholar 

  • Adam, R., et al.: Planck 2015 results. I. overview of products and scientific results. Astron. Astrophys. 594, A1 (2016)

    Google Scholar 

  • Ade, P.A.R., et al.: Planck 2015 results. XIII. Cosmol. Parametr. Astron. Astrophys. 594, A13 (2016a)

    Article  Google Scholar 

  • Alpher, R.A., Bethe, H., Gamow, G.: The origin of chemical elements. Phys. Rev. 73, 803–804 (1948)

    Article  ADS  Google Scholar 

  • Amendola, L., Tsujikawa, S.: Dark Energy: Theory and Observations. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  • Battye, R.A., Charnock, T., Moss, A.: Tension between the power spectrum of density perturbations measured on large and small scales. Phys. Rev. D 91(10), 103508 (2015)

    Article  ADS  Google Scholar 

  • Bertone, G., Hooper, D.: A History of Dark Matter (2016)

    Google Scholar 

  • Bonvin, V., et al.: H0LiCOW V. New COSMOGRAIL time delays of HE 04351223: \(H_0\) to 3.8 per cent precision from strong lensing in a flat CDM model. Mon. Not. R. Astron. Soc. 465(4), 4914–4930 (2017)

    Article  ADS  Google Scholar 

  • Bouchet, F.R., et al.: COrE (Cosmic Origins Explorer) A White Paper (2011)

    Google Scholar 

  • Boylan-Kolchin, M., Bullock, J.S., Kaplinghat, M.: Too big to fail? the puzzling darkness of massive Milky way subhaloes. Mon. Not. R. Astron. Soc. 415, L40 (2011)

    Article  ADS  Google Scholar 

  • Bullock, J.S., Boylan-Kolchin, M.: Small-scale challenges to the \(\Lambda \)CDM paradigm. Ann. Rev. Astron. Astrophys. 55, 343–387 (2017)

    Article  ADS  Google Scholar 

  • Clowe, D., Bradac, M., Gonzalez, A.H., Markevitch, M., Randall, S.W., Jones, C., Zaritsky, D.: A direct empirical proof of the existence of dark matter. Astrophys. J. 648, L109–L113 (2006)

    Article  ADS  Google Scholar 

  • Coc, A.: Primordial nucleosynthesis. J. Phys. Conf. Ser. 665(1), 012001 (2016)

    Article  Google Scholar 

  • de Bernardis, P., et al.: A flat universe from high resolution maps of the cosmic microwave background radiation. Nature 404, 955–959 (2000)

    Article  ADS  Google Scholar 

  • Dodelson, S.: Gravitational Lensing. Cambridge University Press, UK (2017)

    Book  Google Scholar 

  • Dodelson, S., Widrow, L.M.: Sterile-neutrinos as dark matter. Phys. Rev. Lett. 72, 17–20 (1994)

    Article  ADS  Google Scholar 

  • Gaskins, J.M.: A review of indirect searches for particle dark matter. Contemp. Phys. 57(4), 496–525 (2016)

    Article  ADS  Google Scholar 

  • Grieb, J.N., et al.: The clustering of galaxies in the completed SDSS-III Baryon oscillation spectroscopic survey: cosmological implications of the fourier space wedges of the final sample. Mon. Not. R. Astron. Soc. 467(2), 2085–2112 (2017)

    ADS  Google Scholar 

  • Hubble, E.: A relation between distance and radial velocity among extra-galactic nebulae. Proc. Nat. Acad. Sci. 15, 168–173 (1929)

    Article  ADS  Google Scholar 

  • Kirby, E.N., Bullock, J.S., Boylan-Kolchin, M., Kaplinghat, M., Cohen, J.G.: The dynamics of isolated local group galaxies. Mon. Not. R. Astron. Soc. 439(1), 1015–1027 (2014)

    Article  ADS  Google Scholar 

  • Klypin, A.A., Kravtsov, A.V., Valenzuela, O., Prada, F.: Where are the missing Galactic satellites? Astrophys. J. 522, 82–92 (1999)

    Article  ADS  Google Scholar 

  • Kollmeier, J.A., Zasowski, G., Rix, H.-W., Johns, M., Anderson, S.F., Drory, N., Johnson, J.A., Pogge, R.W., Bird, J.C., Blanc, G.A., Brownstein, J.R., Crane, J.D., De Lee, N.M., Klaene, M.A., Kreckel, K., MacDonald, N., Merloni, A., Ness, M.K., O’Brien, T., Sanchez-Gallego, J.R., Sayres, C.C., Shen, Y., Thakar, A.R., Tkachenko, A., Aerts, C., Blanton, M.R., Eisenstein, D.J., Holtzman, J.A., Maoz, D., Nandra, K., Rockosi, C., Weinberg, D.H., Bovy, J., Casey, A.R., Chaname, J., Clerc, N., Conroy, C., Eracleous, M., Gänsicke, B.T., Hekker, S., Horne, K., Kauffmann, J., McQuinn, K.B.W., Pellegrini, E.W., Schinnerer, E., Schlafly, E.F., Schwope, A.D., Seibert, M., Teske, J.K., van Saders, J.L.: SDSS-V: Pioneering Panoptic Spectroscopy (2017). ArXiv e-prints

    Google Scholar 

  • Lemaître, G.: A homogeneous universe of constant mass and growing radius accounting for the radial velocity of extragalactic nebulae. Ann. Soc. Sci. Brux. Ser. I Sci. Math. Astron. Phys. A47, 49–59 (1927)

    Google Scholar 

  • Liu, J., Chen, X., Ji, X.: Current status of direct dark matter detection experiments. Nature Phys. 13(3), 212–216 (2017)

    Article  ADS  Google Scholar 

  • Lovell, M.R., Eke, V., Frenk, C.S., Gao, L., Jenkins, A., Theuns, T., Wang, J., White, D.M., Boyarsky, A., Ruchayskiy, O.: The haloes of bright satellite galaxies in a warm dark matter universe. Mon. Not. R. Astron. Soc. 420, 2318–2324 (2012)

    Article  ADS  Google Scholar 

  • Macciò, A.V., Paduroiu, S., Anderhalden, D., Schneider, A., Moore, B.: Cores in warm dark matter haloes: a Catch 22 problem. Mon. Not. R. Astron. Soc. 424, 1105–1112 (2012)

    Article  ADS  Google Scholar 

  • Macciò, A.V., Mainini, R., Penzo, C., Bonometto, S.A.: Strongly coupled dark energy cosmologies: preserving LCDM success and easing low scale problems II - cosmological simulations. Mon. Not. R. Astron. Soc. 453, 1371–1378 (2015)

    Article  ADS  Google Scholar 

  • Marra, V., Amendola, L., Sawicki, I., Valkenburg, W.: Cosmic variance and the measurement of the local Hubble parameter. Phys. Rev. Lett. 110(24), 241305 (2013)

    Article  ADS  Google Scholar 

  • Martin, J.: Everything you always wanted to know about the cosmological constant problem (But were afraid to ask). Comptes Rendus Physique 13, 566–665 (2012)

    Article  ADS  Google Scholar 

  • Moore, B.: Evidence against dissipationless dark matter from observations of galaxy haloes. Nature 370, 629 (1994)

    Article  ADS  Google Scholar 

  • Olbers, W.: Edinburgh New philso. J 1, 141 (1826)

    Google Scholar 

  • Peccei, R.D., Quinn, H.R.: CP conservation in the presence of instantons. Phys. Rev. Lett. 38, 1440–1443 (1977)

    Article  ADS  Google Scholar 

  • Penzias, A.A., Wilson, R.W.: A measurement of excess antenna temperature at 4080- Mc/s. Astrophys. J. 142, 419–421 (1965)

    Article  ADS  Google Scholar 

  • Perlmutter, S., et al.: Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999)

    Article  ADS  Google Scholar 

  • Profumo, S.: An Introduction to Particle Dark Matter. Advanced textbooks in physics, World Scientific (2017)

    Book  Google Scholar 

  • Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998)

    Article  ADS  Google Scholar 

  • Sandage, A.: Current problems in the extragalactic distance scale. ApJ 127, 513 (1958)

    Article  ADS  Google Scholar 

  • Schneider, A., Anderhalden, D., Macciò, A., Diemand, J.: Warm dark matter does not do better than cold dark matter in solving small-scale inconsistencies. Mon. Not. R. Astron. Soc. 441, 6 (2014)

    Article  ADS  Google Scholar 

  • Schwarz, D.J., Copi, C.J., Huterer, D., Starkman, G.D.: CMB anomalies after planck. Class. Quantum Gravity 33(18), 184001 (2016)

    Article  ADS  Google Scholar 

  • Sciama, D.W.: The Unity of the Universe. Courier Corporation (2012)

    Google Scholar 

  • Silk, J., et al.: Particle Dark Matter: Observations. Models and searches. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  • Slipher, V.M.: Nebulae. Proc. Am. Philso. Soc. 56, 403–409 (1917)

    ADS  Google Scholar 

  • Smoot, G.F., et al.: Structure in the COBE differential microwave radiometer first year maps. Astrophys. J. 396, L1–L5 (1992)

    Article  ADS  Google Scholar 

  • Sofue, Y., Rubin, V.: Rotation curves of spiral galaxies. Ann. Rev. Astron. Astrophys. 39, 137–174 (2001)

    Article  ADS  Google Scholar 

  • Sofue, Y., Tutui, Y., Honma, M., Tomita, A., Takamiya, T., Koda, J., Takeda, Y.: Central rotation curves of spiral galaxies. Astrophys. J. 523, 136 (1999)

    Article  ADS  Google Scholar 

  • Spergel, D.N., Steinhardt, P.J.: Observational evidence for selfinteracting cold dark matter. Phys. Rev. Lett. 84, 3760–3763 (2000)

    Article  ADS  Google Scholar 

  • Valkenburg, W., Marra, V., Clarkson, C.: Testing the copernican principle by constraining spatial homogeneity. Mon. Not. R. Astron. Soc. 438, L6–L10 (2014)

    Article  ADS  Google Scholar 

  • van den Bergh, S.: The curious case of Lemaître’s equation No. 24. JRASC 105, 151 (2011)

    Google Scholar 

  • Velten, H.E.S., vom Marttens, R.F., Zimdahl, W.: Aspects of the cosmological coincidence problem. Eur. Phys. J. C 74(11), 3160 (2014)

    Google Scholar 

  • Verde, L., Protopapas, P., Jimenez, R.: Planck and the local universe: quantifying the tension. Phys. Dark Univ. 2, 166–175 (2013)

    Article  Google Scholar 

  • Viel, M., Becker, G.D., Bolton, J.S., Haehnelt, M.G.: Warm dark matter as a solution to the small scale crisis: new constraints from high redshift Lyman-forest data. Phys. Rev. D 88, 043502 (2013)

    Article  ADS  Google Scholar 

  • Vogelsberger, M., Zavala, J., Simpson, C., Jenkins, A.: Dwarf galaxies in CDM and SIDM with baryons: observational probes of the nature of dark matter. Mon. Not. R. Astron. Soc. 444, 3684 (2014)

    Article  ADS  Google Scholar 

  • Warren, M.S., Abazajian, K., Holz, D.E., Teodoro, L.: Precision determination of the mass function of dark matter halos. Astrophys. J. 646, 881–885 (2006)

    Article  ADS  Google Scholar 

  • Way, M.J., Nussbaumer, H.: Lemaître’s Hubble relationship. Phys. Today 64N8, 8 (2011)

    Article  Google Scholar 

  • Weinberg, S.: Dreams of a Final Theory: The Search for the Fundamental Laws of Nature (1992)

    Google Scholar 

  • Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)

    Google Scholar 

  • Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  • Weinberg, S.: Cosmology. Oxford University Press, UK (2008)

    MATH  Google Scholar 

  • Williams, R.E., Blacker, B., Dickinson, M., Dixon, W.V.D., Ferguson, H.C., Fruchter, A.S., Giavalisco, M., Gilliland, R.L., Heyer, I., Katsanis, R., Levay, Z., Lucas, R.A., McElroy, D.B., Petro, L., Postman, M., Adorf, H.-M., Hook, R.: The hubble deep field: observations, data reduction, and galaxy photometry. AJ 112, 1335 (1996)

    Article  ADS  Google Scholar 

  • Zlatev, I., Wang, L.-M., Steinhardt, P.J.: Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 82, 896–899 (1999)

    Article  ADS  Google Scholar 

  • Zwicky, F.: Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta 6, 110–127 (1933)

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Piattella .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piattella, O. (2018). Cosmology. In: Lecture Notes in Cosmology. UNITEXT for Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-95570-4_1

Download citation

Publish with us

Policies and ethics