Skip to main content

SVM and RGB-D Sensor Based Gesture Recognition for UAV Control

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2018)

Abstract

This research has the purpose of allowing anyone, with or without experience handling micro aerial vehicles, to operate unmanned aerial vehicles (UAV) in a natural and intuitive way, unlike typical interfaces that need experience and knowledge in piloting to be used. To achieve this, our approach uses gesture recognition, based on machine learning with Support Vector Machine (SVM) for classification and a RGB-D sensor for the feature extraction. Tests for recognition with different Kernel-SVM and for the RGB-D sensor with different levels of light were carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguilar, W.G., Salcedo, V.S., Sandoval, D.S., Cobeña, B.: Developing of a video-based model for UAV autonomous navigation. In: Barone, D.A.C., Teles, E.O., Brackmann, C.P. (eds.) LAWCN 2017. CCIS, vol. 720, pp. 94–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71011-2_8

    Chapter  Google Scholar 

  2. Aguilar, W.G., Casaliglla, V.P., Pólit, J.L.: Obstacle avoidance based-visual navigation for micro aerial vehicles. Electronics 6(1), 10 (2017)

    Article  Google Scholar 

  3. Aguilar, W.G., Casaliglla, V.P., Pólit, J.L., Abad, V., Ruiz, H.: Obstacle avoidance for flight safety on unmanned aerial vehicles. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 575–584. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59147-6_49

    Chapter  Google Scholar 

  4. Limnaios, G.: Current usage of unmanned aircraft systems (UAS) and future challenges: a mission oriented simulator for UAS as a tool for design and performance evaluation. J. Comput. Model 4(1), 167–188 (2014)

    Google Scholar 

  5. Dickerson, L.: UAV on the rise. In: Aviation Week and Space Technology. Aerospace Source Book, vol. 166. McGraw Hill, New York (2007)

    Google Scholar 

  6. Visiongain: The unmanned aerial vehicles (UAV) market 2009–2019. Londres (2009)

    Google Scholar 

  7. Aguilar, W.G., Angulo, C.: Real-time model-based video stabilization for microaerial vehicles. Neural Process. Lett. 43(2), 459–477 (2016)

    Article  Google Scholar 

  8. Aguilar, W.G., Angulo, C.: Real-time video stabilization without phantom movements for micro aerial vehicles. EURASIP J. Image Video Process 2014, 46 (2014)

    Article  Google Scholar 

  9. Chmaj, G., Selvaraj, H.: Distributed processing applications for UAV/drones: a survey. In: Selvaraj, H., Zydek, D., Chmaj, G. (eds.) Progress in Systems Engineering. AISC, vol. 366, pp. 449–454. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-08422-0_66

    Chapter  Google Scholar 

  10. Aguilar, W.G., et al.: Cascade classifiers and saliency maps based people detection. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017, Part II. LNCS, vol. 10325, pp. 501–510. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60928-7_42

    Chapter  Google Scholar 

  11. Aguilar, W.G., et al.: Pedestrian detection for UAVs using cascade classifiers and saliency maps. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017, Part II. LNCS, vol. 10306, pp. 563–574. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59147-6_48

    Chapter  Google Scholar 

  12. Kurakin, A., Zhang, Z., Liu, Z.: A real time system for dynamic hand gesture recognition with a depth sensor. In: EUSIPCO (2012)

    Google Scholar 

  13. Shotton, J., et al.: Real-time human pose recognition in parts from single depth images. In: Cipolla, R., Battiato, S., Farinella, G. (eds.) Machine Learning for Computer Vision. Studies in Computational Intelligence. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-28661-2_5

    Chapter  Google Scholar 

  14. Ren, Z., Yuan, J., Meng, J., Zhang, Z.: Robust part-based hand gesture recognition using kinect sensor. IEEE Trans. Multimed. 15, 1110–1120 (2013)

    Article  Google Scholar 

  15. Kurtulmus, F., Kavdir, I.: Detecting corn tassels using computer vision and support vector machines. Exper. Syst. Appl. 41, 7390–7397 (2014)

    Article  Google Scholar 

  16. Kendoul, F.: Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. J. Field Robot. 29(2), 315–378 (2012)

    Article  Google Scholar 

  17. Ibañez, R.: Evaluación de técnicas de Machine Learning para el reconocimiento de gestos corporals. In: XLIII Jornadas Argentinas de Informática e Investigación Operativa (2014)

    Google Scholar 

  18. Calle, J.L., Balseca, J.M., Medina, R.P.: Test Wisc IV: Una Mirada desde la herramienta kinect. Revista Vínculos 12, 157–165 (2015)

    Google Scholar 

  19. Aguilar, W.G., et al.: Visual SLAM with a RGB-D camera on a quadrotor UAV using on-board processing. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017, Part II. LNCS, vol. 10306, pp. 596–606. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59147-6_51

    Chapter  Google Scholar 

  20. Aguilar, W.G., et al.: Real-time 3D modeling with a RGB-D camera and on-board processing. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017, Part II. LNCS, vol. 10325, pp. 410–419. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60928-7_35

    Chapter  Google Scholar 

  21. Aguilar, W.G., et al.: On-board visual SLAM on a UGV using a RGB-D camera. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017, Part III. LNCS (LNAI), vol. 10464, pp. 298–308. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65298-6_28

    Chapter  Google Scholar 

  22. Chang, C.-C., Lin, C.-J.: LIBSVM: Una librería para maquinas de vectores soporte (2017)

    Google Scholar 

  23. Mcneill, D.: Hand and Mind: What Gestures Reveal About Thought. The University of Chicago Press, Chicago (1992)

    Google Scholar 

  24. Quiroga, F. Reconocimiento de Gestos Dinámicos. Buenos Aires (2014)

    Google Scholar 

  25. Microsoft Corp. Redmond WA. Kinect for Xbox 360

    Google Scholar 

  26. Aguilar, W.G., Morales, S.G.: 3D environment mapping using the Kinect V2 and path planning based on RRT algorithms. Electronics 5(4), 70 (2016)

    Article  Google Scholar 

  27. Aguilar, W.G., Morales, S., Ruiz, H., Abad, V.: RRT* GL based optimal path planning for real-time navigation of UAVs. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017, Part II. LNCS, vol. 10306, pp. 585–595. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59147-6_50

    Chapter  Google Scholar 

  28. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Proceedings of CVPR (2003)

    Google Scholar 

  29. Winn, J., Shotton, J.: The layout consistent random field for recognizing and segmenting partially occluded objects. In Proceedings of CVPR (2006)

    Google Scholar 

  30. Carmona, E.: Tutorial sobre Máquinas de Vectores Soporte (SVM). UNED (2014)

    Google Scholar 

Download references

Acknowledgement

This work is part of the project “Perception and localization system for autonomous navigation of rotor micro aerial vehicle in gps-denied environments, VisualNavDrone”, 2016-PIC-024, from the Universidad de las Fuerzas Armadas ESPE, directed by Dr. Wilbert G. Aguilar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilbert G. Aguilar .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aguilar, W.G., Cobeña, B., Rodriguez, G., Salcedo, V.S., Collaguazo, B. (2018). SVM and RGB-D Sensor Based Gesture Recognition for UAV Control. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2018. Lecture Notes in Computer Science(), vol 10851. Springer, Cham. https://doi.org/10.1007/978-3-319-95282-6_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95282-6_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95281-9

  • Online ISBN: 978-3-319-95282-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics