Skip to main content

Sustainable Production of Biofuels from Weedy Biomass and Other Unconventional Lignocellulose Wastes

  • Chapter
  • First Online:
Book cover Sustainable Biotechnology- Enzymatic Resources of Renewable Energy

Abstract

The energy demand for different sectors is gradually escalating due to increase in population, urbanization and industrialization. Simultaneously, there is immense progression in the area of second generation biofuel for transportation sector. Inventors of automotive engines had envisioned farm-grown energy sources to play an important role in supplying fuel to run these vehicles. Maize, sugarcane and sugar beets are the main traditional substrates used for biofuel production. In Indian prospective, it is imperative to search for non-food feedstocks for long-term sustainability and economic viability of Indian bioethanol market. Hence, cellulosic materials such as unconventional agro-residues, fibrous crops and weedy biomass are attractive feedstock for bio-ethanol production. The excessive growth rate and wider adaptability of the weed biomass without any fertilizer input makes them a potential renewable source for ethanol production. The bioenergy production from these renewable resources can provide a higher degree of national energy security in an environment friendly, cost-effective and sustainable manner. However the data about biomass production, its availability and supply chain management options including transportations is still lacking. Moreover many potential weedy biomasses are mostly growing on community or degraded lands which make it difficult to collect the biomass for any commercial purposes. This chapter highlights the overview of unconventional fibres crops and weedy biomass as renewable resources for biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adak A, Tiwari R, Singh S, Sharma S, Nain L (2016) Laccase production by a novel white-rot fungus Pseudolagarobasidium acaciicola LA 1 through solid-state fermentation of parthenium biomass and its application in dyes decolorization. Waste Biomass Valor 7:1427–1435

    Article  CAS  Google Scholar 

  • Adkins S, Shabbir A (2014) Biology, ecology and management of the invasive parthenium weed (Parthenium hysterophorus L.). Pest Manage Sci 70:1023–1029

    Article  CAS  Google Scholar 

  • Al-Hamamre Z, Saidan M, Hararah M, Rawajfeh K, Alkhasawneh HE et al (2017) Wastes and biomass materials as sustainable-renewable energy resources for Jordan. Renew Sustain Energy Rev 67:295–314

    Article  CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  PubMed  CAS  Google Scholar 

  • Annual Report (2015–16) Sunn hemp Research Station, Pratapgarh and Directorate of Jute Development, Kolkata

    Google Scholar 

  • Anonymous (2016) directorate of economics and statistics, Ministry of Agriculture and Farmers Welfare (2015–16)

    Google Scholar 

  • Aradhey A (2016) Global agricultural information network (GAIN) report -India Biofuels Annual https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_New%20Delhi_India_6-24- 2016.pdf. New Delhi

  • Asgher M, Ahmad Z, Iqbal HMN (2013) Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. Ind Crops Prod 44:488–495

    Article  CAS  Google Scholar 

  • Béguin P, Aubert J-P (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58

    Article  PubMed  Google Scholar 

  • Belancic A, Scarpa J, Peirano A, Díaz R, Steiner J et al (1995) Penicillium purpurogenum produces several xylanases: purification and properties of two of the enzymes. J Biotechnol 41:71–79

    Article  PubMed  CAS  Google Scholar 

  • Bharadwaja STP, Singh S, Moholkar VS (2015) Design and optimization of a sono-hybrid process for bioethanol production from Parthenium hysterophorus. J Taiwan Inst Chem Eng 51:71–78

    Article  CAS  Google Scholar 

  • Borah AJ, Singh S, Goyal A, Moholkar VS (2016) An assessment of the potential of invasive weeds as multiple feedstocks for biofuel production. RSC Adv 6:47151–47163

    Article  CAS  Google Scholar 

  • Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554

    Article  CAS  Google Scholar 

  • Cardona CA, Sánchez ÓJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98:2415–2457

    Article  PubMed  CAS  Google Scholar 

  • Carvalheiro F, Duarte LC, Gírio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 849–864

    Google Scholar 

  • Chandel AK, Lakshmi Narasu M, Chandrasekhar G, Manikyam A, Venkateswar Rao L (2009) Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3. Bioresour Technol 100:2404–2410

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Liu T, Zhang W, Chen X, Wang J (2012) Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion. Bioresour Technol 111:208–214

    Article  PubMed  CAS  Google Scholar 

  • Chinnadurai K, Muthukumarappan K, L Julson J (2008) Influence of high shear bioreactor parameters on carbohydrate release from different biomasses. 2008 Providence, Rhode Island, 29 June–2 July, 2008. St. Joseph, MI: ASABE

    Google Scholar 

  • Christov LP, Myburgh J, van Tonder A, Prior BA (1997) Hydrolysis of extracted and fibre-bound xylan with Aureobasidium pullulans enzymes. J Biotechnol 55:21–29

    Article  CAS  Google Scholar 

  • Clayton WD, Renvoize SA (1986) Genera graminum. Grasses of the World. Genera graminum Grasses of the World 13

    Google Scholar 

  • Cosentino SL, Copani V, Testa G, Scordia D (2015) Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack. a potential perennial grass for biomass production in marginal land in semi-arid Mediterranean environment. Ind Crops Prod 75:93–102

    Article  Google Scholar 

  • Dale BE, Moreira MJ (1982) Freeze-explosion technique for increasing cellulose hydrolysis: Colorado State University, Fort Collins. Medium: X; Size: pp 31–43

    Google Scholar 

  • das Neves MA, Kimura T, Shimizu N, Nakajima M (2007) State of the art and future trends of bioethanol production. Dyn Biochem Process Biotechnol Mol Biol 1:1–14

    Google Scholar 

  • Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 5:578–595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Day MD, Wiley CJ, Playford J, Zalucki MP (2003) Lantana: current management status and future prospects, 135p

    Google Scholar 

  • Day MD, Clements DR, Gile C, Senaratne WKAD, Shen S et al (2016) Biology and impacts of Pacific Islands invasive species. 13. Mikania micrantha Kunth (Asteraceae). Pac Sci 70:257–285

    Article  Google Scholar 

  • Dhileepan K, McFadyen RC (2012) Parthenium hysterophorus L.–parthenium. Biological control of weeds in Australia 448–462

    Google Scholar 

  • Dias JM, Alvim-Ferraz MCM, Almeida MF (2009) Production of biodiesel from acid waste lard. Bioresour Technol 100:6355–6361

    Article  PubMed  CAS  Google Scholar 

  • Duan L, Yu W, Li Z (2017) Analysis of structural changes in jute fibers after peracetic acid treatment. J Eng Fabr Fibers (JEFF) 12

    Google Scholar 

  • Dwivedi P, Vivekanand V, Ganguly R, Singh RP (2009) Parthenium sp. as a plant biomass for the production of alkalitolerant xylanase from mutant Penicillium oxalicum SAUE-3.510 in submerged fermentation. Biomass Bioenergy 33:581–588

    Article  CAS  Google Scholar 

  • Dziugan P, Balcerek M, Pielech-Przybylska K, Patelski P (2013) Evaluation of the fermentation of high gravity thick sugar beet juice worts for efficient bioethanol production. Biotechnol Biofuels 6:158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Freitas Sd, Fredo CE (2005) Biodiesel à base de óleo de mamona: algumas considerações. Informações Econômicas 35:37–42

    Google Scholar 

  • Gandolfi S, Ottolina G, Consonni R, Riva S, Patel I (2014) Fractionation of hemp hurds by organosolv pretreatment and its effect on production of lignin and sugars. Chemsuschem 7:1991–1999

    Article  PubMed  CAS  Google Scholar 

  • Ghosh T, Chakraborty K (1970) Growing Hibiscus cannabinus (H.C. mesta) for fibre. Jute Bull 32:154–157

    Google Scholar 

  • Gilbert HJ, Hazlewood GP (1993) Bacterial cellulases and xylanases. Microbiology 139:187–194

    CAS  Google Scholar 

  • Gopinathan MC, Sudhakaran R (2009) Biofuels: opportunities and challenges in India. In Vitro Cell Dev Biol Plant 45:350–371

    Article  Google Scholar 

  • Guerriero G, Hausman J-F, Strauss J, Ertan H, Siddiqui KS (2016) Lignocellulosic biomass: biosynthesis, degradation, and industrial utilization. Eng Life Sci 16:1–16

    Article  CAS  Google Scholar 

  • Guo G-L, Hsu D-C, Chen W-H, Chen W-H, Hwang W-S (2009) Characterization of enzymatic saccharification for acid-pretreated lignocellulosic materials with different lignin composition. Enzyme Microb Technol 45:80–87

    Article  CAS  Google Scholar 

  • Gupta B, Prakash G (1969) Effect of sowing sunnhemp for fibre and green manuring on various dates on the succeeding rabi crop of wheat. Indian J Agron

    Google Scholar 

  • Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sustain Energy Rev 41:550–567

    Article  CAS  Google Scholar 

  • Gupta R, Khasa YP, Kuhad RC (2011) Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohydr Polym 84:1103–1109

    Article  CAS  Google Scholar 

  • Hamelinck CN, Gv Hooijdonk, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410

    Article  CAS  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  PubMed  CAS  Google Scholar 

  • Hiloidhari M, Das D, Baruah DC (2014) Bioenergy potential from crop residue biomass in India. Renew Sustain Energy Rev 32:504–512

    Article  Google Scholar 

  • Holtzapple MT, Jun J-H, Ashok G, Patibandla SL, Dale BE (1991) The ammonia freeze explosion (AFEX) process. Appl Biochem Biotechnol 28:59–74

    Article  Google Scholar 

  • Ighodalo O, Zoukumor K, Egbon C, Okoh S, Odu K (2011) Processing water hyacinth into biomass Briquettes for cooking purposes. J Emerg Trends Eng Appl Sci (JETEAS) 2:305–307

    Google Scholar 

  • Jingura RM, Musademba D, Matengaifa R (2010) An evaluation of utility of Jatropha curcas L. as a source of multiple energy carriers. Int J Eng Sci Technol 2

    Google Scholar 

  • Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1:119–134

    Article  CAS  Google Scholar 

  • Ju X, Bowden M, Engelhard M, Zhang X (2014) Investigating commercial cellulase performances toward specific biomass recalcitrance factors using reference substrates. Appl Microbiol Biotechnol 98:4409–4420

    Article  PubMed  CAS  Google Scholar 

  • Kamireddy SR, Li J, Abbina S, Berti M, Tucker M et al (2013) Converting forage sorghum and sunn hemp into biofuels through dilute acid pretreatment. Ind Crops Prod 49:598–609

    Article  CAS  Google Scholar 

  • Karunanithy C, Muthukumarappan K (2011) Optimization of switchgrass and extruder parameters for enzymatic hydrolysis using response surface methodology. Ind Crops Prod 33:188–199

    Article  CAS  Google Scholar 

  • Kataria R, Ghosh S (2014) NaOH pretreatment and enzymatic hydrolysis of Saccharum spontaneum for reducing sugars production. Energy Sources Part A 36:1028–1035

    Article  CAS  Google Scholar 

  • Kaur M, Aggarwal NK, Kumar V, Dhiman R (2014) Effects and management of Parthenium hysterophorus: A weed of global significance. International scholarly research notices 2014

    Google Scholar 

  • Keshav PK, Naseeruddin S, Rao LV (2016) Improved enzymatic saccharification of steam exploded cotton stalk using alkaline extraction and fermentation of cellulosic sugars into ethanol. Bioresour Technol 214:363–370

    Article  PubMed  CAS  Google Scholar 

  • Keshk S, Suwinarti W, Sameshima K (2006) Physicochemical characterization of different treatment sequences on kenaf bast fiber. Carbohydr Polym 65:202–206

    Article  CAS  Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375

    Article  Google Scholar 

  • Kim N-J, Li H, Jung K, Chang HN, Lee PC (2011) Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol 102:7466–7469

    Article  PubMed  CAS  Google Scholar 

  • Komolwanich T, Tatijarern P, Prasertwasu S, Khumsupan D, Chaisuwan T et al (2014) Comparative potentiality of Kans grass (Saccharum spontaneum) and Giant reed (Arundo donax) as lignocellulosic feedstocks for the release of monomeric sugars by microwave/chemical pretreatment. Cellulose 21:1327–1340

    Article  CAS  Google Scholar 

  • Kong G, Wu Q, Hu Q (2000) Exotic weed Mikania micrantha HBK appeared in south China. J Trop Subtrop Bot 8:27

    Google Scholar 

  • Kuila A, Mukhopadhyay M, Tuli D, Banerjee R (2011) Accessibility of enzymatically delignified Bambusa bambos for efficient hydrolysis at minimum cellulase loading: an optimization study. Enzyme Res 2011

    Google Scholar 

  • Kumar S (2009) Biological control of Parthenium in India: status and prospects. Ind J Weed Sci 41:1–18

    Google Scholar 

  • Kumar A, Kumar N, Baredar P, Shukla A (2015) A review on biomass energy resources, potential, conversion and policy in India. Renew Sustain Energy Rev 45:530–539

    Article  Google Scholar 

  • Kundu BC (1964) Sunn-hemp in India, pp 396–404

    Google Scholar 

  • Ladisch MR, Lin KW, Voloch M, Tsao GT (1983) Process considerations in the enzymatic hydrolysis of biomass. Enzyme Microb Technol 5:82–102

    Article  CAS  Google Scholar 

  • Lau MW, Dale BE, Balan V (2008) Ethanolic fermentation of hydrolysates from ammonia fiber expansion (AFEX) treated corn stover and distillers grain without detoxification and external nutrient supplementation. Biotechnol Bioeng 99:529–539

    Article  PubMed  CAS  Google Scholar 

  • Lavanya C, Murthy IYLN, Nagaraj G, Mukta N (2012) Prospects of castor (Ricinus communis L.) genotypes for biodiesel production in India. Biomass Bioenergy 39:204–209

    Article  CAS  Google Scholar 

  • Lemons e Silva CF, Schirmer MA, Maeda RN, Barcelos CA, Pereira N (2015) Potential of giant reed (Arundo donax L.) for second generation ethanol production. Electron J Biotechnol 18:10–15

    Article  CAS  Google Scholar 

  • Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361

    Article  Google Scholar 

  • Li A, Khraisheh M (2010) Bioenergy II: bio-ethanol from municipal solid waste (MSW): the role of biomass properties and structures during the ethanol conversion process. Int J Chem Reactor Eng 8

    Google Scholar 

  • Liu J, Sidhu SS, Wang ML, Tonnis B, Habteselassie M et al (2015) Evaluation of various fungal pretreatment of switchgrass for enhanced saccharification and simultaneous enzyme production. J Clean Prod 104:480–488

    Article  CAS  Google Scholar 

  • Mahapatra B, Mitra S, Kumar M, Ghorai A, Sarkar S et al (2012) An overview of research and development in jute and allied fibre crops in India. Ind J Agron 57:132–142

    Google Scholar 

  • Maiti RK (1979) A study of the microscopic structure of the fiber strands of common Indian bast fibers and its economic implications. Econ Bot 33:78–87

    Article  Google Scholar 

  • Maiti RK, Chakravarty K (1977) A comparative study of yield components and quality of common Indian bast fibres. Econ Bot 31:55–60

    Article  Google Scholar 

  • Maity S, Chowdhury S, Datta AK (2012) Jute biology, diversity, cultivation, pest control, fiber production and genetics. In: Lichtfouse E (ed) Organic fertilisation, soil quality and human health. Springer, Dordrecht, pp 227–262

    Google Scholar 

  • Mannan KM (1993) X-ray diffraction study of jute fibres treated with NaOH and liquid anhydrous ammonia. Polymer 34:2485–2487

    Article  CAS  Google Scholar 

  • McIntosh S, Vancov T, Palmer J, Morris S (2014) Ethanol production from cotton gin trash using optimised dilute acid pretreatment and whole slurry fermentation processes. Bioresour Technol 173:42–51

    Article  PubMed  CAS  Google Scholar 

  • Millati R, Syamsiah S, Niklasson C, Cahyanto MN, Ludquist K et al (2011) Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. BioResources 6:5224–5259

    Google Scholar 

  • Mirahmadi K, Kabir MM, Jeihanipour A, Karimi K, Taherzadeh M (2010) Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production. BioResources 5:928–938

    CAS  Google Scholar 

  • Mishima D, Kuniki M, Sei K, Soda S, Ike M et al (2008) Ethanol production from candidate energy crops: Water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresour Technol 99:2495–2500

    Article  PubMed  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay M, Kuila A, Tuli DK, Banerjee R (2011) Enzymatic depolymerization of Ricinus communis, a potential lignocellulosic for improved saccharification. Biomass Bioenergy 35:3584–3591

    Article  CAS  Google Scholar 

  • Murali S, Shrivastava R, Saxena M (2007) Quantification of agricultural residues for energy generation—a case study. J Inst Public Health Eng 3:27–31

    Google Scholar 

  • Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234

    Article  CAS  Google Scholar 

  • Neto CP, Seca A, Fradinho D, Coimbra MA, Domingues F et al (1996) Chemical composition and structural features of the macromolecular components of Hibiscus cannabinus grown in Portugal. Ind Crops Prod 5:189–196

    Article  Google Scholar 

  • Nigam JN (2002) Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose–fermenting yeast. J Biotechnol 97:107–116

    Article  PubMed  CAS  Google Scholar 

  • Nur Aimi MN, Anuar H, Nurhafizah SM, Zakaria S (2015) Effects of dilute acid pretreatment on chemical and physical properties of kenaf biomass. J Nat Fibers 12:256–264

    Article  CAS  Google Scholar 

  • Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Bioresour Technol 97:1086–1091

    Article  PubMed  CAS  Google Scholar 

  • Ouajai S, Shanks RA (2005) Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym Degrad Stab 89:327–335

    Article  CAS  Google Scholar 

  • Pan X, Gilkes N, Kadla J, Pye K, Saka S et al (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: Optimization of process yields. Biotechnol Bioeng 94:851–861

    Article  PubMed  CAS  Google Scholar 

  • Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: I-bioprocesses and products. Process Biochem 35:1153–1169

    Article  CAS  Google Scholar 

  • Pandiyan K, Tiwari R, Rana S, Arora A, Singh S et al (2014) Comparative efficiency of different pretreatment methods on enzymatic digestibility of Parthenium sp. World J Microbiol Biotechnol 30:55–64

    Article  PubMed  CAS  Google Scholar 

  • Panje RR (1970) The Evolution of a Weed. PANS Pest Art News Summ 16:590–595

    Article  Google Scholar 

  • Paridah MT, Basher AB, SaifulAzry S, Ahmed Z (2011) Retting process of some bast plant fibres and its effect on fibre quality: a review. BioResources 6:5260–5281

    Google Scholar 

  • Patel S (2011) Harmful and beneficial aspects of Parthenium hysterophorus: an update. 3 Biotech 1:1–9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pérez J, Muñoz-Dorado J, de la Rubia T, Martínez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

    Article  PubMed  CAS  Google Scholar 

  • Pilu R, Badone FC, Michela L (2012) Giant reed (Arundo donax L.): a weed plant or a promising energy crop? Afr J Biotechnol 11:9163–9174

    Google Scholar 

  • Pimentel D, Patzek TW (2005) Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat Resour Res 14:65–76

    Article  CAS  Google Scholar 

  • Pingali SV, Urban VS, Heller WT, McGaughey J, O’Neill H et al (2010) Breakdown of cell wall nanostructure in dilute acid pretreated biomass. Biomacromol 11:2329–2335

    Article  CAS  Google Scholar 

  • Prasad S, Williams AC (2009) Extent and distribution of some invasive plant species in Asian Elephant habitats. Preliminary Technical Report of IUCN As ESG Wild Elephant and Elephant Habitat Management Task Force, Species Survival Commission, pp 34–38

    Google Scholar 

  • Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 50:1–39

    Article  Google Scholar 

  • Priyanka N, Joshi P (2013) A review of Lantana camara studies in India. Int J Sci Res Publ 3:1–11

    Google Scholar 

  • Raj SK, Syriac EK (2016) Invasive alien weeds as bio-resource: a review. Agric Rev 37

    Google Scholar 

  • Rana S, Tiwari R, Arora A, Singh S, Kaushik R et al (2013) Prospecting Parthenium sp. pretreated with Trametes hirsuta, as a potential bioethanol feedstock. Biocatal Agric Biotechnol 2:152–158

    Google Scholar 

  • Ravindranath NH, Sita Lakshmi C, Manuvie R, Balachandra P (2011) Biofuel production and implications for land use, food production and environment in India. Energy Policy 39:5737–5745

    Article  Google Scholar 

  • Rowell RM, Stout HP (1998) Jute and Kenaf. In: Lewin M, Pearce E (eds) Handbook of Fibre Chemistry. Marcel Dekker Inc., New York, p 504

    Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  PubMed  CAS  Google Scholar 

  • Saha BC, Bothast RJ (1999) Pretreatment and enzymatic saccharification of corn fiber. Appl Biochem Biotechnol 76:65–77

    Article  PubMed  CAS  Google Scholar 

  • Salvachúa D, Prieto A, López-Abelairas M, Lu-Chau T, Martínez ÁT et al (2011) Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour Technol 102:7500–7506

    Article  PubMed  CAS  Google Scholar 

  • Sannigrahi P, Ragauskas AJ, Miller SJ (2008) Effects of two-stage dilute acid pretreatment on the structure and composition of lignin and cellulose in loblolly pine. BioEnergy Res 1:205–214

    Article  Google Scholar 

  • Saritha M, Arora A, Nain L (2012) Pretreatment of paddy straw with Trametes hirsuta for improved enzymatic saccharification. Bioresour Technol 104:459–465

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S, Hazra S, Sen H, Karmakar P, Tripathi M (2015) Sunnhemp in India. ICAR-Central Research Institute for Jute and Allied Fibres (ICAR), Barrackpore 140: 10

    Google Scholar 

  • Satya P, Maiti R (2013) Bast and leaf fibre crops: kenaf, hemp, jute, agave, etc. In: Singh BP (ed) Biofuel crops: production, physiology and genetics. CABI International, Oxfordshire (UK) 292p

    Google Scholar 

  • Scordia D, Cosentino SL, Jeffries TW (2010) Second generation bioethanol production from Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack. Bioresour Technol 101:5358–5365

    Article  PubMed  CAS  Google Scholar 

  • Sharma A (1971) Eradication and utilization of water hyacinth—a review. Curr Sci 40:51–55

    Google Scholar 

  • Sharma R (2003) Performance of different herbicides for control of Congress grass (Parthenium hysterophorus L.) in non-cropped areas. Ind J Weed Sci 35:242–245

    Google Scholar 

  • Sharma A, Nain V, Tiwari R, Singh S, Adak A et al (2017) Simultaneous saccharification and fermentation of alkali-pretreated corncob under optimized conditions using cold-tolerant indigenous holocellulase. Korean J Chem Eng 34:773–780

    Article  CAS  Google Scholar 

  • Shi J, Sharma-Shivappa RR, Chinn M, Howell N (2009) Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenergy 33:88–96

    Article  CAS  Google Scholar 

  • Shin S-J, Sung YJ (2008) Improving enzymatic hydrolysis of industrial hemp (Cannabis sativa L.) by electron beam irradiation. Radiat Phys Chem 77:1034–1038

    Article  CAS  Google Scholar 

  • Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD, Osborne J (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 98:3000–3011

    Article  PubMed  CAS  Google Scholar 

  • Singh RM, Poudel MS (2013) Briquette fuel-an option for management of Mikania micrantha. Nepal J Sci Technol 14:109–114

    Article  Google Scholar 

  • Singh S, Khanna S, Moholkar VS, Goyal A (2014) Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels. Appl Energy 129:195–206

    Article  CAS  Google Scholar 

  • Sukumaran RK, Surender VJ, Sindhu R, Binod P, Janu KU et al (2010) Lignocellulosic ethanol in India: Prospects, challenges and feedstock availability. Bioresour Technol 101:4826–4833

    Article  PubMed  CAS  Google Scholar 

  • Sullivan P, Wood R (2012) Water hyacinth (Eichhornia crassipes (Mart.) Solms) seed longevity and the implications for management

    Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  PubMed  CAS  Google Scholar 

  • Sur D, Amin MN (2010) Physics and chemistry of jute. Int Jute Study Grou 35–55

    Google Scholar 

  • Suresh S, Kumar A, Shukla A, Singh R, Krishna C (2017) Biofuels and bioenergy (BICE2016): International Conference, Bhopal, India, 23–25 February 2016, Springer, Berlin

    Google Scholar 

  • Swain K (2014) Biofuel production in India: potential, prospectus and technology. J Fundam Renew Energy Appl 4

    Google Scholar 

  • Tassinari T, Macy C, Spano L, Ryu DDY (1980) Energy requirements and process design considerations in compression-milling pretreatment of cellulosic wastes for enzymatic hydrolysis. Biotechnol Bioeng 22:1689–1705

    Article  CAS  Google Scholar 

  • Tiffany DG (2009) Economic and environmental impacts of US corn ethanol production and use. Reg Econ Dev 5:42–58

    Google Scholar 

  • Tiwari R, Rana S, Singh S, Arora A, Kaushik R et al (2013) Biological delignification of paddy straw and Parthenium sp. using a novel micromycete Myrothecium roridum LG7 for enhanced saccharification. Bioresour Technol 135:7–11

    Article  PubMed  CAS  Google Scholar 

  • Tiwari R, Nain PKS, Singh S, Adak A, Saritha M et al (2015) Cold active holocellulase cocktail from Aspergillus niger SH3: process optimization for production and biomass hydrolysis. J Taiwan Inst Chem Eng 56:57–66

    Article  CAS  Google Scholar 

  • Travaini R, Martín-Juárez J, Lorenzo-Hernando A, Bolado-Rodríguez S (2016) Ozonolysis: An advantageous pretreatment for lignocellulosic biomass revisited. Bioresour Technol 199:2–12

    Article  PubMed  CAS  Google Scholar 

  • Verma VK, Singh YP, Rai JPN (2007) Biogas production from plant biomass used for phytoremediation of industrial wastes. Bioresour Technol 98:1664–1669

    Article  PubMed  CAS  Google Scholar 

  • Versfeld D, Le Maitre D, Chapman R (1998) Alien invading plants and water resources in South Africa: a preliminary assessment: The Commission

    Google Scholar 

  • Vishnu Vardhini KJ, Murugan R (2017) Effect of laccase and xylanase enzyme treatment on chemical and mechanical properties of banana fiber. J Nat Fibers 14:217–227

    Article  CAS  Google Scholar 

  • Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30:1447–1457

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Liao W, Miao R (2000) Revision of Mikania from China and the key of four relative species. Acta Scientiarum Naturalium Universitatis Sunyatseni 40:72–75

    Google Scholar 

  • Wati L, Kumari S, Kundu BS (2007) Paddy straw as substrate for ethanol production. Indian J Microbiol 47:26–29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei X, Zhou S, Huang Y, Huang J, Chen P et al (2016) Three fiber crops show distinctive biomass saccharification under physical and chemical pretreatments by altered wall polymer features. BioResources 11:2124–2137

    CAS  Google Scholar 

  • Weldemichael Y, Assefa G (2016) Assessing the energy production and GHG (greenhouse gas) emissions mitigation potential of biomass resources for Alberta. J Clean Prod 112:4257–4264

    Article  CAS  Google Scholar 

  • Witt ABR (2010) Biofuels and invasive species from an African perspective—a review. GCB Bioenergy 2:321–329

    Article  Google Scholar 

  • Yadav A, Balyan RS, Malik RK, Malik RS, Singh S et al (2007) Efficacy of glyphosate, MON-8793 and MON-8794 for general weed control under non-cropped situations. Environ Ecol 25:636–639

    CAS  Google Scholar 

  • Yan J, Wei Z, Wang Q, He M, Li S et al (2015) Bioethanol production from sodium hydroxide/hydrogen peroxide-pretreated water hyacinth via simultaneous saccharification and fermentation with a newly isolated thermotolerant Kluyveromyces marxianu strain. Bioresour Technol 193:103–109

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2:26–40

    Article  CAS  Google Scholar 

  • Yoon SY, Kim D-J, Sung YJ, Han S, Aggangan NS, et al (2016) Enhancement of enzymatic hydrolysis of kapok [Ceiba pentandra (L.) Gaertn.] seed fibers with potassium hydroxide pretreatment. Asia Life Sci 25:17–29

    Google Scholar 

  • Yu H, Guo G, Zhang X, Yan K, Xu C (2009) The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods. Bioresour Technol 100:5170–5175

    Article  PubMed  CAS  Google Scholar 

  • Zabed H, Sahu JN, Boyce AN, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sustain Energy Rev 66:751–774

    Article  CAS  Google Scholar 

  • Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Lin H-M, Wen J, Cao N, Yu X et al (1995) Supercritical carbon dioxide explosion as a pretreatment for cellulose hydrolysis. Biotechnol Lett 17:845–850

    Article  CAS  Google Scholar 

  • Zheng Y, Lin HM, Tsao GT (1998) Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnol Prog 14:890–896

    Article  PubMed  CAS  Google Scholar 

  • Zuleta EC, Rios LA, Benjumea PN (2012) Oxidative stability and cold flow behavior of palm, sacha-inchi, jatropha and castor oil biodiesel blends. Fuel Process Technol 102:96–101

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surender Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adak, A., Singh, S., Lavanya, A.K., Sharma, A., Nain, L. (2018). Sustainable Production of Biofuels from Weedy Biomass and Other Unconventional Lignocellulose Wastes. In: Singh, O., Chandel, A. (eds) Sustainable Biotechnology- Enzymatic Resources of Renewable Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-95480-6_4

Download citation

Publish with us

Policies and ethics