Skip to main content

Critical Care Resuscitation in Trauma Patients: Basic Principles and Evolving Frontiers

  • Chapter
Operative Techniques and Recent Advances in Acute Care and Emergency Surgery

Abstract

Hypovolemia secondary to uncontrolled hemorrhage is the most common cause of shock after injury. In the severely injured trauma patient, estimating the depth of shock and adequacy of resuscitation utilizing focused rapid echocardiographic evaluation (FREE) and endpoints of resuscitation including lactate, base deficit, and central venous oxygen saturation is key to developing an optimal resuscitation strategy. Damage control resuscitation (DCR), damage control surgery (DCS), angioembolization, and other endovascular techniques such as thoracic endovascular repair (TEVAR) and resuscitative endovascular balloon occlusion of the aorta (REBOA) have evolved to accomplish the primary objective in the clinical management of shock, which is to stop hemorrhage. In patients with ongoing bleeding, massive transfusion protocols (MTPs) are often activated with the goal of transfusing a balanced ratio of blood products. Unfortunately, these patients are at risk for developing acute traumatic coagulopathy (ATC), which together with acidosis and hypothermia has been recognized for several decades as part of a lethal triad of death. Thus, utilizing point-of-care testing such as thromboelastography (TEG) should be used to guide resuscitation. Extracorporeal therapies including venovenous bypass for management of bleeding from retrohepatic liver injuries and venovenous extracorporeal membrane oxygenation (ECMO) for management of refractory hypoxemia are additional strategies that should be considered in the resuscitation of trauma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pearson JD, Round JA, Ingram M. Management of shock in trauma. Anaesth Intensive Care Med. 2011;12(9):387–9.

    Google Scholar 

  2. American College of Surgeons Committee on Trauma. ATLS advanced trauma life support- student course manual, Chapter 3. 9th ed. Chicago, IL: American College of Surgeons; 2012. p. 66–88.

    Google Scholar 

  3. Chang R, Holcomb JB. Optimal fluid therapy for traumatic hemorrhagic shock. Crit Care Clin. 2017;33:15–36.

    PubMed  PubMed Central  Google Scholar 

  4. Mutschler M, Nienaber U, Brockamp T, et al. Renaissance of base deficit for the initial assessment of trauma patients: a base deficit based classification for hypovolemic shock developed on data from 16,305 patients derived from the TraumaRegister DGU®. Crit Care. 2013;17(2):R42.

    PubMed  PubMed Central  Google Scholar 

  5. Davis JW, Parks SN, Kaups KL, et al. Admission base deficit predicts transfusion requirements and risk of complications. J Trauma. 1996;41(5):769–74.

    CAS  PubMed  Google Scholar 

  6. Dunne JR, Tracy JK, Scalea TM, Napolitano LM. Lactate and base deficit in trauma: does alcohol or drug use impair their predictive accuracy. J Trauma. 2005;58(5):959–66.

    CAS  PubMed  Google Scholar 

  7. Scalea TM, Holman M, Fuortes M, et al. Central venous blood oxygen saturation: an early, accurate measurement of volume during hemorrhage. J Trauma. 1988;28(6):725–32.

    CAS  PubMed  Google Scholar 

  8. Scalea TM, Hartnett RW, Duncan AO, et al. Central venous oxygen saturation: a useful clinical tool in trauma patients. J Trauma. 1990;30(12):1539–42.

    CAS  PubMed  Google Scholar 

  9. Baron BJ, Dutton RP, Zehtabchi S, et al. Sublingual capnometry for rapid determination of the severity of hemorrhagic shock. J Trauma. 2007;62(1):120–4.

    PubMed  Google Scholar 

  10. Baron BJ, Sinert R, Zehtabchi S, et al. Diagnostic utility of sublingual PCO2 for detecting hemorrhage in penetrating trauma patient. J Trauma. 2004;57(1):69–74.

    PubMed  Google Scholar 

  11. Pellis T, Weil MH, Tang W, et al. Increases in both buccal and sublingual partial pressure of carbon dioxide reflect decreases of tissue blood flows in a porcine model during hemorrhagic shock. J Trauma. 2005;58(4):817–24.

    PubMed  Google Scholar 

  12. Ristagno G, Tang W, Sun S, Weil MH. Role of buccal PCO2 in the management of fluid resuscitation during hemorrhagic shock. Crit Care Med. 2006;34(12):S442–6.

    CAS  PubMed  Google Scholar 

  13. Crookes BA, Cohn SM, Bloch S, et al. Can near-infrared spectroscopy identify the severity of shock in trauma patients. J Trauma. 2005;58(4):813–6.

    Google Scholar 

  14. Abramson D, Scalea TM, Hitchcock R, et al. Lactate clearance and survival following injury. J Trauma. 1993;35(4):584–8.

    CAS  PubMed  Google Scholar 

  15. Dezman ZDW, Comer AC, Smith GS, et al. Failure to clear lactate predicts 24-hour mortality in trauma patients. J Trauma Acute Care Surg. 2015;79:580–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mikulaschek A, Henry S, Donovan R, Scalea TM. Serum lactate is not predicted by anion gap or base excess after trauma resuscitation. J Trauma. 1996;40:218–24.

    CAS  PubMed  Google Scholar 

  17. Murthi SB, Hess JR, Hess A, et al. Focused rapid echocardiographic evaluation versus vascular catheter-based assessment of cardiac output and function in critically ill trauma patients. J Trauma. 2012;72(5):1158–64.

    Google Scholar 

  18. Ferrada P, Murthi SB, Anand RJ, et al. Transthoracic focused rapid echocardiographic examination: real-time evaluation of fluid status in critically ill trauma patients. J Trauma. 2011;70:56–64.

    PubMed  Google Scholar 

  19. Madigan MC, Kemp CD, Johnson JC, Cotton BA. Secondary abdominal compartment syndrome after severe extremity injury: are early, aggressive fluid resuscitation strategies to blame? J Trauma. 2008;64:280–5.

    PubMed  Google Scholar 

  20. Handy JM, Soni N. Physiological effects of hyperchloraemia and acidosis. Br J Anaesth. 2008;101:141–50.

    CAS  PubMed  Google Scholar 

  21. Ley EJ, Clond MA, Srour MK, et al. Emergency department crystalloid resuscitation of 1.5 L or more is associated with increased mortality in elderly and nonelderly trauma patients. J Trauma. 2011;70(2):398–400.

    PubMed  Google Scholar 

  22. Giannoudi M, Harwood P. Damage control resuscitation: lessons learned. Eur J Trauma Emerg Surg. 2016;42:273–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaafarani HMA, Velmahos GC. Damage control resuscitation in trauma. Scand J Surg. 2014;103(2):81–8.

    CAS  PubMed  Google Scholar 

  24. Bickell WH, Wall MJ, Pepe PE, et al. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. NEJM. 1994;331:1105–9.

    CAS  PubMed  Google Scholar 

  25. Dutton RP, Mackenzie CF, Scalea TM. Hypotensive resuscitation during active hemorrhage: impact on in-hospital mortality. J Trauma. 2002;52:1141–6.

    PubMed  Google Scholar 

  26. Matheson PJ, Mays CJ, Hurt RT, Zakaria ER, et al. Modulation of mesenteric lymph flow and composition by direct peritoneal resuscitation from hemorrhagic shock. Arch Surg. 2009;44(7):625–34.

    Google Scholar 

  27. Garrison RN, Conn AA, Harris PD, Zakaria el R. Direct peritoneal resuscitation as adjunct to conventional resuscitation from hemorrhagic shock: a better outcome. Surgery. 2004;136(4):900–8.

    PubMed  Google Scholar 

  28. Hurt RT, Zakaria el R, Matheson PJ, et al. Hemorrhage-induced hepatic injury and hypoperfusion can be prevented by direct peritoneal resuscitation. J Gastrointest Surg. 2009;13(4):587–94.

    PubMed  PubMed Central  Google Scholar 

  29. Smith JW, Garrison RN, Matheson PJ, et al. Direct peritoneal resuscitation accelerates primary abdominal wall closure after damage control surgery. J Am Coll Surg. 2010;210:658–64.

    PubMed  PubMed Central  Google Scholar 

  30. Smith JW, Matheson PJ, Franklin GA, et al. Randomized control trial evaluating the efficacy of peritoneal resuscitation in the management trauma patients undergoing damage control surgery. J Am Coll Surg. 2017;224(4):396–404.

    PubMed  Google Scholar 

  31. Cotton BA, Dossett LA, Haut ER, et al. Multicenter validation of a simplified score to predict massive transfusion in trauma. J Trauma. 2010;69(Suppl 1):S33–9.

    PubMed  Google Scholar 

  32. ACS TQIP. Massive transfusion in trauma guidelines. American College of Surgeons. https://www.facs.org/%7E/media/files/quality%20programs/trauma/tqip/massive%20transfusion%20in%20trauma%20guildelines.ashx.

  33. Holcomb JB, Tilley BC, Baraniuk BC, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313(5):471–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Holcomb JB, del Junco DJ, Fox EE, et al. The prospective, observational, multicenter, major trauma transfusion (PROMMTT) study: comparative effectiveness of a time-varying treatment with competing risk. JAMA Surg. 2013;148(2):127–36.

    PubMed  PubMed Central  Google Scholar 

  35. Frith D, Brohl K. The pathophysiology of trauma-induced coagulopathy. Curr Opin Crit Care. 2012;18(6):631–6.

    PubMed  Google Scholar 

  36. Brohi K, Cohen MJ, Ganter MT, et al. Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma. 2008;64:1211–7.

    PubMed  Google Scholar 

  37. Cohen MJ, Call M, Nelson M, et al. Critical role of activated protein C in early coagulopathy and later organ failure, infection and death in trauma patients. Ann Surg. 2012;255(2):379–85.

    PubMed  PubMed Central  Google Scholar 

  38. Cohen MJ, Christie SA. Coagulopathy of trauma. Crit Care Clin. 2017;33:101–18.

    PubMed  Google Scholar 

  39. Brohi K, Cohen MJ, Ganter MT, et al. Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway? Ann Surg. 2007;245(5):812–8.

    PubMed  PubMed Central  Google Scholar 

  40. Cohen MJ, Kutcher M, Redick B, et al. Clinical and mechanistic drivers of acute traumatic coagulopathy. J Trauma Acute Care Surg. 2013;75(1 Suppl 1):S40–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hunt H, Stanworth S, Curry N. Thromboelastography (TEG) and rotational thromboelastometry (ROTEM) for trauma induced coagulopathy in adult trauma patients with bleeding. Cochrane Database Syst Rev. 2015;2:1–4.

    Google Scholar 

  42. Kashuk JL, Moore EE, Sawyer M. Goal directed resuscitation via POC thrombelastography. Ann Surg. 2010;251:604–14.

    PubMed  Google Scholar 

  43. Goodman MD, Mackley AT, Hanseman DJ. All the bangs without the bucks: defining essential point-of-care testing for traumatic coagulopathy. J Trauma Acute Care Surg. 2015;79(1):117–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Thakur M, Ahmed AB. A review of thromboelastography. Int J Periop Ultrasound Appl Technol. 2012;1(1):25–9.

    Google Scholar 

  45. Da Luz LT, Nascimento B, Rizoli. Thrombelastography (TEG): practical considerations on its clinical use in trauma resuscitation. Scand J Trauma Resusc Emerg Med. 2013;21:29.

    PubMed  PubMed Central  Google Scholar 

  46. Da Luz LT, Nascimento B, Shankarakutty AK. Effect of thromboelastography (TEG®) and rotational thromboelastometry (ROTEM®) on diagnosis of coagulopathy, transfusion guidance and mortality in trauma: descriptive systematic review. Crit Care. 2014;18:518.

    PubMed  PubMed Central  Google Scholar 

  47. Gonzalez E, Moore EE, Moore HB, et al. Goal-directed hemostatic resuscitation of trauma-induced coagulopathy: a pragmatic randomized clinical trial comparing a viscoelastic assay to conventional coagulation assays. Ann Surg. 2016;263(6):1051–9.

    PubMed  PubMed Central  Google Scholar 

  48. Moore HB, Moore EE, Gonzalez E, et al. Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: the spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg. 2014;77(6):811–7; discussion 7.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Moore HB, Moore EE, Morton AP, et al. Shock-induced hyperfibrinolysis is attenuated by plasma first resuscitation. J Trauma Acute Care Surg. 2015;79:897–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cotton BA, Harvin JA, Kostousouv V, et al. Hyperfibrinolysis at admission is an uncommon but highly lethal event associated with shock and prehospital fluid administration. J Trauma Acute Care Surg. 2012;73(2):365–70; discussion 70.

    CAS  PubMed  Google Scholar 

  51. CRASH-2 Trial Collaborators, Shakur H, Roberts I, Bautista R, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32.

    Google Scholar 

  52. Valle EJ, Allen CJ, Van Haren RM, et al. Do all trauma patients benefit from tranexamic acid? J Trauma Acute Care Surg. 2014;76:1373–8.

    CAS  PubMed  Google Scholar 

  53. Harvin JA, Peirce CA, Mims MM, et al. The impact of tranexamic acid on mortality in injured patients with hyperfibrinolysis. J Trauma Acute Care Surg. 2015;78:905–11.

    PubMed  Google Scholar 

  54. Meizoso JP, Karcutsie CA, Ray JJ, et al. Persistent fibrinolysis shutdown is associated with increased mortality in severely injured trauma patients. J Am Coll Surg. 2017;224(4):575–82.

    PubMed  Google Scholar 

  55. Moore HB, Moore EE, Liras IN, et al. Acute fibrinolysis shutdown after injury occurs frequently and increases mortality: a multicenter evaluation of 2,540 severely injured patients. J Am Coll Surg. 2016;222:347–55.

    PubMed  PubMed Central  Google Scholar 

  56. Neschis DG, Moainie S, Flinn WR, Scalea TM, Bartlett ST, Griffith BP. Endograft repair of traumatic aortic injury-a technique in evolution: a single institution’s experience. Ann Surg. 2009;250:377–82.

    PubMed  Google Scholar 

  57. Neschis DG, Scalea TM. Endovascular repair of traumatic aortic injuries. Adv Surg. 2010;44:281–92.

    PubMed  Google Scholar 

  58. Garcia-Toca M, Naughton PA, Matsumura JS, et al. Endovascular repair of blunt traumatic thoracic aortic injuries: seven-year single-center experience. Arch Surg. 2010;145:679–83.

    PubMed  Google Scholar 

  59. Willis M, Neschis D, Menaker J, et al. Stent grafting for a distal thoracic aortic injury. Vasc Endovasc Surg. 2011;45:187–90.

    Google Scholar 

  60. Demetriades D, Velmahos GC, Scalea TM, et al. Operative repair or endovascular stent graft in blunt traumatic thoracic aortic injuries: results of an American Association for the Surgery of Trauma Multicenter Study. J Trauma. 2009;66:967–73.

    PubMed  Google Scholar 

  61. Seamon MJ, Haut ER, Van Arendonk K, et al. An evidence based approach to patient selection for emergency department thoracotomy: a practice management guideline from the Eastern Association for the Surgery of Trauma. J Trauma Acute Care Surg. 2015;79(1):159–273.

    PubMed  Google Scholar 

  62. Qasim Z, Brenner M, Menaker J, Scalea TM. Resuscitative endovascular balloon occlusion of the aorta. Resuscitation. 2015;96:275–9.

    PubMed  Google Scholar 

  63. Moore LJ, Brenner M, Kozar RA. Implementation of resuscitative endovascular balloon occlusion of the aorta as an alternative to resuscitative thoracotomy for noncompressible truncal hemorrhage. J Trauma Acute Care Surg. 2015;79(4):523–32.

    PubMed  Google Scholar 

  64. Dubose JJ, Scalea TM, Brenner M. The AAST prospective Aortic Occlusion for Resuscitation in Trauma and Acute Care Surgery (AORTA) registry: data on contemporary utilization and outcomes of aortic occlusion and resuscitative balloon occlusion of the aorta (REBOA). J Trauma Acute Care Surg. 2016;81(3):409–19.

    PubMed  Google Scholar 

  65. Ahmed S, Menaker J, Kufera J, et al. Extracorporeal membrane oxygenation after traumatic injury. J Trauma Acute Care Surg. 2017;82(3):587–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Scalea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Berry, C., Tesoriero, R., Scalea, T. (2019). Critical Care Resuscitation in Trauma Patients: Basic Principles and Evolving Frontiers. In: Aseni, P., De Carlis, L., Mazzola, A., Grande, A.M. (eds) Operative Techniques and Recent Advances in Acute Care and Emergency Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-95114-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95114-0_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95113-3

  • Online ISBN: 978-3-319-95114-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics