Skip to main content

Ecometrics: A Trait-Based Approach to Paleoclimate and Paleoenvironmental Reconstruction

  • Chapter
  • First Online:

Part of the book series: Vertebrate Paleobiology and Paleoanthropology ((VERT))

Abstract

Ecometrics is a trait-based approach to study ecosystem variability through time. An ecometric value is derived from describing the distribution of functional traits at the community level , which may arise by environmental filtering, extinction, or convergence. An ecometric relationship describes the correspondence between spatially explicit ecometric values and corresponding environmental variation. Transfer functions and maximum likelihood approaches have been developed with modern trait-environment relationships to reconstruct paleotemperature , paleoprecipitation , and paleovegetation cover given the distribution of functional traits within a community. Because the focus for this approach is on the traits and not on species, it is transferable through space and time and can be used to compare novel communities. In this paper we review the concepts and history of ecometric analysis and then describe practical methods for implementing an ecometric study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexander, R. M. (1989). Optimization and gaits in the locomotion of vertebrates. Physiological Reviews, 69, 1199–1227.

    Google Scholar 

  • Allen, J. A. (1877). The influence of physical conditions in the genesis of species. Radical Review, 1, 108–140.

    Google Scholar 

  • Anderson, T. F., & Arthur, M. A. (1983). Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. In M. A. Arthur, T. F. Anderson, I. R. Kaplan, J. Veizer & L. S. Land (Eds.), Stable isotopes in sedimentary geology (pp. 1–151). Tulsa, OK: SEPM Short Course.

    Google Scholar 

  • Andrews, P., & Hixson, S. (2014). Taxon-free methods of palaeoecology. Annales Zoologici Fennici, 51, 269–284.

    Google Scholar 

  • Angielczyk, K. D., & Sheets, H. D. (2007). Investigation of simulated tectonic deformation in fossils using geometric morphometrics. Paleobiology, 33, 125–148.

    Google Scholar 

  • Arnold, S. J. (1983). Morphology, performance and fitness. American Zoologist, 23, 347–361.

    Google Scholar 

  • Ashton, K. G. (2002). Do amphibians follow Bergmann’s rule? Canadian Journal of Zoology, 80, 708–716.

    Google Scholar 

  • Bailey, I. W., & Sinnott, E. W. (1915). A botanical index of Cretaceous and Tertiary climates. Science, 41, 831–834.

    Google Scholar 

  • Barnosky, A. D., Hadly, E. A., Gonzalez, P., Head, J. J., Polly, P. D., Lawing, A. M., et al. (2017). Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science, 355, eaah4787.

    Google Scholar 

  • Baumiller, T. K., LaBarbera, M., & Woodley, J. D. (1991). Ecology and functional morphology of the isocrinid Cenocrinus asterius (Linnaeus) (Echinodermata: Crinoidea): in situ and laboratory experiments and observations. Bulletin of Marine Science, 48, 731–748.

    Google Scholar 

  • Beard, J. A., Ivany, L. C., & Runnegar, B. (2015). Gradients in seasonality and seawater oxygen isotopic composition along the early Permian Gondwanan coast, SE Australia. Earth and Planetary Science Letters, 425, 219–231.

    Google Scholar 

  • Beerling, D., Lomax, B., Royer, D., Upchurch, G., & Kump, L. (2002). An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf megafossils. Proceedings of the National Academy of Sciences, USA, 99, 7836–7840.

    Google Scholar 

  • Beerling, D. J., Fox, A., Stevenson, D. S., & Valdes, P. J. (2011). Enhanced chemistry-climate feedbacks in past greenhouse worlds. Proceedings of the National Academy of Sciences, USA, 108, 9770–9775.

    Google Scholar 

  • Belmaker, J., & Jetz, W. (2012). Regional pools and environmental controls of vertebrate assemblages. American Naturalist, 179, 512–523.

    Google Scholar 

  • Bergmann, C. (1847). Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Gottinger studien, 3, 595–708.

    Google Scholar 

  • Bivand, R. S., Pebesma, E., & Gomez-Rubio, V. (2013). Applied spatial data analysis with R (2nd ed.). New York, NY: Springer.

    Google Scholar 

  • Blackburn, T. M., Gaston, K. J., & Loder, N. (1999). Geographic gradients in body size: a clarification of Bergmann’s rule. Diversity and Distributions, 5, 165–174.

    Google Scholar 

  • Blackburn, T. M., & Hawkins, B. A. (2004). Bergmann’s rule and the mammal fauna of northern North America. Ecography, 27, 715–724.

    Google Scholar 

  • Bowen, R. (1964). Oxygen isotope paleotemperature measurements on Mesozoic Belemnoidea and their importance in paleoclimatic studies. In U. Colombo & G. D. Hobson (Eds.), Advances in organic geochemistry (pp. 271–283). New York, NY: Pergamon.

    Google Scholar 

  • Chapin III, F. S. (1993). Functional role of growth forms in ecosystem and global processes. In J. R. Ehleringer & C. B. Field (Eds.), Scaling physiological processes: Leaf to globe (pp. 287–312). San Diego, CA: Academic Press.

    Google Scholar 

  • Cornwell, W. K., & Ackerly, D. D. (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs, 79, 109–126.

    Google Scholar 

  • Crête, M., & Larivìere, S. (2003). Estimating the costs of locomotion in snow for coyotes. Canadian Journal of Zoology, 81, 1808–1814.

    Google Scholar 

  • Curran, S. C. (2018). Three-dimensional geometric morphometrics in paleoecology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 317–335). Cham: Springer.

    Google Scholar 

  • Damuth, J. D., Jablonski, D., Harris, R. M., Potts, R., Stucky, R. K., Sues, H. D. & Weishampel, D. B. (1992). Taxon-free characterization of animal communities. In A. K. Beherensmeyer, J. D. Damuth, W. A. diMichele, R. Potts, H. D. Sues & S. L. Wing (Eds.) Terrestrial ecosystems through time: Evolutionary paleoecology of terrestrial plants and animals (pp. 183–203). Chicago: University of Chicago Press.

    Google Scholar 

  • Damuth, J. D., & Janis, C. M. (2011). On the relationship between hypsodonty and feeding ecology in ungulate mammals and its utility in paleaeoecology. Biological Reviews, 86, 733–758.

    Google Scholar 

  • Darwin, C. R., & Wallace, A. R. (1858). On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. Journal of the Proceedings of the Linnean Society of London. Zoology, 3, 45–50.

    Google Scholar 

  • Díaz, S., & Cabido, M. (2001). Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16, 646–655.

    Google Scholar 

  • Diniz-Filho, J. A. F., Bini, L. M., Rodriguez, M. A., Rangel, T. F. L., & Hawkins, B. A. (2007). Seeing the forest for the trees: partitioning ecological and phylogenetic components of Bergmann’s rule in European Carnivora. Ecography, 30, 598–608.

    Google Scholar 

  • Eronen, J. T., Polly, P. D., Fred, M., Damuth, J., Frank, D. C., Mosbrugger, V., et al. (2010a). Ecometrics: the traits that bind the past and present together. Integrative Zoology, 5, 88–101.

    Google Scholar 

  • Eronen, J., Puolamaki, K., Liu, L., Lintulaakso, K., Damuth, J., Janis, C., et al. (2010b). Precipitation and large herbivorous mammals I: estimates from present-day communities. Evolutionary Ecology Research, 12, 217–233.

    Google Scholar 

  • Eronen, J. T., Fortelius, M., Micheels, A., Portmann, F. T., Puolamäki, K., & Janis, C. M. (2012). Neogene aridification of the Northern Hemisphere. Geology, 40, 823–826.

    Google Scholar 

  • Evans, A. R. (2013). Shape descriptors as ecometrics in dental ecology. Hystrix, the Italian Journal of Mammalogy, 24, 133–140.

    Google Scholar 

  • Evans, A. R., Wilson, G. P., Fortelius, M., & Jernvall, J. (2007). High-level similarity of dentitions in carnivorans and rodents. Nature, 445, 78–81.

    Google Scholar 

  • Fortelius, M., & Solounius, N. (2000). Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. American Museum Novitates, 3301, 1–36.

    Google Scholar 

  • Fortelius, M., Eronen, J. T., Jernvall, J., Liu, L. P., Pushkina, D., Rinne, J., et al. (2002). Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. Evolutionary Ecology Research, 4, 1005–1016.

    Google Scholar 

  • Fortelius, M., Eronen, J. T., Kaya, F., Tang, H., Raia, P., & Puolamäki, K. (2014). Evolution of Neogene mammals in Eurasia: environmental forcing and biotic interactions. Annual Review of Earth and Planetary Sciences, 42, 579–604.

    Google Scholar 

  • Fox, B. J. (1987). Species assembly and the evolution of community structure. Evolutionary Ecology, 1, 201–213.

    Google Scholar 

  • Freckleton, R. P., Harvey, P. H., & Pagel, M. (2003). Bergmann’s rule and body size in mammals. The American Naturalist, 161, 821–825.

    Google Scholar 

  • Gaston, K. J., Chown, S. L., & Evans, K. L. (2008). Ecogeographical rules: elements of a synthesis. Journal of Biogeography, 35, 483–500.

    Google Scholar 

  • Gloger, C. L. (1833). Das Abwandern der Vogel durch Einfluss des Klimas. Breslau, Prussia: A. Schulz.

    Google Scholar 

  • Greenwood, D. R., Wilf, P., Wing, S. L., & Christophel, D. C. (2004). Paleotemperature estimation using leaf-margin analysis: is Australia different? PALAIOS, 19, 129–142.

    Google Scholar 

  • Head, J. J., Bloch, J. I., Hastings, A. K., Bourque, J. R., Cadena, E. A., Herrera, F. A., et al. (2009). Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures. Nature, 457, 715–717.

    Google Scholar 

  • Head, J. J., Gunnell, G. F., Holroyd, P. A., Hutchison, J. H., & Ciochon, R. L. (2013). Giant lizards occupied herbivorous mammalian ecospace during the Paleogene greenhouse in Southeast Asia. Proceedings of the Royal Society of London, Series B, 280, 20130665.

    Google Scholar 

  • Hijmans, R. J. (2015). raster: Geographic data analysis and modeling. R package version 2.3-40.

    Google Scholar 

  • Hijmans, R. J., Cameron, J. L., Parra, P. G., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.

    Google Scholar 

  • Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposiums on Quantitative Biology, 22, 415–427.

    Google Scholar 

  • Huyghe, D., Lartaud, F., Emmanuel, L., Merle, D., & Renard, M. (2015). Palaeogene climate evolution in the Paris Basin from oxygen stable isotope (δ18O) compositions of marine molluscs. Journal of the Geological Society, 172, 576–587.

    Google Scholar 

  • Jackson, S. T., & Overpeck, J. T. (2000). Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology, 26, 194–220.

    Google Scholar 

  • Janis, C. M., & Fortelius, M. (1988). On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. Biological Reviews of the Cambridge Philosophical Society, 63, 197–230.

    Google Scholar 

  • Jones, H. G., & Vaughan, R. A. (2010). Remote sensing of vegetation: Principles, techniques, and applications. New York, NY: Oxford University Press.

    Google Scholar 

  • Jones, K. E., Bielby, J., Cardillo, M., Fritz, S. A., O’Dell, J., Orme, C. D. L., et al. (2009). PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology, 90, 2648–2648.

    Google Scholar 

  • Klein, D. R., Meldgaard, M., & Fancy, S. G. (1987). Factors determining leg length in Rangifer tarandus. Journal of Mammalogy, 68, 642–655.

    Google Scholar 

  • Krantz, D. E., Williams, D. F., & Jones, D. S. (1987). Ecological and paleoenvironmental information using stable isotope profiles from living and fossil molluscs. Palaeogeography, Palaeoclimatology, Palaeoecology, 58, 249–266.

    Google Scholar 

  • Lawing, A. M., Eronen, J. T., Blois, J. L., Graham, C. H., & Polly, P. D. (2017). Community functional trait composition at the continental scale: the effects of non-ecological processes. Ecography, 40, 651–663.

    Google Scholar 

  • Lawing, A. M., Head, J. J., & Polly, P. D. (2012). The ecology of morphology: the ecometrics of locomotion and macroenvironment in North American snakes. In J. Louys (Ed.), Paleontology in ecology and conservation (pp. 117–146). Berlin: Springer, Berlin Heidelberg.

    Google Scholar 

  • Lincoln, R. J. B., & Clark, G. A. (1982). A dictionary of ecology, evolution and systematics. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Little, S. A., Kembel, S. W., & Wilf, P. (2010). Paleotemperature proxies from leaf fossils reinterpreted in light of evolutionary history. PLoS ONE, 5, e15161.

    Google Scholar 

  • Liu, L., Puolamäki, K., Eronen, J. T., Ataabadi, M. M., Hernesniemi, E. & Fortelius, M. (2012). Dental functional traits of mammals resolve productivity in terrestrial ecosystems past and present. Proceedings of the Royal Society of London B: Biological Sciences, 20120211.

    Google Scholar 

  • Lynch-Stieglitz, J., Polissar, P. J., Jacobel, A. W., Hovan, S. A., Pockalny, R. A., Lyle, M., et al. (2015). Glacial-interglacial changes in central tropical Pacific surface seawater property gradients. Paleoceanography, 30, 423–438.

    Google Scholar 

  • MacFadden, B. J. (1990). Body size in mammalian paleobiology: Estimation and biological implications. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Makarieva, A. M., Gorshkov, V. G., & Li, B. L. (2005). Temperature-associated upper limits to body size in terrestrial poikilotherms. Oikos, 111, 425–436.

    Google Scholar 

  • MacKenzie, K. M., Longmore, C., Preece, C., Lucas, C. H., & Trueman, C. N. (2014). Testing the long-term stability of marine isoscapes in shelf seas using jellyfish tissues. Biogeochemistry, 121, 441–454.

    Google Scholar 

  • Marchais, V., Schaal, G., Grall, J., Lorrain, A., Nerot, C., Richard, P., et al. (2013). Spatial variability of stable isotope ratios in oysters (Crassostrea gigas) and primary producers along an estuarine gradient (Bay of Brest, France). Estuaries and Coasts, 36, 808–819.

    Google Scholar 

  • Mayr, E. (1963). Animal species and evolution. Cambridge, Massachusetts: Belknap Press of Harvard University Press.

    Google Scholar 

  • Mendoza, M., Janis, C. M., & Palmqvist, P. (2005). Ecological patterns in the trophic-size structure of large mammal communities: a ‘taxon-free’ characterization. Evolutionary Ecology Research, 7, 505–530.

    Google Scholar 

  • Owen-Smith, R. N. (2002). Adaptive herbivore ecology: From resources to populations in variable environments. Cambridge University Press.

    Google Scholar 

  • Pebesma, E. J., & Bivand, R. S. (2005). Classes and methods for spatial data in R. R News, 5, 2.

    Google Scholar 

  • Peppe, D. J., Royer, D. L., Cariglino, B., Oliver, S. Y., Newman, S., et al. (2011). Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist, 190, 724–739.

    Google Scholar 

  • Poff, N. L. (1997). Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society, 16, 391–409.

    Google Scholar 

  • Polly, P. D. (2008). Adaptive zones and the pinniped ankle: a 3D quantitative analysis of carnivoran tarsal evolution. In E. Sargis & M. Dagosto (Eds.), Mammalian evolutionary morphology: A tribute to Frederick S. Szalay (pp. 165–194). Dordrecht: Springer.

    Google Scholar 

  • Polly, P. D. (2010). Tiptoeing through the trophics: geographic variation in carnivoran locomotor ecomorphology in relation to environment. In A. Goswami & A. Friscia (Eds.), Carnivoran evolution: New views on phylogeny, form, and function (pp. 347–410). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Polly, P. D., Eronen, J. T., Fred, M., Dietl, G. P., Mosbrugger, V., Scheidegger, C., et al. (2011). History matters: ecometrics and integrative climate change biology. Proceedings of the Royal Society of London B: Biological Sciences, rspb20102233.

    Google Scholar 

  • Polly, P. D., & Head, J. J. (2015). Measuring Earth-life transitions: ecometric analysis of functional traits from late Cenozoic vertebrates. In P. D. Polly, J. J. Head & D. L. Fox (Eds.), Earth-life transitions: Paleobiology in the context of Earth system evolution (pp. 21–46). The Paleontological Society Papers 21. New Haven, CT: Yale Press.

    Google Scholar 

  • Polly, P. D., & Sarwar, S. (2014). Extinction, extirpation, and exotics: effects on the correlation between traits and environment at the continental level. Annales Zoologici Fennici, 51, 209–226.

    Google Scholar 

  • Polly, P. D., Lawing, A. M., Eronen, J. T., & Schnitzler, J. (2016a). Processes of ecometric patterning: modeling functional traits, environments, and clade dynamics in deep time. Biological Journal of the Linnaean Society, 118, 39–63.

    Google Scholar 

  • Polly, P. D., Stayton, C. T., Dumont, E. R., Pierce, S. E., Rayfield, E. J. & Angielczyk, K. (2016b). Combining geometric morphometrics and finite element analysis with evolutionary modeling: towards a synthesis. Journal of Vertebrate Paleontology, 36, e1111225.

    Google Scholar 

  • Polly, P. D., Fuentes-Gonzales, J., Lawing, A. M., Bormet, A. K., & Dundas, R. G. (2017). Clade sorting has a greater effect than local adaptation on ecometric patterns in Carnivora. Evolutionary Ecology Research, 18, 187–200.

    Google Scholar 

  • Rayfield, E. J. (2007). Finite element analysis and understanding the biomechanics and evolution of living and fossil organisms. Annual Review of Earth and Planetary Sciences, 35, 541–576.

    Google Scholar 

  • Reich, P. B., Walters, M. B., & Ellsworth, D. S. (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences, USA, 94, 13730–13734.

    Google Scholar 

  • Reich, S., Warter, V., Wesselingh, F. P., Zwaan, J. C., Lourens, L., & Renema, W. (2015). Paleoecological significance of stable isotope ratios in Miocene tropical shallow marine habitats (Indonesia). PALAIOS, 30, 53–65.

    Google Scholar 

  • Ricklefs, R. E., & Travis, J. (1980). A morphological approach to the study of Avian community organization. The Auk, 97, 321–338.

    Google Scholar 

  • Rodrigues, G. B., Fauth, G., Santos, R. V., Koutsoukos, E. A. M., & Colin, J.-P. (2014). Tracking paleoecological and isotopic changes through the K-Pg boundary from marine ostracodes: the Poty quarry section, northeastern Brazil. Cretaceous Research, 47, 105–116.

    Google Scholar 

  • Rodríguez, M. Á., Olalla-Tárraga, M. Á., & Hawkins, B. A. (2008). Bergmann’s rule and the geography of mammal body size in the Western Hemisphere. Global Ecology and Biogeography, 17, 274–283.

    Google Scholar 

  • Royer, D. L., & Wilf, P. (2006). Why do toothed leaves correlate with cold climates? Gas exchange at leaf margins provides new insights into a classic paleotemperature proxy. International Journal of Plant Science, 167, 11–18.

    Google Scholar 

  • Royer, D. L., Wilf, P., Janesko, D. A., Kowalski, E. A., & Dilcher, D. L. (2005). Correlations of climate and plant ecology to leaf size and shape: potential proxies for the fossil record. American Journal of Botany, 92, 1141–1151.

    Google Scholar 

  • Saarinen, J. (2014). Ecometrics of large herbivorous land mammals in relation to climatic and environmental changes during the Pleistocene. Ph.D. Dissertation, Uppsala University.

    Google Scholar 

  • Saarinen, J., & Karme, A. (2017). Tooth wear and diets of extant and fossil xenarthrans (Mammalia, Xenarthra)–Applying a new mesowear approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 476, 42–54.

    Google Scholar 

  • Scholander, P. F. (1955). Evolution of climatic adaptation in homeotherms. Evolution, 9, 15–26.

    Google Scholar 

  • Sepkoski, J. J. (1978). A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology, 4, 223–251.

    Google Scholar 

  • Shino, Y., & Suzuki, Y. (2011). The ideal hydrodynamic form of the concavo-convex productide brachiopod shell. Lethaia, 44, 329–343.

    Google Scholar 

  • Smith, F. A., Lyons, S. K., Ernest, S. K. M., Jones, K. E., Kauffman, D. M., Dayan, T., et al. (2003). Body mass of late Quaternary mammals. Ecology, 84, 3403.

    Google Scholar 

  • Stayton, C. T. (2011). Biomechanics on the half shell: functional performance influences patterns of morphological variation in the emydid turtle carapace. Zoology, 114, 213–223.

    Google Scholar 

  • Strömberg, C. A. E., Dunn, R. E., Madden, R. H., Kohn, M. J., & Carlini, A. A. (2013). Decoupling the spread of grasslands from the evolution of grazer-type herbivores in South America. Nature Communications, 4, 1478.

    Google Scholar 

  • Tapaltsyan, V., Eronen, J. T., Lawing, A. M., Sharir, A., Janis, C., Jernvall, J., et al. (2015). Continuously growing rodent molars result from a predictable quantitative evolutionary change over 50 million years. Cell Reports, 11, 673–680.

    Google Scholar 

  • Thompson, J. N., Reichman, O. J., Morin, P. J., Polis, G. A., Power, M. E., Sterner, R. W., Couch, C. A., Gough, L., Holt, R., Hooper, D. U., Keesing, F., Lovell, C. R., Milne, B. T., Molles, M. C., Roberts, D. W., & Strauss, S. Y. (2001). Frontiers of ecology: as ecological research enters a new era of collaboration, integration, and technological sophistication, four frontiers seem paramount for understanding how biological and physical processes interact over multiple spatial and temporal scales to shape the Earth’s biodiversity. BioScience, 51, 15–24.

    Google Scholar 

  • Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., et al. (2007). Let the concept of trait be functional! Oikos, 116, 882–892.

    Google Scholar 

  • Wallin, M. (1991). Ecometric analysis of factors regulating eutrophication effects in coastal waters: a case study of marine fish farms. Ph.D. Dissertation, Uppsala University.

    Google Scholar 

  • Webster, M., & Hughes, N. C. (1999). Compaction-related deformation in Cambrian olenelloid trilobites and its implications for fossil morphometry. Journal of Paleontology, 73, 355–371.

    Google Scholar 

  • Wefer, G., & Berger, W. H. (1991). Isotope paleontology: growth and composition of extant calcareous specie. Marine Geology, 100, 207–248.

    Google Scholar 

  • Weiher, E., Clarke, G. D. P., & Keddy, P. A. (1998). Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos, 81, 309–322.

    Google Scholar 

  • Wilf, P. (1997). When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology, 23, 373–390.

    Google Scholar 

  • Wilson, G. P., Evans, A. R., Corfe, I. J., Smits, P. D., Fortelius, M., & Jernvall, J. (2012). Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature, 483, 457–460.

    Google Scholar 

  • Wing, S. L., Harrington, G. L., Smith, F. A., Bloch, J. I., Boyer, D. M., & Freeman, K. H. (2005). Transient floral change and rapid global warming at the Paleoeocene-Eocene boundary. Science, 310, 993–996.

    Google Scholar 

  • Wolfe, J. A. (1979). Temperature parameters of humid to mesic forests of eastern Asia and relation to forests of other regions of the northern hemisphere and Australasia. Geological Survey Professional Paper, 1106.

    Google Scholar 

  • Wolfe, J. A. (1990). Palaeobotanical evidence for a marked temperature increase following the Cretaceous/Tertiary boundary. Nature, 343, 153–156.

    Google Scholar 

  • Wolfe, J. A. (1993). A method of obtaining climatic parameters from leaf assemblages. Bulletin of the US Geological Survey, 2040.

    Google Scholar 

  • Wolfe, J. A. (1994). Tertiary climatic changes at middle latitudes of western North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 108, 195–205.

    Google Scholar 

  • Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821–827.

    Google Scholar 

  • Wroe, S. (2008). Cranial mechanics compared in extinct marsupial and extant African lions using a finite-element approach. Journal of Zoology, 274, 332–339.

    Google Scholar 

  • Yang, J., Wang, Y. F., Spicer, R. A., Mosbrugger, V., Li, C. S., & Sun, Q. G. (2007). Climatic reconstruction at the Miocene Shanwang basin, China, using leaf margin analysis, CLAMP, coexistence approach, and overlapping distribution analysis. American Journal of Botany, 94, 599–608.

    Google Scholar 

  • Yasuhara, M., Tittensor, D. P., Hillebrand, H., & Worm, B. (2015). Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. Biological Reviews, 92, 195–215.

    Google Scholar 

  • Žliobaitė, I., Rinne, J., Tóth, A. B., Mechenich, M., Liu, L., Behrensmeyer, A. K., et al. (2016). Herbivore teeth predict climatic limits in Kenyan ecosystems. Proceedings of the National Academy of Sciences, USA, 113, 12751–12756.

    Google Scholar 

Download references

Acknowledgements

This contribution is the result of collaborative work supported by the Integrative Climate Change Biology program (iCCB) of the International Union of Biological Sciences (IUBS). We thank Rachel Short, Darin Croft, and two anonymous reviewers for providing valuable feedback on the manuscript. PDP and JJH were supported by NSF grants EAR 1338298 and 1338028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Michelle Lawing .

Editor information

Editors and Affiliations

Appendix 17.1. Ecometrics Workflow and R Code

Appendix 17.1. Ecometrics Workflow and R Code

This section demonstrates an ecometric modeling workflow using the R Statistical Programing Language. To demonstrate these models in R, we will work with spatial data. There are special functions in two packages, raster and sp, that allow for relatively quick processing of spatial information (Bivand et al. 2013; Hijmans 2015; Pebesma and Bivand 2005). We will use climate data from the worldclim database (Hijmans et al. 2005) and we will use trait data body mass and hypsodonty from the PanTHERIA database (Jones et al. 2009) and from Eronen et al. (2010b). The code below can be typed directly into an R console or can be entered into an R script file. A bold word indicates that the word is a function. To start the analysis, load the two required libraries. If they are not installed yet on your computer, install them with the function install.packages().

library (raster) ## Loading required package: sp library (sp)

Load the sampling locations and look at the first six rows of data with the functions read.csv() and head(). The first function read.csv() is a wrapper for another function called read.table(), which can be used in place of read.csv(), if the data are in tab delimited format. Use the help() function to see the documentation associated with each function.

points <-  read.csv (“data/SamplingPoints.csv”) head (points) ##   GLOBALID Longitude Latitude ## 1   103148  -42.1727 83.26264 ## 2   103149  -38.3442 83.26264 ## 3   103150  -34.5156 83.26264 ## 4   103151  -30.6871 83.26264 ## 5   103152  -26.8586 83.26264 ## 6   103235  -79.4690 82.81348

Plot the sampling locations with the function plot() to visualize the geographic distribution of the sampling locations. In this example, we use 50 km equidistant points sampled across North America (Fig. 17.A1). These are the same points used in Polly (2010).

Fig. 17.A1
figure 3

An example of output in the R Statistical Programing Language from calling the plot function for plotting the latitude and longitude of 50 km equidistant points sampled from across North America

plot (points[,2:3], col = ”gray”, pch = 16)

Download raster climate data from the worldclim database using the getData() function from the package raster that we loaded with the library() function (Hijmans et al. 2005; Hijmans 2015). In this example, we download the 10-minute resolution, but if you would like to try a higher resolution data set, then change the argument named res to 2.5 or 0.5. Extract the temperature and precipitation for each sampling location using the extract() function.

bioclim <-  getData (“worldclim”, download = T, path = ”data”, var = ”bio”, res = 10)

Extract the temperature for each sampling location.

temperature <-  extract (bioclim[[1]], points[,2:3])

Calculate the temperature range for all the sampling localities to make a plot of the temperature. We add one to the range to make the range equal to index values that we can use to subset the color function. The R language starts the subset of data at an index value of 1.

Calculate the color value associated with each temperature value and the temperature values associated with even breaks to assign legend values. Figure 17.A2 is a map of the mean annual temperatures.

Fig. 17.A2
figure 4

A heat map of the mean annual temperature (°C), where the hotter colors represent warmer places and cooler colors represent colder places

temp_range <- 1 +  max (temperature, na.rm = T) -  min (temperature, na.rm = T) colfunc_temp <-  colorRampPalette ( c (“darkblue”, ”blue”, ”gray”, ”yellow”,  “red”))(temp_range)[1 + temperature -  min (temperature, na.rm = T)] h <-  hist (temperature, breaks = 5) plot (points[,2:3], col = colfunc_temp, pch = 16, main = ”Mean Annual Temperature (C)”) legend (“bottomright”, legend = h$breaks/10, pch = 16, col =  colorRampPalette ( c (“darkblue”, ”blue”, ”gray”, ”yellow”, ”red”))( length (h$breaks)))

Extract the precipitation for each sampling locality.

precipitation <-  extract (bioclim[[12]], points[,2:3])

Calculate the precipitation range for all the sampling localities to make a plot of the precipitation. Also, calculate color value associated with each precipitation value and the precipitation values associated with even breaks to assign legend values. Figure 17.A3 is a map of the precipitation values.

Fig. 17.A3
figure 5

A heat map of the annual precipitation (mm), where greener colors represent wetter places and browner colors represent drier places

precip_range <- 1 +  max ( log (precipitation), na.rm = T) -  min ( log (precipitation), na.rm = T) colfunc_pr <-  colorRampPalette ( c (“brown”, ”green”))(precip_range)[1 +  log (precipitation) –  min ( log (precipitation), na.rm = T)] h <-  hist ( log (precipitation), breaks = 5) plot (points[,2:3], col = colfunc_pr, pch = 16, main = ”Precipitation (mm)”) legend (-36.25, 60.5, legend =  round ( exp (h$breaks)), pch = 16, col =  colorRampPalette ( c (“brown”, ”green”))( length (h$breaks)))

Compile the climate variables into a new data.frame called climate. Remove the variables that are taking up memory with the rm() function if your memory is getting sluggish.

climate <-  cbind (points, temperature, precipitation) #rm(bioclim, temperature, precipitation, points)

Visually check the climate variables for normality and if they are not mostly normally distributed, transform them for normality (Fig. 17.A4).

Fig. 17.A4
figure 6

A histogram of the mean annual temperature (°C × 10) of all of the sampling locations

head (climate) ##   GLOBALID Longitude Latitude temperature precipitation ## 1   103148  -42.1727 83.26264        -169           139 ## 2   103149  -38.3442 83.26264        -170           141 ## 3   103150  -34.5156 83.26264        -175           149 ## 4   103151  -30.6871 83.26264        -185           166 ## 5   103152  -26.8586 83.26264        -180           139 ## 6   103235  -79.4690 82.81348        -207            90

hist (climate[,4], main = ”“, xlab = ”Mean Annual Temperature”, col = ”gray”)

Temperature appears to be reasonably normally distributed, so now we check precipitation (Fig. 17.A4).

Fig. 17.A5
figure 7

A histogram of annual precipitation (mm) of all the sampling locations

hist (climate[,5], main = ”“, xlab = ”Annual Precipitation”, col = ”gray”)

Precipitation appears to be log distributed (Fig. 17.A5). We log transform this variable to get it closer to normality (Fig. 17.A6).

Fig. 17.A6
figure 8

A histogram of log annual precipitation (mm) of all sampling locations

climate[,5] <-  log (climate[,5]) hist (climate[,5], main = ”“, xlab = ”Log Annual Precipitation”, col = ”gray”)

Next, we read in the trait data from a folder called data. We assign the row names of the new data frame to the names of the taxon within the dataset. We look at the first six rows of the trait data frame with the head() function. The two traits that we use in this example are body mass and hypsodonty index . Body mass is reported in grams and is the mass of any adult reported in the PanTHERIA database (Jones et al. 2009) from live or freshly-killed specimens. These include captive, wild, provisioned, or unspecified populations and include male, female, and sex unspecified individuals. The mean for each species is reported for each species. The second trait that we use is an index for hypsodonty from Eronen et al. (2010b).

traits <-  read.csv (“data/NAmammalTraits.csv”) rownames (traits) <- traits$TaxonName head (traits) ##                                     TaxonName BodyMass hypsodonty_index ## Didelphis virginiana     Didelphis virginiana 3.387760                1 ## Aplodontia rufa               Aplodontia rufa 2.906448                3 ## Sciurus carolinensis     Sciurus carolinensis 2.736715                1 ## Sciurus griseus               Sciurus griseus 2.847480                1 ## Sciurus niger                   Sciurus niger       NA                1 ## Tamiasciurus douglasii Tamiasciurus douglasii 2.352183                1

Now we read in shapefiles containing polygons that represent the geographic ranges for all of the species of interest. These specific shape files were obtained from IUCN Redlist using their spatial data download option (www.iucnredlist.org). If you are dealing with large shapefiles, then this step will take a reasonable amount of processing time.

geography <-  shapefile (“data/TERRESTRIAL_MAMMALS/TERRESTRIAL_MAMMALS.shp”)

Next we create a list of species at each sampling locality by first turning the sampling points into spatial points with the function SpatialPoints(). We assign the coordinate reference system of our spatial points to a proj4string to match the coordinate reference system of the spatial polygons representing the geographic ranges . We then create a list with the function over(). If you are dealing with large shapefiles, keep in mind that the over() function will take a reasonable amount of time to process.

sp <-  SpatialPoints (climate[,2:3], proj4string =  CRS ( proj4string (geography))) o <-  over (sp, geography, returnList = T)

The sample size at each site is calculated by determining the length of the vector returned for each site. The ecometric for body mass and hypsodonty index are summarized for the community level distribution. Here, we summarize with the mean.

richness <-  unlist ( lapply (o, function(x)  length (traits[x$binomial,”hypsodonty_index”]))) ecometric_bodymass <-  unlist ( lapply (o, function(x)  mean (traits[x$binomial,”BodyMass”],  na.rm = T))) ecometric_hypsodonty <-  unlist ( lapply (o, function(x)  mean (traits[x$binomial,”hypsodonty_index”], na.rm = T)))

First Approximation with Transfer Function

Now we create a model describing the relationship between traits and climate. First, we consider the relationship between hypsodonty and precipitation. We build a simple linear model to describe the variation in precipitation due to the variation in hypsodonty using the function lm(). We only use sites that we have data for more than five species. We look at a summary of the model using the function summary(). Both the intercept and the coefficient (here the coefficient represents the slope of the linear relationship) are not zero (p < 0.001). The amount of explained variation (R2) is 30%. We then make a scatterplot of those variables to look at the general spread of data and add the linear model with the function abline() (Fig. 17.A7).

Fig. 17.A7
figure 9

A scatterplot of hypsodonty and log annual precipitation with a trend line

model_mass <-  lm (climate[richness > 5,4] ~ ecometric_bodymass[richness > 5]) summary (model_mass) ## Call: ## lm(formula = climate[richness > 5, 4] ~ ecometric_bodymass[richness >  5]) ## Residuals: ##     Min      1Q  Median      3Q     Max  ## -170.72  -65.22  -24.73   43.71  375.19  ## Coefficients: ##                                  Estimate Std. Error t value Pr(>|t|)     ## (Intercept)                       471.512      6.571   71.76   <2e-16 *** ## ecometric_bodymass[richness > 5] -153.559      2.304  -66.64   <2e-16 *** ## --- ## Signif. codes:  0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 ## Residual standard error: 92.6 on 8651 degrees of freedom ##   (15 observations deleted due to missing data) ## Multiple R-squared:  0.3392, Adjusted R-squared:  0.3391  ## F-statistic:  4440 on 1 and 8651 DF,  p-value: < 2.2e-16 plot (ecometric_bodymass[richness > 5], climate[richness > 5,4], ylab = ”MAT”, xlab = ”Body  Mass”, pch = 16, col = ”gray”) curve (model_mass$coefficients[1] + model_mass$coefficients[2] * x, col = ”red”, lwd = 4,  add = T)

From this model, we can see there is some predictive power in this transfer function , but the linear model does not capture the relationship well. In the next section we will show how to estimate annual precipitation from hypsodonty with a maximum likelihood approach that better captures the relationship between annual precipitation and hypsodonty.

Now we create a model describing the relationship between the body mass and temperature. We build a linear model to describe the variation in body mass due to the variation in temperature using the function lm(). We look at a summary of the model using the function summary(). Both the intercept and all the coefficients are significantly different from zero (p < 0.001). The amount of explained variation (R2) is approximately 34%. We then make a scatterplot of those variables to look at the general spread of data and add the model with the function curve() (Fig. 17.A8).

Fig. 17.A8
figure 10

A scatterplot of body mass and mean annual temperature with a trend line

model_mass <-  lm (climate[richness > 5,4] ~ ecometric_bodymass[richness > 5]) summary (model_mass) ## Call: ## lm(formula = climate[richness > 5, 4] ~ ecometric_bodymass[richness >  5]) ## Residuals: ##     Min      1Q  Median      3Q     Max  ## -170.72  -65.22  -24.73   43.71  375.19  ## Coefficients: ##                                  Estimate Std. Error t value Pr(>|t|)     ## (Intercept)                       471.512      6.571   71.76   <2e-16 *** ## ecometric_bodymass[richness > 5] -153.559      2.304  -66.64   <2e-16 *** ## --- ## Signif. codes:  0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 ## Residual standard error: 92.6 on 8651 degrees of freedom ##   (15 observations deleted due to missing data) ## Multiple R-squared:  0.3392, Adjusted R-squared:  0.3391  ## F-statistic:  4440 on 1 and 8651 DF,  p-value: < 2.2e-16 plot (ecometric_bodymass[richness > 5], climate[richness > 5,4], ylab = ”MAT”, xlab  = ”Body Mass”, pch = 16, col = ”gray”) curve (model_mass$coefficients[1] + model_mass$coefficients[2] * x, col = ”red”, lwd  = 4, add = T)

From this model, we can see that, again, there is some predictive power in this transfer function , but the linear model does not capture the relationship well. In the next section we will show how to estimate mean annual temperature from body mass with a maximum likelihood approach that better captures the relationship between the two.

The coefficients that were estimated in both of these models can be used to estimate paleotemperature and precipitation. Confidence limits can also be calculated given the input dataset. It is important to note that the size of the confidence limits will vary with climate. For example, between 5 C and 28 C, there is a stronger relationship with body size than below or above those temperatures. Hypsodonty has high variability throughout the precipitation range present in North America; however, there is a central tendency about the average relationship between precipitation and hypsodonty index that is useful in reconstructing paleoprecipitation with confidence limits.

Maximum Likelihood Estimation

Although transfer functions , while easy to apply and adequate for first approximations, assume a fairly simple one-to-one relationship between environment and trait means. Combining different traits that have functional relationships with the same environmental factor is also awkward with conventional regression-based transfer functions, especially if the traits are fundamentally different in kind or scale (e.g., body mass measured in kg and humerus shape measured in Procrustes units).

An alternative strategy is to estimate the likelihood of environmental parameters given the distribution of traits in a community (Lawing et al. 2012; Polly and Head 2015). This approach, like many likelihood or Bayesian methods, requires far fewer assumptions about the statistical distributions of variables and it allows otherwise incommensurable data to be combined into the same estimate.

To begin, we need to create another variable at the community level , namely the standard deviation, to use in the maximum likelihood estimate of temperature.

sd_ecometric_bodymass <-  unlist ( lapply (o, function(x)  sd (traits[x$binomial,”BodyMass”], na.rm = T)))

We create bins using the body mass variable and extract the break points for each bin.

#bin the community level trait distribution into 25X25 #first take the range of each mtemp <-  range (ecometric_bodymass, na.rm = T) sdtemp <-  range (sd_ecometric_bodymass, na.rm = T) #get the break points for the mean and sd mbrks <-  seq (mtemp[1], mtemp[2],  diff (mtemp)/25) sdbrks <-  seq (sdtemp[1], sdtemp[2],  diff (sdtemp)/25) #assign bin codes for each mbc <-  .bincode (ecometric_bodymass, breaks = mbrks) sdbc <-  .bincode (sd_ecometric_bodymass, breaks = sdbrks)

We calculate the temperature for each bin.

#calculate the data for the raster obj <-  array (NA,dim =  c (25,25)) for(i in 1:25){   for(j in 1:25){     dat <-  round (temperature[ which (mbc==i & sdbc==j)]/10)     obj[26 - j,i] <-  mean (dat, na.rm = T)    } }

Next, we create a raster to store the body mass and temperature data for bins.

#make a raster r <-  raster ( extent (0,25,0,25), resolution = 1) #set the values to the obj r <-  setValues (r,obj)

Plot the raster and highlight the bin that we will use to extract data to show an example of that maximum likelihood estimate (Fig. 17.A9).

Fig. 17.A9
figure 11

Ecometric space for the trait body mass with mean body mass on the x-axis and standard deviation of body mass on the y-axis. The colors represent the estimate of mean annual temperature for each mean and standard deviation combination. The hotter colors represent higher mean annual temperature and the cooler colors represent lower mean annual temperatures

#make an empty plot plot (1:25, 1:25, type = ”n”, xlim =  c (1,25), ylim =  c (1,25),      xaxs = ”i”, yaxs = ”i”, asp = 1, axes = F, xlab =““, ylab=““) #add the rectangle/box rect (0, 1, 25, 25, lwd = 3) #add the raster data plot (r, col =  colorRampPalette ( c (“darkblue”, ”blue”,      ”grey”,”yellow”, ”red”))( round ( maxValue (r) –      minValue (r))), add = T) #this is mean = 3.1, 12, and sd = 1.08, 10 rect (11, 9, 12, 10, lwd = 4)

The colors in this raster plot show the Mean Annual Temperature (MAT) maximum likelihood estimate given the associated mean and standard deviation of each bin.

We extract the data for the highlighted bin and plot the kernel density with a Gaussian kernel (Fig. 17.A10). This shows the distribution of the likelihood surface.

Fig. 17.A10
figure 12

Kernel density estimation from one combination of mean and standard deviation of body mass

#grab all the data for that box dat <-  round (temperature[ which (mbc==12 & sdbc==10)]/10) #plot the kernel density with gaussian kernel, bandwidth = 1 mod <-  density (dat, bw = 1) plot (mod, ylim =  c (0,1), col = ”darkblue”, lwd = 2) polygon (mod$x, mod$y, col = ”skyblue”)

This likelihood surface shows a bimodal distribution of the most likely temperature. Although it is bimodal, it is much more likely that the temperature falls on the warm end of the spectrum, as opposed to the cold end.

Next, we calculate the maximum likelihood for all bins.

modmax <-  array (NA, dim =  length (points[,1])) mod <-  list () for(i in 1: length (points[,1])){   if(!( is.na (mbc[i]) |  is.na (sdbc[i]))){     dat <-  round (temperature[ which (mbc==mbc[i] & sdbc==sdbc[i])]/10)     mod[[i]] <-  density (dat, bw = 1)     modmax[i] <- mod[[i]]$x[ which.max (mod[[i]]$y)] }} modmax <-  round (modmax*10)

We only use bins with more than the number of species specified as the cutoff. Here we use seven. This means that there needs to be at least seven species recorded at each location to be included in the estimate.

cutoff <- 7 

To plot the maximum likelihood temperature estimate from the ecometric values, we create a color palette for the temperature estimates. In addition, we save the histogram with five break points to a variable to use in plotting (refer back to Fig. 17.A4).

colfunc_eco <-  colorRampPalette ( c (“darkblue”, ”blue”, ”gray”, ”yellow”,  “red”))(temp_range)[1 + modmax -  min (modmax, na.rm = T)] h <-  hist (temperature, main = ”“, xlab = ”Mean Annual Temperature”, col = ”gray”, breaks =  5)

We map the maximum likelihood temperature estimate from body mass (Fig. 17.A11).

Fig. 17.A11
figure 13

A heat map of the estimate of mean annual temperature (°C) from the mean and standard deviation of body mass. The hotter colors represent higher temperature estimates and the cooler colors represent lower temperature estimates

plot (points[,2:3], col = ”gray”, pch = 16) points (points[richness > cutoff, 2:3], col = colfunc_eco[richness > cutoff], pch = 16) legend (-31.5, 61, legend = h$breaks/10, pch = 16, col =  colorRampPalette ( c (“darkblue”,  “blue”, ”gray”, ”yellow”, ”red”))( length (h$breaks)))

Next we plot the actual temperature to compare with the estimated temperature (refer back to Fig. 17.A2).

plot (points[,2:3], col = ”gray”, pch = 16, main = ”Mean Annual Temperature (C)”) points (points[richness > cutoff,2:3], col = colfunc_temp[richness > cutoff], pch = 16) legend (-31.5, 61, legend = h$breaks/10, pch = 16, col =  colorRampPalette ( c (“darkblue”,  “blue”, ”gray”, ”yellow”, ”red”))( length (h$breaks)))

We plot the anomaly to visualize the difference between the estimated and actual Mean Annual Temperature (Fig. 17.A12).

Fig. 17.A12
figure 14

Anomaly between the observed mean annual temperature and the estimated mean annual temperature. The purple colors represent negative anomalies, up to −30°C. The green colors represent positive anomalies, up to 30°C

plot (points[,2:3], col = ”gray”, pch = 16) anom <- temperature – modmax colfunc_anom <-  colorRampPalette ( c (“purple”, ”grey”, ”green”))( max (anom, na.rm = T) –  min (anom, na.rm = T))[1 + anom -  min (anom, na.rm = T)] points (points[richness > cutoff, 2:3], col = colfunc_anom[richness > cutoff], pch = 16) legend (-31.5, 61, legend = h$breaks/10, pch = 16, col =  colorRampPalette ( c (“purple”,  “grey”, ”green”))( length (h$breaks)))

The anomaly between the estimated Mean Annual Temperature and the actual Mean Annual Temperature shows that most of the temperature estimates are less that 1°C divergent from the actual Mean Annual Temperature.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vermillion, W.A., Polly, P.D., Head, J.J., Eronen, J.T., Lawing, A.M. (2018). Ecometrics: A Trait-Based Approach to Paleoclimate and Paleoenvironmental Reconstruction. In: Croft, D., Su, D., Simpson, S. (eds) Methods in Paleoecology. Vertebrate Paleobiology and Paleoanthropology. Springer, Cham. https://doi.org/10.1007/978-3-319-94265-0_17

Download citation

Publish with us

Policies and ethics