Skip to main content

An Optimization-Based Approach to Design a Complex Loading Pattern Using a Modified Split Hopkinson Pressure Bar

  • Conference paper
  • First Online:
Dynamic Behavior of Materials, Volume 1

Abstract

The split Hopkinson pressure bar (SHPB) technique is used to characterize the mechanical response of a material during impact loading when a single stress wave pulse passes through that material [1]. The SHPB setup consists of two long bars: an incident bar and a transmission bar. The specimen, which needs to be characterized, is placed between these two bars. A striker propelled from a gas gun hits the incident bar generating a stress wave that propagates through the incident bar. A part of this wave is transmitted to the specimen and the transmission bar while the remaining part of the wave reflects back into the incident bar. By measuring the incident, transmitted, and reflected waves, the mechanical properties of the specimen are determined for high-strain-rate deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, W., Song, B.: Split Hopkinson (Kolsky) Bar Design, Testing and Applications. Springer, Boston (2011)

    Google Scholar 

  2. Sarntinoranont, M., Lee, S.J., Hong, Y., King, M.A., Subhash, G., Kwon, J., Moore, D.F.: High-strain-rate brain injury model using submerged acute rat brain tissue slices. J. Neurotrauma 29, 418–429 (2012)

    Article  Google Scholar 

  3. Tan, X.G., Przekwas, A.J., Gupta, R.K.: Computational modeling of blast wave interaction with a human body and assessment of traumatic brain injury. Shock Waves 27, 889–904 (2017)

    Article  Google Scholar 

  4. Bedford, A., Drumheller, D.S.: Introduction to Elastic Wave Propagation. Wiley, Chichester (1996)

    Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhas Vidhate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vidhate, S., Yucesoy, A., Pence, T.J., Willis, A.M., Mejia-Alvarez, R. (2019). An Optimization-Based Approach to Design a Complex Loading Pattern Using a Modified Split Hopkinson Pressure Bar. In: Kimberley, J., Lamberson, L., Mates, S. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95089-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95089-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95088-4

  • Online ISBN: 978-3-319-95089-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics