Skip to main content

Cover Complexity of Finite Languages

  • Conference paper
  • First Online:
Descriptional Complexity of Formal Systems (DCFS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10952))

Included in the following conference series:

Abstract

We consider the notion of cover complexity of finite languages on three different levels of abstraction. For arbitrary cover complexity measures, we give a characterisation of the situations in which they collapse to a bounded complexity measure. Moreover, we show for a restricted class of context-free grammars that its grammatical cover complexity measure w.r.t. a finite language L is unbounded and that the cover complexity of L can be computed from the exact complexities of a finite number of coversĀ \(L' \supseteq L\). We also investigate upper and lower bounds on the grammatical cover complexity of the language operations intersection, union, and concatenation on finite languages for several different types of context-free grammars.

Supported by the Vienna Science Fund (WWTF) project VRG12-004 and the Austrian Science Fund (FWF) project P25160.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A context-free grammar \(G = (N,\varSigma ,P,S)\) is said to be in Chomsky normal form if all productions are of the form \(A \rightarrow BC\), \(A \rightarrow a\), or \(A \rightarrow \varepsilon \), where \(A,B,C \in N\) andĀ \(a \in \varSigma \).

References

  1. Alspach, B., Eades, P., Rose, G.: A lower-bound for the number of productions required for a certain class of languages. Discrete Appl. Math. 6(2), 109ā€“115 (1983)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  2. Bucher, W.: A note on a problem in the theory of grammatical complexity. Theor. Comput. Sci. 14, 337ā€“344 (1981)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  3. Bucher, W., Maurer, H.A., Culik II, K.: Context-free complexity of finite languages. Theor. Comput. Sci. 28, 277ā€“285 (1984)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  4. Bucher, W., Maurer, H.A., Culik II, K., Wotschke, D.: Concise description of finite languages. Theor. Comput. Sci. 14, 227ā€“246 (1981)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  5. CĆ¢mpeanu, C., SĆ¢ntean, N., Yu, S.: Minimal cover-automata for finite languages. In: Champarnaud, J.-M., Ziadi, D., Maurel, D. (eds.) WIA 1998. LNCS, vol. 1660, pp. 43ā€“56. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48057-9_4

    ChapterĀ  MATHĀ  Google ScholarĀ 

  6. CĆ¢mpeanu, C., Santean, N., Yu, S.: Minimal cover-automata for finite languages. Theor. Comput. Sci. 267(1ā€“2), 3ā€“16 (2001)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  7. ČernĆ½, A.: Complexity and minimality of context-free grammars and languages. In: Gruska, J. (ed.) MFCS 1977. LNCS, vol. 53, pp. 263ā€“271. Springer, Heidelberg (1977). https://doi.org/10.1007/3-540-08353-7_144

    ChapterĀ  Google ScholarĀ 

  8. Dassow, J.: Descriptional complexity and operations ā€“ two non-classical cases. In: Pighizzini, G., CĆ¢mpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316, pp. 33ā€“44. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60252-3_3

    ChapterĀ  MATHĀ  Google ScholarĀ 

  9. Dassow, J., Harbich, R.: Production complexity of some operations on context-free languages. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 141ā€“154. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31623-4_11

    ChapterĀ  MATHĀ  Google ScholarĀ 

  10. Eberhard, S., Hetzl, S.: Compressibility of finite languages by grammars. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 93ā€“104. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19225-3_8

    ChapterĀ  MATHĀ  Google ScholarĀ 

  11. Eberhard, S., Hetzl, S.: On the compressibility of finite languages and formal proofs. Inf. Comput. 259, 191ā€“213 (2018)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  12. Gruska, J.: On a classification of context-free languages. Kybernetika 3(1), 22ā€“29 (1967)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  13. Gruska, J.: Some classifications of context-free languages. Inf. Control 14(2), 152ā€“179 (1969)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  14. Gruska, J.: Complexity and unambiguity of context-free grammars and languages. Inf. Control 18(5), 502ā€“519 (1971)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  15. Gruska, J.: On the size of context-free grammars. Kybernetika 8(3), 213ā€“218 (1972)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  16. Hetzl, S.: Applying tree languages in proof theory. In: Dediu, A.-H., MartĆ­n-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 301ā€“312. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28332-1_26

    ChapterĀ  MATHĀ  Google ScholarĀ 

  17. Hetzl, S., Leitsch, A., Reis, G., Tapolczai, J., Weller, D.: Introducing quantified cuts in logic with equality. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 240ā€“254. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_17

    ChapterĀ  Google ScholarĀ 

  18. Hetzl, S., Leitsch, A., Reis, G., Weller, D.: Algorithmic introduction of quantified cuts. Theor. Comput. Sci. 549, 1ā€“16 (2014)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  19. Hetzl, S., Leitsch, A., Weller, D.: Towards algorithmic cut-introduction. In: BjĆørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 228ā€“242. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28717-6_19

    ChapterĀ  Google ScholarĀ 

  20. PudlĆ”k, P.: Twelve problems in proof complexity. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 13ā€“27. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79709-8_4

    ChapterĀ  Google ScholarĀ 

  21. Tuza, Z.: On the context-free production complexity of finite languages. Discrete Appl. Math. 18(3), 293ā€“304 (1987)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

Download references

Acknowledgements

The authors would like to thank Markus Holzer and the anonymous reviewers for several useful comments and suggestions concerning the results in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Wolfsteiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2018 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hetzl, S., Wolfsteiner, S. (2018). Cover Complexity of Finite Languages. In: Konstantinidis, S., Pighizzini, G. (eds) Descriptional Complexity of Formal Systems. DCFS 2018. Lecture Notes in Computer Science(), vol 10952. Springer, Cham. https://doi.org/10.1007/978-3-319-94631-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94631-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94630-6

  • Online ISBN: 978-3-319-94631-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics