Skip to main content

Applications of AI Beyond Image Interpretation

  • Chapter
  • First Online:
Artificial Intelligence in Medical Imaging

Abstract

With rapid advancement in deep learning, much attention from the popular press, research publications, and startups has been on using AI for image interpretation in radiology. However, there are many applications of AI within radiology that are beyond image interpretation and may even be implemented much earlier in actual practice. This chapter explores the various uses of AI beyond image interpretation that can enhance radiology through improving imaging appropriateness and utilization, patient scheduling, exam protocoling, image quality, scanner efficiency, radiation exposure, radiologist workflow and reporting, patient follow-up and safety, billing, research and education, and more to improve, ultimately, patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erickson BJ, Korfiatis P, Akkus Z, et al. Machine learning for medical imaging. Radiographics. 2017;37:505.

    Article  PubMed  Google Scholar 

  2. Prevedello LM, Erdal BS, Ryu JL, et al. Automated critical test findings identification and online notification system using artificial intelligence in imaging. Radiology. 2017;285:923.

    Article  PubMed  Google Scholar 

  3. Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60.

    Article  PubMed  Google Scholar 

  4. Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis. 2015;115:211.

    Article  Google Scholar 

  5. Sahran S, Albashish D, Abdullah A, et al. Absolute cosine-based SVM-RFE feature selection method for prostate histopathological grading. Artif Intell Med. 2018;87:78–90.

    Article  PubMed  Google Scholar 

  6. Pedrosa M, Silva JM, Matos S, et al. SCREEN-DR – software architecture for the diabetic retinopathy screening. Stud Health Technol Inform. 2018;247:396.

    PubMed  Google Scholar 

  7. Guo LH, Wang D, Qian YY, et al. A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images. Clin Hemorheol Microcirc. 2018;69:343–54.

    Article  PubMed  Google Scholar 

  8. Saltz J, Gupta R, Hou L, et al. Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Rep. 2018;23:181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hramov AE, Frolov NS, Maksimenko VA, et al. Artificial neural network detects human uncertainty. Chaos. 2018;28:033607.

    Article  PubMed  Google Scholar 

  10. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lakhani P, Prater AB, Hutson RK, et al. Machine learning in radiology: applications beyond image interpretation. J Am Coll Radiol. 2018;15:350.

    Article  PubMed  Google Scholar 

  12. Boland GW, Duszak R Jr, McGinty G, et al. Delivery of appropriateness, quality, safety, efficiency and patient satisfaction. J Am Coll Radiol. 2014;11:7.

    Article  PubMed  Google Scholar 

  13. Brink JA, Arenson RL, Grist TM, et al. Bits and bytes: the future of radiology lies in informatics and information technology. Eur Radiol. 2017;27:3647.

    Article  PubMed  Google Scholar 

  14. Ip IK, Schneider L, Seltzer S, et al. Impact of provider-led, technology-enabled radiology management program on imaging. Am J Med. 2013;126:687.

    Article  PubMed  Google Scholar 

  15. Sistrom CL, Dang PA, Weilburg JB, et al. Effect of computerized order entry with integrated decision support on the growth of outpatient procedure volumes: seven-year time series analysis. Radiology. 2009;251:147.

    Article  PubMed  Google Scholar 

  16. Kruskal JB, Berkowitz S, Geis JR, et al. Big data and machine learning-strategies for driving this bus: a summary of the 2016 intersociety summer conference. J Am Coll Radiol. 2017;14:811.

    Article  PubMed  Google Scholar 

  17. Morey JM, Haney NM, Cooper PB. A predictive diagnostic imaging calculator as a clinical decision support tool. J Am Coll Radiol. 2014;11:736.

    Article  PubMed  Google Scholar 

  18. Hassanpour S, Langlotz CP. Predicting high imaging utilization based on initial radiology reports: a feasibility study of machine learning. Acad Radiol. 2016;23:84.

    Article  PubMed  Google Scholar 

  19. Muelly M, Vasanawala S. MRI schedule optimization through discrete event simulation and neural networks as a means of increasing scanner productivity. In: Radiology Society of North America (RSNA) 102nd scientific assembly and annual meeting. Chicago, IL, November 2016.

    Google Scholar 

  20. Muelly M, Stoddard P, Vasanwala S. Using machine learning with dynamic exam block lengths to decrease patient wait time and optimize MRI schedule fill rate. In: International society for magnetic resonance in medicine. Honolulu, HI, April 2017.

    Google Scholar 

  21. Li X, Wang J, Fung RYK. Approximate dynamic programming approaches for appointment scheduling with patient preferences. Artif Intell Med. 2018;85:16.

    Article  PubMed  Google Scholar 

  22. Hills LS. How to handle patients who miss appointments or show up late. J Med Pract Manage. 2009;25:166.

    PubMed  Google Scholar 

  23. Blumenthal DM, Singal G, Mangla SS, et al. Predicting non-adherence with outpatient colonoscopy using a novel electronic tool that measures prior non-adherence. J Gen Intern Med. 2015;30:724.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Torres O, Rothberg MB, Garb J, et al. Risk factor model to predict a missed clinic appointment in an urban, academic, and underserved setting. Popul Health Manag. 2015;18:131.

    Article  PubMed  Google Scholar 

  25. Huang Y, Hanauer DA. Patient no-show predictive model development using multiple data sources for an effective overbooking approach. Appl Clin Inform. 2014;5:836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Percac-Lima S, Cronin PR, Ryan DP, et al. Patient navigation based on predictive modeling decreases no-show rates in cancer care. Cancer. 2015;121:1662.

    Article  PubMed  Google Scholar 

  27. Harvey HB, Liu C, Ai J, et al. Predicting no-shows in radiology using regression modeling of data available in the electronic medical record. J Am Coll Radiol. 2017;14:1303.

    Article  PubMed  Google Scholar 

  28. Kurasawa H, Hayashi K, Fujino A, et al. Machine-learning-based prediction of a missed scheduled clinical appointment by patients with diabetes. J Diabetes Sci Technol. 2016;10:730.

    Article  PubMed  Google Scholar 

  29. Chang JT, Sewell JL, Day LW. Prevalence and predictors of patient no-shows to outpatient endoscopic procedures scheduled with anesthesia. BMC Gastroenterol. 2015;15:123.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kaplan-Lewis E, Percac-Lima S. No-show to primary care appointments: why patients do not come. J Prim Care Community Health. 2013;4:251.

    Article  PubMed  Google Scholar 

  31. Miller AJ, Chae E, Peterson E, et al. Predictors of repeated “no-showing” to clinic appointments. Am J Otolaryngol. 2015;36:411.

    Article  PubMed  Google Scholar 

  32. AlRowaili MO, Ahmed AE, Areabi HA. Factors associated with no-shows and rescheduling MRI appointments. BMC Health Serv Res. 2016;16:679.

    Article  Google Scholar 

  33. Curran JS, Halpert RD, Straatman A. Patient “no-shows” – are we scheduling failure? Radiol Manage. 1989;11:44.

    CAS  PubMed  Google Scholar 

  34. Guzek LM, Fadel WF, Golomb MR. A pilot study of reasons and risk factors for “no-shows” in a pediatric neurology clinic. J Child Neurol. 2015;30:1295.

    Article  PubMed  Google Scholar 

  35. Norbash A, Yucel K, Yuh W, et al. Effect of team training on improving MRI study completion rates and no-show rates. J Magn Reson Imaging. 2016;44:1040.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Samuels RC, Ward VL, Melvin P, et al. Missed appointments: factors contributing to high no-show rates in an urban pediatrics primary care clinic. Clin Pediatr (Phila). 2015;54:976.

    Article  Google Scholar 

  37. McMullen MJ, Netland PA. Lead time for appointment and the no-show rate in an ophthalmology clinic. Clin Ophthalmol. 2015;9:513.

    PubMed  PubMed Central  Google Scholar 

  38. Trivedi H, Mesterhazy J, Laguna B, et al. Automatic determination of the need for intravenous contrast in musculoskeletal MRI examinations using IBM Watson’s natural language processing algorithm. J Digit Imaging. 2018;31:245.

    Article  PubMed  Google Scholar 

  39. Rothenberg S, Patel J, Herschu M. Evaluation of a machine-learning approach to protocol MRI examinations: initial experience predicting use of contrast by neuroradiologists in MRI protocols. In: Radiology Society of North America (RSNA) 2012nd scientific assembly and annual meeting. Chicago, IL, November 2016.

    Google Scholar 

  40. Sohn J, Trivedi H, Mesterhazy J. Development and validation of machine learning based natural language classifiers to automatically assign MRI abdomen/pelvis protocols from free-text clinical indications. In: Society of Imaging Informations in Medicine (SIIM) annual meeting. Pittsburgh, PA, June 2017.

    Google Scholar 

  41. Brown AD, Marotta TR. Using machine learning for sequence-level automated MRI protocol selection in neuroradiology. J Am Med Inform Assoc. 2018;25:568.

    Article  PubMed  Google Scholar 

  42. Lee YH. Efficiency improvement in a busy radiology practice: determination of musculoskeletal magnetic resonance imaging protocol using deep-learning convolutional neural networks. J Digit Imaging. 2018;31:604–10.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hyun CM, Kim HP, Lee SM, et al. Deep learning for undersampled MRI reconstruction. Phys Med Biol. 2018;63:135007.

    Article  PubMed  Google Scholar 

  44. Zhu B, Liu JZ, Cauley SF, et al. Image reconstruction by domain-transform manifold learning. Nature. 2018;555:487.

    Article  CAS  PubMed  Google Scholar 

  45. Eo T, Jun Y, Kim T, et al. KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magn Reson Med. 2018;80:2188–201.

    Article  CAS  PubMed  Google Scholar 

  46. Golkov V, Dosovitskiy A, Sperl JI, et al. q-Space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans Med Imaging. 2016;35:1344.

    Article  PubMed  Google Scholar 

  47. Hammernik K, Klatzer T, Kobler E, et al. Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med. 2018;79:3055.

    Article  PubMed  Google Scholar 

  48. Quan TM, Nguyen-Duc T, Jeong WK. Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE Trans Med Imaging. 2018;37:1.

    Article  Google Scholar 

  49. Yang G, Yu S, Dong H, et al. DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans Med Imaging. 2018;37:1.

    Article  CAS  PubMed  Google Scholar 

  50. Zaharchuk G, Gong E, Wintermark M, et al. Deep learning in neuroradiology. Am J Neuroradiol. 2018; https://doi.org/10.3174/ajnr.A5543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gong E, Pauly JM, Wintermark M, et al. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI. J Magn Reson Imaging. 2018;48:330–40.

    Article  PubMed  Google Scholar 

  52. Geyer LL, Schoepf UJ, Meinel FG, et al. State of the art: iterative CT reconstruction techniques. Radiology. 2015;276:339.

    Article  PubMed  Google Scholar 

  53. Patino M, Fuentes JM, Singh S, et al. Iterative reconstruction techniques in abdominopelvic CT: technical concepts and clinical implementation. Am J Roentgenol. 2015;205:W19.

    Article  Google Scholar 

  54. Ledig C, Theis L, Huszar F, et al. Photo-realistic single image super-resolution using a generative adversarial network. 2016. CoRR, abs/1609.04802.

    Google Scholar 

  55. Dong C, Loy CC, He K, et al. Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell. 2016;38:295.

    Article  PubMed  Google Scholar 

  56. Hayat K. Super-resolution via deep learning. 2017. CoRR, abs/1706.09077.

    Google Scholar 

  57. Johnson J, Alahi A, Li F-F. Perceptual losses for real-time style transfer and super-resolution. 2016. CoRR, abs/1603.08155.

    Chapter  Google Scholar 

  58. Lim B, Son S, Kim H, et al. Enhanced deep residual networks for single image super-resolution. 2017. CoRR, abs/1707.02921.

    Google Scholar 

  59. Shi W, Caballero J, Huszár F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. 2016. CoRR, abs/1609.05158.

    Google Scholar 

  60. Sajjadi MSM, Schölkopf B, Hirsch M. EnhanceNet: single image super-resolution through automated texture synthesis. 2016. CoRR, abs/1612.07919.

    Google Scholar 

  61. Chen H, Zhang Y, Zhang W, et al. Low-dose CT via convolutional neural network. Biomed Opt Express. 2017;8:679.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chen H, Zhang Y, Kalra MK, et al. Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging. 2017;36:2524.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yasaka K, Katsura M, Akahane M, et al. Model-based iterative reconstruction for reduction of radiation dose in abdominopelvic CT: comparison to adaptive statistical iterative reconstruction. Springerplus. 2013;2:209.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Moloney F, Twomey M, Fama D, et al. Determination of a suitable low-dose abdominopelvic CT protocol using model-based iterative reconstruction through cadaveric study. J Med Imaging Radiat Oncol. 2018;https://doi.org/10.1111/1754-9485.12733.

    Article  PubMed  Google Scholar 

  65. Murphy KP, Crush L, O’Neill SB, et al. Feasibility of low-dose CT with model-based iterative image reconstruction in follow-up of patients with testicular cancer. Eur J Radiol Open. 2016;3:38.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cross NM, DeBerry J, Ortiz D, et al. Diagnostic quality of machine learning algorithm for optimization of low-dose computed tomography data. In: SIIM (Society for Imaging Informatics in Medicine) Annual Meeting, 2017

    Google Scholar 

  67. Xu J, Gong E, Pauly JM, et al. 200x low-dose PET reconstruction using deep learning. 2017. CoRR, abs/1712.04119.

    Google Scholar 

  68. Yang Q, Li N, Zhao Z, et al. MRI image-to-image translation for cross-modality image registration and segmentation. 2018. CoRR, abs/1801.06940.

    Google Scholar 

  69. Liu F, Jang H, Kijowski R, et al. Deep learning MR imaging–based attenuation correction for PET/MR imaging. Radiology. 2018;286:676.

    Article  PubMed  Google Scholar 

  70. Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys. 2017;44:1408.

    Article  CAS  PubMed  Google Scholar 

  71. Wolterink JM, Dinkla AM, Savenije MHF, et al. Deep MR to CT synthesis using unpaired data. 2017. CoRR, abs/1708.01155

    Google Scholar 

  72. Ben-Cohen A, Klang E, Raskin SP, et al. Cross-modality synthesis from CT to PET using FCN and GAN networks for improved automated lesion detection. 2018. CoRR, abs/1802.07846

    Google Scholar 

  73. Li R, Zhang W, Suk H-I, et al. Deep learning based imaging data completion for improved brain disease diagnosis. Presented at the Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014, Cham. 2014.

    Google Scholar 

  74. Esses SJ, Lu X, Zhao T, et al. Automated image quality evaluation of T2 -weighted liver MRI utilizing deep learning architecture. J Magn Reson Imaging. 2018;47:723.

    Article  PubMed  Google Scholar 

  75. Kohli MD, Summers RM, Geis JR. Medical image data and datasets in the era of machine learning-whitepaper from the 2016 C-MIMI meeting dataset session. J Digit Imaging. 2017;30:392.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wang KC, Patel JB, Vyas B, et al. Use of radiology procedure codes in health care: the need for standardization and structure. Radiographics. 2017;37:1099.

    Article  PubMed  Google Scholar 

  77. Bulu H, Sippo DA, Lee JM, et al. Proposing new RadLex terms by analyzing free-text mammography reports. J Digit Imaging. 2018;31:596–603.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Percha B, Zhang Y, Bozkurt S, et al. Expanding a radiology lexicon using contextual patterns in radiology reports. J Am Med Inform Assoc. 2018;25:679–85.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Duda J, Botzolakis E, Chen P-H, et al. Bayesian network interface for assisting radiology interpretation and education. Presented at the SPIE medical imaging. 2018.

    Google Scholar 

  80. Chen R, Wang S, Poptani H, et al. A Bayesian diagnostic system to differentiate glioblastomas from solitary brain metastases. Neuroradiol J. 2013;26:175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. http://www.acrinformatics.org/acr-assist

  82. Rubin DL, Kahn CE Jr. Common data elements in radiology. Radiology. 2017;283:837.

    Article  PubMed  Google Scholar 

  83. Zech J, Pain M, Titano J, et al. Natural language–based machine learning models for the annotation of clinical radiology reports. Radiology. 2018;287:570.

    Article  PubMed  Google Scholar 

  84. Meystre SM, Savova GK, Kipper-Schuler KC, et al. Extracting information from textual documents in the electronic health record: a review of recent research. Yearb Med Inform. 2008;128:44.

    Google Scholar 

  85. Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2:230.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pons E, Braun LM, Hunink MG, et al. Natural language processing in radiology: a systematic review. Radiology. 2016;279:329.

    Article  PubMed  Google Scholar 

  87. Tan WK, Hassanpour S, Heagerty PJ, et al. Comparison of natural language processing rules-based and machine-learning systems to identify lumbar spine imaging findings related to low back pain. Acad Radiol. 2018;https://doi.org/10.1016/j.acra.2018.03.008.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chen PH, Zafar H, Galperin-Aizenberg M, et al. integrating natural language processing and machine learning algorithms to categorize oncologic response in radiology reports. J Digit Imaging. 2018;31:178.

    Article  PubMed  Google Scholar 

  89. Liu P, Pan X. Text summarization with TensorFlow. Google Blogs. 2016. https://ai.googleblog.com/2016/08/text-summarization-with-tensorflow.html

  90. Rush AM, Chopra S, Weston J. A neural attention model for abstractive sentence summarization. 2015. CoRR, abs/1509.00685.

    Google Scholar 

  91. Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with neural networks. 2014. CoRR, abs/1409.3215.

    Google Scholar 

  92. Wu Y, Schuster M, Chen Z, et al. Google’s neural machine translation system: bridging the gap between human and machine translation. 2016. CoRR, abs/1609.08144

    Google Scholar 

  93. Walker J, Darer JD, Elmore JG, et al. The road toward fully transparent medical records. N Engl J Med. 2014;370:6.

    Article  CAS  PubMed  Google Scholar 

  94. Oh SC, Cook TS, Kahn CE Jr. PORTER: a prototype system for patient-oriented radiology reporting. J Digit Imaging. 2016;29:450.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Bossen JK, Hageman MG, King JD, et al. Does rewording MRI reports improve patient understanding and emotional response to a clinical report? Clin Orthop Relat Res. 2013;471:3637.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ringler MD, Goss BC, Bartholmai BJ. Syntactic and semantic errors in radiology reports associated with speech recognition software. Health Inform J. 2017;23:3.

    Article  Google Scholar 

  97. Quint LE, Quint DJ, Myles JD. Frequency and spectrum of errors in final radiology reports generated with automatic speech recognition technology. J Am Coll Radiol. 2008;5:1196.

    Article  PubMed  Google Scholar 

  98. Zhang Y, Pezeshki M, Brakel P, et al. Towards end-to-end speech recognition with deep convolutional neural networks. 2017. CoRR, abs/1701.02720.

    Google Scholar 

  99. Hannun AY, Case C, Casper J, et al. Deep speech: scaling up end-to-end speech recognition. 2014. CoRR, abs/1412.5567.

    Google Scholar 

  100. Zhang Z, Geiger JT, Pohjalainen J, et al. Deep learning for environmentally robust speech recognition: an overview of recent developments. 2017. CoRR, abs/1705.10874.

    Google Scholar 

  101. Zhang Y, Chan W, Jaitly N. Very deep convolutional networks for end-to-end speech recognition. Presented at the 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP), 5–9 March 2017. 2017.

    Google Scholar 

  102. Blagev DP, Lloyd JF, Conner K, et al. Follow-up of incidental pulmonary nodules and the radiology report. J Am Coll Radiol. 2016;13:R18.

    Article  PubMed  Google Scholar 

  103. Cook TS, Lalevic D, Sloan C, et al. Implementation of an automated radiology recommendation-tracking engine for abdominal imaging findings of possible cancer. J Am Coll Radiol. 2017;14:629.

    Article  PubMed  Google Scholar 

  104. Xu Y, Tsujii J, Chang EIC. Named entity recognition of follow-up and time information in 20 000 radiology reports. J Am Med Inform Assoc. 2012;19:792.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Lacson R, Desai S, Landman A, et al. Impact of a health information technology intervention on the follow-up management of pulmonary nodules. J Digit Imaging. 2018;31:19.

    Article  PubMed  Google Scholar 

  106. Arbabshirani MR, Fornwalt BK, Mongelluzzo GJ, et al. Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. npj Digital Medicine. 2018;1:9.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Yaniv G, Kuperberg A, Walach E. Deep learning algorithm for optimizing critical findings report turnaround time. In: SIIM (Society for Imaging Informatics in Medicine) Annual Meeting. 2018.

    Google Scholar 

  108. Baum R, Bertsimas D, Kallus N. Scheduling, revenue management, and fairness in an academic-hospital radiology division. Acad Radiol. 2014;21:1322.

    Article  PubMed  Google Scholar 

  109. Avrin D. Faculty scheduling. Acad Radiol. 2014;21:1223.

    Article  PubMed  Google Scholar 

  110. Boroumand G, Dave JK, Roth CG. Shedding light on the off-hours coverage gap in radiology: improving turnaround times and critical results reporting. House Staff Quality Improvement and Patient Safety Posters. Poster 64. Jefferson Digital Commons. 2017. http://jdc.jefferson.edu/patientsafetyposters/64

  111. Lazzeri F, Lu H, Reiter I. Optimizing project staffing to improve profitability with Cortana Intelligence. In: Microsoft learning blog, vol. 2018. 2017. https://blogs.technet.microsoft.com/machinelearning/2017/03/30/optimizing-workforce-staffing-to-improve-profitability-with-cortana-intelligence/

  112. Prevedello LM, Andriole KP, Hanson R, et al. Business intelligence tools for radiology: creating a prototype model using open-source tools. J Digit Imaging. 2010;23:133.

    Article  PubMed  Google Scholar 

  113. Cook TS, Nagy P. Business intelligence for the radiologist: making your data work for you. J Am Coll Radiol. 2014;11:1238.

    Article  PubMed  Google Scholar 

  114. Meenan C, Erickson B, Knight N, et al. Workflow lexicons in healthcare: validation of the SWIM lexicon. J Digit Imaging. 2017;30:255.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Muramatsu C. Overview on subjective similarity of images for content-based medical image retrieval. Radiol Phys Technol. 2018;11:109–24.

    Article  PubMed  Google Scholar 

  116. Miller DD, Brown EW. Artificial intelligence in medical practice: the question to the answer? Am J Med. 2018;131:129.

    Article  PubMed  Google Scholar 

  117. Duszak R Jr, Nossal M, Schofield L, et al. Physician documentation deficiencies in abdominal ultrasound reports: frequency, characteristics, and financial impact. J Am Coll Radiol. 2012;9:403.

    Article  PubMed  Google Scholar 

  118. Report, B. s. H. C. Combatting denials using machine intelligence: how it works and why now is the time for it, vol. 2018. 2015. https://www.beckershospitalreview.com/finance/combatting-denials-using-machine-intelligence-how-it-works-and-why-now-is-the-time-for-it.html

  119. Hawkins CM, DeLa OA, Hung C. Social media and the patient experience. J Am Coll Radiol. 2016;13:1615.

    Article  PubMed  Google Scholar 

  120. Gefen R, Bruno MA, Abujudeh HH. Online portals: gateway to patient-centered radiology. AJR Am J Roentgenol. 2017;209:987.

    Article  PubMed  Google Scholar 

  121. Partridge SR, Gallagher P, Freeman B, et al. Facebook groups for the management of chronic diseases. J Med Internet Res. 2018;20:e21.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks: visualising image classification models and saliency maps. 2013. CoRR, abs/1312.6034.

    Google Scholar 

  123. Dhurandhar A, Chen P-Y, Luss R, et al. Explanations based on the missing: towards contrastive explanations with pertinent negatives. 2018. CoRR, abs/1802.07623.

    Google Scholar 

  124. Kim W. Beyond interpretation. ACR DSI Blog. 2017.https://www.acrdsi.org/Blog/Beyond-Interpretation

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morey, J.M., Haney, N.M., Kim, W. (2019). Applications of AI Beyond Image Interpretation. In: Ranschaert, E., Morozov, S., Algra, P. (eds) Artificial Intelligence in Medical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-94878-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94878-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94877-5

  • Online ISBN: 978-3-319-94878-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics