Skip to main content

Remote Sensing of Phytoplankton Variability in the Arabian/Persian Gulf

  • Chapter
  • First Online:
Remote Sensing of the Asian Seas

Abstract

The Arabian/Persian Gulf [hereafter the Gulf (Sheppard et al. (Mar Pollut Bull 60:13–38, 2010) mentioned that fourteen historical variants of the name of the Arabian/Persian Gulf are known. Here the name ‘Gulf’ is used, as is the case in several preceding scientific papers.)] is a marginal sea of the Indian Ocean connected with the Gulf of Oman through the Strait of Hormuz. Remote sensing approaches to the studies of phytoplankton biomass variability within this very productive and hydrographically and optically complex area are reviewed and analyzed. The remote-sensing reflectance of the Gulf surface is significantly affected by bottom reflection due to the Gulf’s shallowness. Another crucial factor is the deposition of aeolian dust transported through the atmosphere from the adjacent deserts. Spatial and temporal variability in phytoplankton biomass estimated as remotely sensed chlorophyll concentrations together with physical factors are analyzed with a special emphasis on high biomass and toxic phytoplankton blooms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ROPME—Regional Organization for the Protection of the Marine Environment.

  2. 2.

    http://giovanni.gsfc.nasa.gov/. Accessed 2 Feb 2017.

  3. 3.

    http://gmis.jrc.ec.europa.eu. Accessed 25 Dec 2016.

References

  • Acker JG, Leptoukh G (2007) Online analysis enhances use of NASA earth science data. EOS Trans Am Geophys Union 88(2):14–17

    Article  Google Scholar 

  • Al-Ansari ES, Abdel-Moati MA, Al-Ansi MA et al (2015) Geochemical composition of dust from Qatar peninsula. In: Qatar university life science symposium 2015. http://dx.doi.org/10.5339/qproc.2015.qulss2015. Accessed 25 Jan 2017

  • Al-Azri AR, Piontkovski SA, Al-Hashmi KA et al (2014) Mesoscale and nutrient conditions associated with the massive 2008 Cochlodinium polykrikoides bloom in the Sea of Oman/Arabian Gulf. Estuar Coasts 37:325–338

    Article  Google Scholar 

  • Al-Dousari AM, Al-Awadhi J (2012) Dust fallout in northern Kuwait, major sources and characteristics. Kuwait J Sci 39(2A):171–187

    Google Scholar 

  • Al Gheilani HM, Matsuoka K, AlKindi AY et al (2012) Fish kill incidents and harmful algal blooms in Omani waters. J Agric Mar Sci 16:23–33

    Article  Google Scholar 

  • Al-Yamani FY, Bishop J, Ramadhan E et al (2004) Oceanographic atlas of Kuwait’s waters. Kuwait Institute for Scientific Research, Kuwait

    Google Scholar 

  • Al-Yamani F, Saburova M, Polikarpov I (2012) A preliminary assessment of harmful algal blooms in Kuwait’s marine environment. Aquat Ecosyst Health Manag 15(Suppl 1):64–72

    Article  Google Scholar 

  • Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annu Rev Mar Sci 4:143–176

    Article  Google Scholar 

  • Antoine D, André J-M, Morel A (1996) Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochem Cycles 10:57–69

    Article  Google Scholar 

  • Banzon VF, Gordon HR, Kuchinke CP et al (2009) Validation of a SeaWiFS dust-correction methodology in the Mediterranean Sea: identification of an algorithm-switching criterion. Remote Sens Environ 113:2689–2700

    Article  Google Scholar 

  • Blondeau-Patissier D, Gower JFR, Dekker AG et al (2014) A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog Oceanogr 123:123–144

    Article  Google Scholar 

  • Chang GC, Gould RW (2006) Comparisons of optical properties of the coastal ocean derived from satellite ocean color and in situ measurements. Opt Express 14:10149–10163

    Article  Google Scholar 

  • Chiffings AW (1995) Marine Region II: Arabian Seas. In: Kelleher G, Bleakley C, Wells SM (eds) A global representative system of marine protected areas, vol IV. IUCN. Gland, Switzerland, pp 40–71

    Google Scholar 

  • Davidson K, Gowen RJ, Harrison PJ et al (2014) Anthropogenic nutrients and harmful algae in coastal waters. J Environ Manag 146:206–216

    Article  Google Scholar 

  • Dubovik O, Holben BN, Eck TF et al (2002) Variability of absorption and optical properties of key aerosol types observed in worldwide location. J Atmos Sci 59:590–608

    Article  Google Scholar 

  • Ghanea M, Moradi M, Kabiri K (2016) A novel method for characterizing harmful algal blooms in the Persian Gulf using MODIS measurements. Adv Space Res 58:1348–1361

    Article  Google Scholar 

  • Gower JFR, King S, Borstad GA et al (2005) Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer. Int J Remote Sens 26:2005–2012

    Article  Google Scholar 

  • Hamza W, Munawar M (2009) Protecting and managing the Arabian Gulf: past, present and future. Aquat Ecosyst Health Manag 12:429–439

    Article  Google Scholar 

  • Hamza W, Enan MR, Al-Hassini H et al (2011) Dust storms over the Arabian Gulf: a possible indicator of climate changes consequences. Aquat Ecosyst Health Manag 14:260–268

    Article  Google Scholar 

  • Hamzehei S, Bidokhti AA, Mortazavi MS et al (2013) Red tide monitoring in the Persian Gulf and Gulf of Oman using MODIS sensor data. Tech J Eng Appl Sci 3(12):1100–1107

    Google Scholar 

  • Heil CA, Glibert PM, Al-Sarawi MA et al (2001) First record of a fish-killing Gymnodinium sp. bloom in Kuwait Bay, Arabian Sea: chronology and potential causes. Mar Ecol Prog Ser 214:15–23

    Article  Google Scholar 

  • Hoepffner N, Djavidnia S, Nykjaer L et al (2014) Thermal infrared remote sensing and sea surface temperature of marine and coastal waters around Africa. In: Barale V, Gade M (eds) Remote sensing of the African Seas. Springer, Berlin, pp 55–74

    Google Scholar 

  • Husar RB, Prospero JM, Stowe LL (1997) Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product. J Geophys Res-Atmos 102(D14):16889–16909

    Article  Google Scholar 

  • John VC, Coles SL, Abozed AI (1990) Seasonal cycle of temperature, salinity and water masses of the Western Arabian Gulf. Oceanol Acta 13:273–281

    Google Scholar 

  • Johns WE, Yao F, Olson DB et al (2003) Observations of seasonal exchange through the Straits of Hormuz and the inferred freshwater budgets of the Persian Gulf. J Geophys Res 108(C12):3391

    Article  Google Scholar 

  • Jones DA, Price ARG, Al-Yamani F et al (2002) Coastal and marine ecology. In: Khan NY, Munawar M, Price ARG (eds) The Gulf ecosystem: health and sustainability. Backhuys Publishers, Leiden, pp 65–103

    Chapter  Google Scholar 

  • Kwarteng AY, Mozumder C (2016) Monitoring chlorophyll-a and sea surface temperature variations in SE Arabian Gulf and NW Sea of Oman from MODIS Aqua data. In: Proceedings of 37th Asian conference on remote sensing, Colombo, Sri Lanka, 17–21 Oct 2016, p Ab0012

    Google Scholar 

  • Lunde P (2005) The Seas of Sindbad. Saudi Aramco World 56(4):20–29

    Google Scholar 

  • Mahowald NM, Baker AR, Bergametti G et al (2005). Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochem Cycles 19(4):CB4025

    Google Scholar 

  • Mallet M, Chami M, Gentili B et al (2009) Impact of sea-surface dust radiative forcing on the oceanic primary production: A 1D modeling approach applied to the West African coastal waters. Geophys Res Lett 36:L15828

    Article  Google Scholar 

  • Maritorena S, Morel AY, Gentili B (1994) Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo. Limnol Oceanogr 39(7):1689–1703

    Article  Google Scholar 

  • Meskhidze N, Chameides WL, Nenes A (2005) Dust and pollution: a recipe for enhanced ocean fertilization? J Geophys Res-Atmos 110(D3):D03301

    Article  Google Scholar 

  • Moradi M, Kabiri K (2012) Red tide detection in the Strait of Hormuz (east of the Persian Gulf) using MODIS fluorescence data. Int J Remote Sens 33:1015–1028

    Article  Google Scholar 

  • Nezlin NP, Polikarpov IG, Al-Yamani FY et al (2010) Satellite monitoring of climatic factors regulating phytoplankton variability in the Arabian (Persian) Gulf. J Mar Syst 82:47–60

    Article  Google Scholar 

  • Nobileau D, Antoine D (2005) Detection of blue-absorbing aerosols using near infrared and visible (ocean color) remote sensing observations. Remote Sens Environ 95:368–387

    Article  Google Scholar 

  • O’Reilly JE, Maritorena S, Mitchell BG et al (1998) Ocean color chlorophyll algorithms for SeaWiFS. J Geophys Res 103(C11):24937–24953

    Article  Google Scholar 

  • Olalekan AA, Malik K (2015) Application of Giovanni for rapid assessment of harmful algal blooms in the Arabian Gulf. Arab J Geosci 8(10):8767–8775

    Article  Google Scholar 

  • Patra PK, Kumar MD, Mahowald N et al (2007) Atmospheric deposition and surface stratification as controls of contrasting chlorophyll abundance in the North Indian Ocean. J Geophys Res 112(C5):C05029

    Article  Google Scholar 

  • Polikarpov I, Saburova M, Al-Yamani F (2016) Diversity and distribution of winter phytoplankton in the Arabian Gulf and the Sea of Oman. Cont Shelf Res 199:85–99

    Article  Google Scholar 

  • Reynolds RM (1993) Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman—results from the Mt. Mitchell expedition. Mar Pollut Bull 27:35–59

    Article  Google Scholar 

  • Richlen ML, Morton SL, Jamali EA et al (2010) The catastrophic 2008–2009 red tide in the Arabian Gulf region, with observations on the identification and phylogeny of the fish-killing dinoflagellate Cochlodinium polykrikoides. Harmful Algae 9:163–172

    Article  Google Scholar 

  • Shanmugam P, Ahn YH (2007) New atmospheric correction technique to retrieve the ocean colour from SeaWiFS imagery in complex coastal waters. J Opt A Pure Appl Opt 9:511–530

    Article  Google Scholar 

  • Sharifinia M, Penchah MM, Mahmoudifard A et al (2015) Monthly variability of chlorophyll-a concentration in Persian Gulf using remote sensing techniques. Sains Malaysiana 44(3):387–397

    Article  Google Scholar 

  • Sheppard C, Al-Husiani M, Al-Jamali F et al (2010) The Gulf: a young sea in decline. Mar Pollut Bull 60:13–38

    Article  Google Scholar 

  • Subba Rao DV, Al-Yamani F (1998) Phytoplankton ecology in the waters between Shatt Al-Arab and Straits of Hormuz, Arabian Gulf: a review. Plankton Biol Ecol 45(2):106–116

    Google Scholar 

  • Subba Rao DV, Al-Yamani F (1999) Analysis of the relationship between phytoplankton biomass and the euphotic layer off Kuwait. Arab Gulf. Indian J Mar Sci 28(4):416–423

    Google Scholar 

  • Subba Rao DV, Al-Yamani F, Lennox A et al (1999) Biomass and production characteristics of the first red-tide noticed in Kuwait Bay, Arabian Gulf. J Plankton Res 22(4):805–810

    Google Scholar 

  • Subba Rao DV, Al-Hassan JM, Al-Yamani F et al (2003) The elusive red tides in the arid zone sea, off Kuwait, the Arabian Gulf. Harmful Algae News 24:10–13

    Google Scholar 

  • Tomczak M, Godfrey JS (2003) Regional oceanography: an introduction, 2nd edn. Daya Publishing House, New Delhi

    Google Scholar 

  • Xing XG, Zhao DZ, Liu YG et al (2007) An overview of remote sensing of chlorophyll fluorescence. Ocean Sci J 42:49–59

    Article  Google Scholar 

  • Zhao J, Ghedira H (2014) Monitoring red tide with satellite imagery and numerical models: a case study in the Arabian Gulf. Mar Pollut Bull 79:305–313

    Article  Google Scholar 

  • Zhao J, Temimi M, Ghedira H (2015) Characterization of harmful algal blooms (HABs) in the Arabian Gulf and the Sea of Oman using MERIS fluorescence data. ISPRS J Photogramm Remote Sens 101:125–136

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Kuwait Institute for Scientific Research (Kuwait) for funding. Authors are grateful to the editorial team, especially to Martin Gade and Vittorio Barale and for their patience support. We greatly appreciate the two anonymous reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Polikarpov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Polikarpov, I., Al-Yamani, F., Saburova, M. (2019). Remote Sensing of Phytoplankton Variability in the Arabian/Persian Gulf. In: Barale, V., Gade, M. (eds) Remote Sensing of the Asian Seas. Springer, Cham. https://doi.org/10.1007/978-3-319-94067-0_27

Download citation

Publish with us

Policies and ethics