Skip to main content

Overview of PCR-Based Technologies and Multiplexed Gene Analysis for Biomarker Studies

  • Chapter
  • First Online:
Predictive Biomarkers in Oncology

Abstract

Polymerase chain reaction (PCR) has become an invaluable tool for the assessment of the presence and type of nucleic acids in tissues and body fluids. It is the in vitro enzymatic synthesis and amplification of specific DNA sequences. It can amplify one molecule of DNA or RNA into billions of copies in a few hours. This enables mutation tracking for management of any cancer, which is particularly crucial in targeted therapies. Novel applications include analysis of blood for circulating DNA for tumor-associated mutations. RNA analysis has been extensively used for quantification of gene expression. This forms the basis of multiple gene expression assays including multigene panels that are being developed for prognostic and predictive purposes. This chapter will provide a brief overview of the basics of PCR and the current applications in clinical oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DNA:

Deoxyribonucleic acid

dNTPs:

Deoxyribonucleotide triphosphates

PCR:

Polymerase chain reaction

qPCR:

Quantitative real-time PCR

RT-qPCR:

Reverse transcriptase quantitative real-time PCR

RT-PCR:

Reverse transcriptase polymerase chain reaction

References

  1. Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–50.

    Article  CAS  PubMed  Google Scholar 

  2. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230(4732):1350–4.

    Article  CAS  PubMed  Google Scholar 

  3. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–22.

    Article  CAS  PubMed  Google Scholar 

  4. Steitz TA. A mechanism for all polymerases. Nature. 1998;391(6664):231–2.

    Article  CAS  PubMed  Google Scholar 

  5. Real-time PCR/quantitative PCR (qPCR) – an introduction. Available from: https://www.abmgood.com/marketing/knowledge_base/polymerase_chain_reaction_qpcr.php.

  6. Navarro E, Serrano-Heras G, Castano MJ, Solera J. Real-time PCR detection chemistry. Clin Chim Acta. 2015;439:231–50.

    Article  CAS  PubMed  Google Scholar 

  7. van der Velden VH, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJ. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia. 2003;17(6):1013–34.

    Article  PubMed  Google Scholar 

  8. Baker M. Digital PCR hits its stride. Nat Methods. 2012;9(6):541–4.

    Article  CAS  Google Scholar 

  9. Cree IA. Diagnostic RAS mutation analysis by polymerase chain reaction (PCR). Biomol Detect Quantif. 2016;8:29–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cazzaniga G, Lanciotti M, Rossi V, Di Martino D, Arico M, Valsecchi MG, et al. Prospective molecular monitoring of BCR/ABL transcript in children with Ph+ acute lymphoblastic leukaemia unravels differences in treatment response. Br J Haematol. 2002;119(2):445–53.

    Article  CAS  PubMed  Google Scholar 

  11. Hertz DL, Henry NL, Kidwell KM, Thomas D, Goddard A, Azzouz F, et al. ESR1 and PGR polymorphisms are associated with estrogen and progesterone receptor expression in breast tumors. Physiol Genomics. 2016;48(9):688–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yesim Gökmen-Polar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gökmen-Polar, Y. (2019). Overview of PCR-Based Technologies and Multiplexed Gene Analysis for Biomarker Studies. In: Badve, S., Kumar, G. (eds) Predictive Biomarkers in Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-95228-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95228-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95227-7

  • Online ISBN: 978-3-319-95228-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics