Skip to main content

Quantitative Visualization of Sub-Micron Deformations and Stresses at Sub-Microsecond Intervals in Soda-Lime Glass Plates

  • Conference paper
  • First Online:
  • 1159 Accesses

Abstract

Full-field optical measurement of deformations and stresses on transparent brittle ceramics such as soda-lime glass is rather challenging due to the low toughness and high stiffness characteristics. Particularly, the surface topography and stress field evaluation from measured orthogonal surface slopes and stress gradients could be of considerable significance for visualizing and quantifying deformation of glass plates under dynamic impact loading. In this work, two full-field optical techniques, reflection Digital Gradient Sensing (or r-DGS) and a new DGS method, called transmission-reflection Digital Gradient Sensing (or tr-DGS) are employed to quantify surface slopes and stress gradients, respectively, as glass specimens are subjected dynamic impact loading using a modified Hopkinson pressure bar. These two methods can measure extremely small angular deflections of light rays caused by surface deformations and local stresses in specimens. The tr-DGS methodology is especially more sensitive than r-DGS. Using such optical methods, sub-micron surface deflections and the corresponding stress field, (σxx + σyy), can be quantified using a Higher-order Finite-difference-based Least-squares Integration (HFLI) scheme. When used in conjunction with ultrahigh-speed photography, microsecond or sub-microsecond temporal resolution is possible.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Periasamy, C., Tippur, H.V.: Full-field digital gradient sensing method for evaluating stress gradients in transparent solids. Appl. Opt. 51(12), 2088–2097 (2012)

    Article  Google Scholar 

  2. Periasamy, C., Tippur, H.V.: A full-field reflection-mode digital gradient sensing method for measuring orthogonal slopes and curvatures of thin structures. Meas. Sci. Technol. 24, 025202 (2013)

    Article  Google Scholar 

  3. Miao, C., Sundaram, B.M., Huang, L., Tippur, H.V.: Surface profile and stress field evaluation using digital gradient sensing method. Meas. Sci. Technol. 27, 095203 (2016)

    Article  Google Scholar 

  4. Miao, C., Tippur, H.: Measurement of orthogonal surface gradients and reconstruction of surface topography from digital gradient sensing method. In: Advancement of Optical Methods in Experimental Mechanics, pp. 203–206. Springer, Cham (2017)

    Google Scholar 

  5. Miao, C., Tippur, H.V.: Measurement of sub-micron deformations and stresses at microsecond intervals in laterally impacted composite plates using digital gradient sensing. J. Dyn. Behav. Mater. 1–23 (2018). https://doi.org/10.1007/s40870-018-0156-4

    Article  Google Scholar 

  6. Miao, C., Tippur, H.V.: Higher sensitivity digital gradient sensing configurations for quantitative visualization of stress gradients in transparent solids. Opt. Lasers Eng. 108, 54–67 (2018)

    Article  Google Scholar 

  7. Sundaram, B.M., Tippur, H.V.: Dynamic crack growth Normal to an Interface in bi-layered materials: an experimental study using digital gradient sensing technique. Exp. Mech. 56, 37–57 (2015)

    Article  Google Scholar 

  8. Sundaram, B.M., Tippur, H.V.: Dynamics of crack penetration vs. branching at a weak interface: an experimental study. J. Mech. Phys. Solids. 96, 312–332 (2016)

    Article  MathSciNet  Google Scholar 

  9. Sundaram, B.M., Tippur, H.V.: Dynamic mixed-mode fracture behaviors of PMMA and polycarbonate. Eng. Fract. Mech. 176, 186–212 (2017)

    Article  Google Scholar 

  10. Sundaram, B.M., Tippur, H.V.: Dynamic fracture of soda-lime glass: a full-field optical investigation of crack initiation, propagation and branching. J. Mech. Phys. Solids. (2018). https://doi.org/10.1016/j.jmps.2018.04.010

    Article  Google Scholar 

  11. Sundaram, B.M., Tippur, H.V.: Full-field measurement of contact-point and crack-tip deformations in soda-lime glass. Part-I: quasi-static loading. Int. J. Appl. Glas. Sci. 9, 114–122 (2018)

    Article  Google Scholar 

  12. Sundaram, B.M., Tippur, H.V.: Full-field measurement of contact-point and crack-tip deformations in soda-lime glass. Part-II: stress wave loading. Int. J. Appl. Glas. Sci. 9, 123–136 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

Support for this research through Army Research Office grants W911NF-16-1-0093 and W911NF-15-1-0357 (DURIP) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hareesh V. Tippur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miao, C., Tippur, H.V. (2019). Quantitative Visualization of Sub-Micron Deformations and Stresses at Sub-Microsecond Intervals in Soda-Lime Glass Plates. In: Kimberley, J., Lamberson, L., Mates, S. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95089-1_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95089-1_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95088-4

  • Online ISBN: 978-3-319-95089-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics