Skip to main content

Evolution of Imaging of Black Hole Accretion-Outflow System over Half a Century

  • Conference paper
  • First Online:
  • 992 Accesses

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 53))

Abstract

Light bending around black holes has a beautiful consequence on the image of accretion disks around black holes. The nature of disks around black holes has evolved from a static Keplerian disk to modern days dynamic advective flow models. As a result, the images of black holes have changed. Major efforts of producing simulated black hole images are briefly presented. Distinguishing event horizon from the disk will be one of the major discoveries of this century. Event Horizon Telescope (EHT) is getting prepared to discern the horizon of Sgr A* where radio interferometry technique has been deployed. For Galactic black holes, the required resolution is much higher and X-ray interferometry is essential.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abramowicz, M.A., Jaroszynski, M., Sikora, M.: A&A 63, 221 (1978)

    ADS  Google Scholar 

  2. Agol, E.: ApJL 538, L121–L124 (2000)

    Article  ADS  Google Scholar 

  3. Armitage, P.J., Reynolds, C.S.: MNRAS 341, 1041 (2003)

    Article  ADS  Google Scholar 

  4. Baganoff, Y., et al.: ApJ 591, 891 (2003)

    Article  ADS  Google Scholar 

  5. Bambi, C., Freese, K.: Phys. Rev. D 79(4), 043002 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  6. Barrir̀re, N.M., Tomsick, J.A., Baganoff, F.K., Boggs, S.E., Christensen, F.E.: ApJ 786, 46 (2014)

    Article  ADS  Google Scholar 

  7. Bian, W.H., Zhao, Y.H.: PASJ 55, 599 (2003)

    Article  ADS  Google Scholar 

  8. Bondi, H.: MNRAS 112, 195 (1952)

    Article  ADS  Google Scholar 

  9. Broderick, A.E., Loeb, A.: ApJ 697, 1164 (2009)

    Article  ADS  Google Scholar 

  10. Bromley, B.C., Melia, F., Liu, S.: ApJ 555, 83 (2001)

    Article  ADS  Google Scholar 

  11. Chan, C.K., Psaltis, D., Özel, F.: ApJ 777, 13 (2013)

    Article  ADS  Google Scholar 

  12. Chakrabarti, S.K.: ApJ 288, 1 (1985)

    Article  ADS  Google Scholar 

  13. Chakrabarti, S.K.: ApJ 347, 365 (1989)

    Article  ADS  Google Scholar 

  14. Chakrabarti, S.K.: MNRAS 243, 610 (1990)

    ADS  Google Scholar 

  15. Chakrabarti, S.K.: Theory of Transonic Astrophysical Flows. World Scientific, Singapore (1990)

    Book  Google Scholar 

  16. Chakrabarti, S.K.: ApJ 464, 664 (1996)

    Article  ADS  Google Scholar 

  17. Chakrabarti, S.K., Titarchuk, L.G.: ApJ 455, 623 (1995)

    Article  ADS  Google Scholar 

  18. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Oxford University Press, Oxford (1985)

    MATH  Google Scholar 

  19. Chatterjee, A., Chakrabarti, S.K., Ghosh, H.: MNRAS 465, 3902 (2017)

    Article  ADS  Google Scholar 

  20. Chatterjee, A., Chakrabarti, S.K., Ghosh, H.: MNRAS 472, 1842 (2017)

    Article  ADS  Google Scholar 

  21. Chatterjee, A., Chakrabarti, S.K., Ghosh, H., Garain S.K.: MNRAS 478, 3356 (2018)

    Article  ADS  Google Scholar 

  22. Coker, R., Melia, F. ApJ 488, L149 (1997)

    Article  ADS  Google Scholar 

  23. Cunningham, C.T., Bardeen, J.M.: ApJ 183, 237 (1973)

    Article  ADS  Google Scholar 

  24. Dexter, J.: MNRAS 462, 115 (2016)

    Article  ADS  Google Scholar 

  25. Dexter, J., Agol, E., Fragile, P.C., McKinney, J.C.: ApJ 717, 1092 (2010)

    Article  ADS  Google Scholar 

  26. Dibi, S., Drappeau, S., Fragile, P.C., Markoff, S., Dexter, J.: MNRAS 426, 1928 (2012)

    Article  ADS  Google Scholar 

  27. Dibi, S., Markoff, S., Belmont, R., Malzac, J., Barrir̀re, N., Tomsick, J.: MNRAS 441, 1005 (2013)

    Google Scholar 

  28. Doeleman, S.S., Weintroub, J., Rogers, A.E.E., et al.: Nature 455, 78 (2008)

    Article  ADS  Google Scholar 

  29. Dolence, J.C., Gammie, C.F., Shiokawa, H., Noble, S.C.: ApJ 746, L10 (2012)

    Article  ADS  Google Scholar 

  30. Drappeau, S., Dibi, S., Dexter, J., Markoff, S., Fragile, P.C.: MNRAS 431, 2872 (2013)

    Article  ADS  Google Scholar 

  31. Fabian, A.C., Rees, M.J., Stella, L., White, N.E.: MNRAS 238, 729 (1989)

    Article  ADS  Google Scholar 

  32. Falcke, H., Markoff, S.: CQGra 30(24), 244003 (2013)

    Article  ADS  Google Scholar 

  33. Fish, V.L., Doeleman, S.S., Beaudoin, C., et al.: ApJ 727, L36 (2011)

    Article  ADS  Google Scholar 

  34. Fuerst, S.V., Wu, K.: A&A 424, 733 (2004)

    Article  ADS  Google Scholar 

  35. Fukue, J., Yokoyama, T.: PASJ 40, 15 (1988)

    ADS  Google Scholar 

  36. Garain, S.K., Ghosh, H., Chakrabarti, S.K. ApJ 437, 1329 (2012)

    Google Scholar 

  37. Ghosh, H., Garain, S.K., Giri, K., Chakrabarti, S.K.: MNRAS 416, 959 (2011)

    Article  ADS  Google Scholar 

  38. Gillessen, S., et al.: ApJ 692, 1075 (2009)

    Article  ADS  Google Scholar 

  39. Gillessen, S. et al.: Nature 481, 51 (2012)

    Article  ADS  Google Scholar 

  40. Giri, K., Chakrabarti, S.K.: MNRAS 430, 2836 (2013)

    Article  ADS  Google Scholar 

  41. Hamilton, A.J.S.: General Relativity, Black Holes, and Cosmology. https://jila.colorado.edu/~ajsh/astr3740_17/grbook.pdf

  42. Haubois, X., et al.: A&A 540, A41 (2012)

    Article  ADS  Google Scholar 

  43. Johannsen, T., Psaltis, D.: ApJ 718, 446 (2010)

    Article  ADS  Google Scholar 

  44. Kerr, R.P.: Phys. Rev. Lett. 11, 237 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  45. Krawczynski, H.: ApJ 754, 133 (2012)

    Article  ADS  Google Scholar 

  46. Luminet, J.P.: A&A 75, 228 (1979)

    ADS  Google Scholar 

  47. Marck, J.A.: CQGra 13, 393 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  48. Markoff, S., Bowler, G.C., Falcke, H., MNRAS 379, 1519 (2007)

    Article  ADS  Google Scholar 

  49. Marrone, D.P., Moran, J.M., Zhao, J.H., Rao, R.: ApJ 640, 308 (2006)

    Article  ADS  Google Scholar 

  50. Mizumoto, M., Moriyama, K., Ebisawa, K., Mineshige, S., Kawanaka, N., Tsujimoto, M.: PASJ (2018). https://doi.org/10.1093/pasj/psy032

  51. Molteni, D., Lanzafame, G., Chakrabarti, S.K.: ApJ 425, 161 (1994)

    Article  ADS  Google Scholar 

  52. Molteni, D., Sponholz, H., Chakrabarti, S.K.: ApJ 457, 805 (1996)

    Article  ADS  Google Scholar 

  53. Móscibrodzka, M., Gammie, C.F., Dolence, J.C., Shiokawa, H., Leung, P.K.: ApJ 706, 497 (2009)

    Article  ADS  Google Scholar 

  54. Móscibrodzka, M., Falcke, H., Shiokawa, H.: A&A (2016). https://doi.org/arXiv:1510.07243v3

  55. Müller, T., Frauendiener, J.: Eur. J. Phys. 33, 955 (2012)

    Article  Google Scholar 

  56. Noble, S.C., Leung, P.K., Gammie, C.F., Book, L.G.: CQGr 24, 259 (2007)

    Article  ADS  Google Scholar 

  57. Page, D.N., Thorne, K.S.: Astrophys. J. 191, 499 (1974)

    Article  ADS  Google Scholar 

  58. Pineault, S., Roeder, R.C.: Astrophys. J. 212, 541 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  59. Reid, M., Menten, K.M. et al.: ApJ 783, 130 (2013)

    Article  ADS  Google Scholar 

  60. Roelofs, F., Johnson, M.D., Shiokawa, H., Doeleman, S.S., Falcke, H.: ApJ 847, 55 (2017)

    Article  ADS  Google Scholar 

  61. Schnittman, J.D., Krolik, J.H.: ApJ 712, 908 (2010)

    Article  ADS  Google Scholar 

  62. Schwarzschild, K.: Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin. Phys.-Math. Klasse 7, 189–196 (1916)

    Google Scholar 

  63. Shakura, N.I., Sunyaev, R.A.: A&A 24, 337 (1973)

    ADS  Google Scholar 

  64. Sunyaev, R.A., Titarchuk, L.G.: A&A 143, 374 (1985)

    ADS  Google Scholar 

  65. Takahashi, R.: ApJ 611, 996 (2004)

    Article  ADS  Google Scholar 

  66. Viergutz, S.U.: Astron. Astrophysics 272, 355 (1992)

    ADS  MathSciNet  Google Scholar 

  67. Vincent, F.H., Paumard, T., Gourgoulhon, E., Perrin, G.: CQGra 28, 22501 (2011)

    Article  Google Scholar 

  68. Weinberg, S.: Gravitation and Cosmology. Wiley, London (1972)

    Google Scholar 

  69. Whitted, T.: Commun. ACM 32(6), 343 (1980)

    Article  Google Scholar 

  70. Yang, X., Wang, J.: ApJS 207, 6 (2013)

    Article  ADS  Google Scholar 

  71. Younsi, Z., Wu, K., Fuerst, S.V.: A&A 545, 13 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

AC acknowledges Prof. Sandip K. Chakrabarti for introducing him to the fascinating subject of Black Hole Astrophysics and Indian Centre for Space Physics (ICSP) for financial support during the research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chatterjee, A. (2018). Evolution of Imaging of Black Hole Accretion-Outflow System over Half a Century. In: Mukhopadhyay, B., Sasmal, S. (eds) Exploring the Universe: From Near Space to Extra-Galactic. Astrophysics and Space Science Proceedings, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-94607-8_3

Download citation

Publish with us

Policies and ethics