Skip to main content

Immersive Virtual System Based on Games for Children’s Fine Motor Rehabilitation

  • Conference paper
  • First Online:
  • 3920 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10851))

Abstract

We present a 3D virtual system for children’s fine motor rehabilitation, it is created three environments with the software Unity. These environments generate playful and entertaining backgrounds; several tests for the system operation are performed which include working with children with ages of 5 to 14 years. The results allow to determine the fine motor movements, in addition it is determined that the trajectories made by children’s fingers when performing the games are suitable for fine motor rehabilitation. Finally, the usability test SEQ is also performed, which give us results of (56.4 ± 0.37), this shows the user’s acceptation of the system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Newell, K.: Constraints on the development of coordination. In: Wade, M., Whiting, H.T. (eds.) Motor Development in Children: Aspects of Coordination and Control, pp. 341–360. Martinus Nijhoff, Dordrecht (1986)

    Chapter  Google Scholar 

  2. Kakebeeke, T.H., Lanzi, S., Zysset, A.E., Arhab, A., Messerli-Bürgy, N., Stuelb, K., Munsch, S.: Association between body composition and motor performance in preschool children. Obes. Facts 10(5), 420–431 (2017)

    Article  Google Scholar 

  3. Levtzion-Korach, O., Tennenbaum, A., Schnitzer, R., Ornoy, A.: Early motor development of blind children. J. Paediatr. Child Health 36, 226–229 (2000)

    Article  Google Scholar 

  4. Gheysen, F., Loots, G., Van Waelvelde, H.: Motor development of deaf children with and without cochlear implants. J. Deaf Stud. Deaf Educ. 13, 215–224 (2008)

    Article  Google Scholar 

  5. Feldman, H.M., Chaves-Gnecco, D., Hofkosh, D.: Developmental-behavioral pediatrics. In: Zitelli, B.J., McIntire, S.C., Norwalk, A.J. (eds.) Atlas of Pediatric Diagnosis, 6th edn, Chap. 3, Elsevier Saunders, Philadelphia (2012)

    Google Scholar 

  6. Luo, Z., Jose, P.E., Huntsinger, C.S., Pigott, T.D.: Fine motor skills and mathematics achievement in East Asian American and European American kindergartners and first graders. Br. J. Dev. Psychol. 25, 595–614 (2007). https://doi.org/10.1348/026151007X185329

    Article  Google Scholar 

  7. Brookman, A., McDonald, S., McDonald, D., Bishop, D.V.: Fine motor deficits in reading disability and language impairment: same or different? PeerJ 1(3), e217 (2013). https://doi.org/10.7717/peerj.217

    Article  Google Scholar 

  8. Martzog, P.: Feinmotorische Fertigkeiten und kognitive Fähigkeiten bei Kindern im Vorschulalter [Fine motor skills and cognitive development in preschool children], 1st edn. Tectum, Marburg (2015)

    Google Scholar 

  9. Fenollar-Cortés, J., Gallego-Martínez, A., Fuentes, L.J.: The role of inattention and hyperactivity/impulsivity in the fine motor coordination in children with ADHD. Res. Dev. Disabil. 69, 77–84 (2017)

    Article  Google Scholar 

  10. Mayes, S.D., Calhoun, S.L., Learning, A.: Writing, and processing speed in typical children and children with ADHD, autism, anxiety, depression, and oppositional-defiant disorder. Child Neuropsychol. 13(6), 469–493 (2007)

    Article  Google Scholar 

  11. Dinehart, L.H.: Handwriting in early childhood education: current research and future implications. J. Early Childhood Lit. 15(1), 97–118 (2015). https://doi.org/10.1177/1468798414522825

    Article  Google Scholar 

  12. Grissmer, D., Grimm, K., Aiyer, S.: Fine motor skills and early comprehension of the world: two new school readiness indicators. Dev. Psychol. 46(5), 1008–1017 (2010). https://doi.org/10.1037/a0020104

    Article  Google Scholar 

  13. De Campos, A.C., da Costa, C.S., Rocha, N.A.: Measuring changes in functional mobility in children with mild cerebral palsy. Devel. Neurorehabil. 14, 140–144 (2011)

    Article  Google Scholar 

  14. Prosser, L.A., Lee, S.C., Barbe, M.F., VanSant, A.F., Lauer, R.T.: Trunk and hip muscle activity in early walkers with and without cerebral palsy – a frequency analysis. J. Electromyogr. Kinesiol. 20, 851–859 (2010)

    Article  Google Scholar 

  15. Galil, A., Carmel, S., Lubetzky, H., Heiman, N.: Compliance with home rehabilitation therapy by parents of children with disabilities in Jews and Bedouin in Israel. Dev. Med. Child Neurol. 43(4), 261–268 (2001)

    Article  Google Scholar 

  16. Mitchell, L., Ziviani, J., Oftedal, S., Boyd, R.: The effect of virtual reality interventions on physical activity in children and adolescents with early brain injuries including cerebral palsy. Dev. Med. Child Neurol. 54, 667–671 (2012)

    Article  Google Scholar 

  17. Snider, L., Majnemer, A., Darsaklis, V.: Virtual reality as a therapeutic modality for children with cerebral palsy. Dev. Neurorehabil. 13, 120–128 (2010)

    Article  Google Scholar 

  18. Levac, D.E., Galvin, J.: When is virtual reality “therapy”? Arch. Phys. Med. Rehabil. 94(795), 8 (2013)

    Google Scholar 

  19. Golomb, M.R., McDonald, B.C., Warden, S.J., Yonkman, J., Saykin, A.J., Shirley, B., et al.: In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy. Arch. Phys. Med. Rehabil. 91, 1–8 (2010)

    Article  Google Scholar 

  20. Shin, J., Song, G., Hwangbo, G.: Effects of conventional neurological treatment and a virtual reality training program on eye-hand coordination in children with cerebral palsy. J. Phys. Ther. Sci. 27(7), 2151–2154 (2015). https://doi.org/10.1589/jpts.27.2151

    Article  Google Scholar 

  21. Pruna, E., Acurio, A., Tigse, J., Escobar, I., Pilatásig, M., Pilatásig, P.: Virtual system for upper limbs rehabilitation in children. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 107–118. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60928-7_9

    Chapter  Google Scholar 

  22. Pruna, E., Acurio, A., Escobar, I., Pérez, S.A., Zumbana, P., Meythaler, A., Álvarez, F.A.: 3D virtual system using a haptic device for fine motor rehabilitation. In: Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST 2017. AISC, vol. 570, pp. 648–656. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56538-5_66

    Chapter  Google Scholar 

  23. Albiol-Pérez, S., Mena-Cajas, J., Escobar-Anchaguano, I.P., Pruna-Panchi, E.P., Zumbana, P.: Virtual fine rehabilitation in patients with carpal tunnel syndrome using low-cost devices. In Proceedings of the 4th Workshop on ICTs for improving Patients Rehabilitation Research Techniques, pp. 61–64. ACM (2017)

    Google Scholar 

  24. Tatla, S.K., Shirzad, N., Lohse, K.R., Virji-Babul, N., Hoens, A.M., Holsti, L., et al.: Therapists’ perceptions of social media and video game technologies in upper limb rehabilitation. JMIR Serious Games. 3(1), e2 (2015). https://doi.org/10.2196/games.3401

    Article  Google Scholar 

  25. Chen, Y.P., Kang, L.J., Chuang, T.Y., Doong, J.L., Lee, S.J., Tsai, M.W., Jeng, S.F., Sung, W.H.: Use of virtual reality to improve upper-extremity control in children with cerebral palsy: a single-subject design. Phys. Ther. 87(11), 1441–1457 (2007). https://doi.org/10.2522/ptj.20060062

    Article  Google Scholar 

  26. Gil-Gómez, J.A., Gil-Gómez, H., Lozano-Quilis, J.A., Manzano-Hernández, P., Albiol-Pérez, S., Aula-Valero, C.: SEQ: suitability evaluation questionnaire for virtual rehabilitation systems. Application in a virtual rehabilitation system for balance rehabilitation. In: 2013 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops, Venice, pp. 335–338 (2013)

    Google Scholar 

Download references

Acknowledgements

We thank the “Universidad de las Fuerzas Armadas ESPE” for financing the investigation project number 2016-PIC-0017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin Pruna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pruna, E., Tigse, J., Chuquitarco, A., Escobar, I., Pilatásig, M., Galarza, E.D. (2018). Immersive Virtual System Based on Games for Children’s Fine Motor Rehabilitation. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2018. Lecture Notes in Computer Science(), vol 10851. Springer, Cham. https://doi.org/10.1007/978-3-319-95282-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95282-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95281-9

  • Online ISBN: 978-3-319-95282-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics