Skip to main content

The Effect of in-Plane Properties on the Ballistic Response of Polyethylene Composites

  • Conference paper
  • First Online:
Dynamic Behavior of Materials, Volume 1

Abstract

Using developed experimental and analytical methods for in-plane shear characterization of quasi-statically loaded polyethylene laminates, this work seeks to evaluate the effect the in-plane shear behavior has on ballistic performance (resistance to penetration and back face deflection). In-plane shear is a matrix-dominated phenomena and processing pressure is known to influence noticeable changes in the shear properties of polyethylene composites, so by varying matrix materials and processing conditions it is possible to probe an array of configurations. Quasi-static tensile tests of laminates with [±45°] orientation are performed to obtain the in-plane shear properties. To evaluate the ballistic response, a high pressure helium laboratory gas gun is used to accelerate 0.22 caliber spherical steel projectiles toward specimen panels to characterize the V50 ballistic limit velocity and back-face deflection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karthikeyan, K., et al.: The effect of shear strength on the ballistic response of laminated composite plates. Eur. J. Mech. A. Solids. 42, 35–53 (2013)

    Article  Google Scholar 

  2. Cline, J., Bogetti, T., Love, B.: Comparison of the in-plane shear behavior of UHMWPE fiber and highly oriented film composites, Proceedings of the 32nd American Society for Composites Technical Conference, West Lafayette, IN, 23–25 Oct 2017

    Google Scholar 

  3. Hazzard, M. et al.: An investigation of in-plane performance of ultra-high molecular weight polyethylene composites, Proceedings of the 20th International Conference on Composite Materials, Copenhagen, 19–24 July 2018

    Google Scholar 

  4. DSM Dyneema® Industries, http://www.dsm.com/products/dyneema/en_US/home.html, Accessed Feb 2018

  5. Greenhalgh, E.S., et al.: Fractographic observations on Dyneema® composites under ballistic impact. Compos. Part A. 44, 51–62 (2013)

    Article  Google Scholar 

  6. Correlated Solutions, Inc. http://www.correlatedsolutions.com, Accessed Feb 2018

Download references

Acknowledgements

This research was supported in part by an appointment to the Postgraduate Research Participation Program at the U.S. Army Research Laboratory administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and USARL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Cline .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cline, J. (2019). The Effect of in-Plane Properties on the Ballistic Response of Polyethylene Composites. In: Kimberley, J., Lamberson, L., Mates, S. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95089-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95089-1_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95088-4

  • Online ISBN: 978-3-319-95089-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics