Skip to main content

Restrictions on the Use of Sweeping Type Preconditioners for Helmholtz Problems

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XXIV (DD 2017)

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 125))

Included in the following conference series:

Abstract

Sweeping type preconditioners have become a focus of attention for solving high frequency time harmonic wave propagation problems. These methods can be found under various names in the literature: in addition to sweeping, one finds the older approach of the Analytic Incomplete LU (AILU), optimized Schwarz methods, and more recently also source transfer domain decomposition, method based on single layer potentials, and method of polarized traces. An important innovation in sweeping methods is to use perfectly matched layer (PML) transmission conditions. In the constant wavenumber case, one can approximate the optimal transmission conditions represented by the Dirichlet to Neumann operator (DtN) arbitrarily well using large enough PMLs. We give in this short manuscript a simple, compact representation of these methods which allows us to explain exactly how they work, and test what happens in the case of non-constant wave number, in particular layered media in the difficult case where the layers are aligned against the sweeping direction. We find that iteration numbers of all these methods remain robust for very small contrast variations, in the order of a few percent, but then deteriorate, with linear growth both in the wave number as well as in the number of subdomains, as soon as the contrast variations reach order one.

The author “H. Zhang” was supported by ZJOU Research Start Fund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Provided the domain has indeed an open end or such a high order PML on the side where the sweeping begins.

  2. 2.

    It is the exact Schur complement, including all boundary information, the only approximation is the constant wave number.

  3. 3.

    The boundary points are not plotted, so one cannot see the homogeneous Dirichlet condition.

  4. 4.

    There are also two interesting apparent anomalies: in the smaller wavenumber case, for p = 4 and α = 0.05 (and also one in the larger wave number case), the spectral radius is bigger than one, but for the source term f = 1 we observe convergence. We iterated in this case however further, and then the iterations also start to diverge, it is only that the divergent modes are not stimulated at the beginning by the source term f = 1 and zero initial guess, a typical phenomenon known from power iterations, which explains in the table the general observation that the problem with f = 1 is easier to solve than with the other sources, also for GMRES. For the same p = 4 and α = 0.1, we then get surprisingly a spectral radius again smaller than 1, which is a lucky configuration and not observed for more subdomains or different α.

References

  1. I.M. Babuska, S.A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM J. Numer. Anal. 34(6), 2392–2423 (1997)

    Article  MathSciNet  Google Scholar 

  2. Y. Boubendir, X. Antoine, C. Geuzaine, A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation. J. Comput. Phys. 231(2), 262–280 (2012)

    Article  MathSciNet  Google Scholar 

  3. Z. Chen, X. Xiang, A source transfer domain decomposition method for Helmholtz equations in unbounded domain. SIAM J. Numer. Anal. 51, 2331–2356 (2013)

    Article  MathSciNet  Google Scholar 

  4. Z. Chen, X. Xiang, A source transfer domain decomposition method for Helmholtz equations in unbounded domain Part II: extensions. Numer. Math. Theor. Meth. Appl. 6, 538–555 (2013)

    MathSciNet  MATH  Google Scholar 

  5. P.-H. Cocquet, M.J. Gander, On the minimal shift in the shifted Laplacian preconditioner for multigrid to work, in Domain Decomposition Methods in Science and Engineering XXII (Springer, Berlin, 2016), pp. 137–145

    Book  Google Scholar 

  6. P.-H. Cocquet, M.J. Gander, How large a shift is needed in the shifted Helmholtz preconditioner for its effective inversion by multigrid? SIAM J. Sci. Comput. 39(2), A438–A478 (2017)

    Article  MathSciNet  Google Scholar 

  7. B. Engquist, L. Ying, Sweeping preconditioner for the Helmholtz equation: hierarchical matrix representation. Commun. Pure Appl. Math. LXIV, 0697–0735 (2011)

    Google Scholar 

  8. B. Engquist, L. Ying, Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers. Multiscale Model. Simul. 9, 686–710 (2011)

    Article  MathSciNet  Google Scholar 

  9. Y.A. Erlangga, C. Vuik, C.W. Oosterlee, On a class of preconditioners for solving the Helmholtz equation. Appl. Numer. Math. 50(3–4), 409–425 (2004)

    Article  MathSciNet  Google Scholar 

  10. O.G. Ernst, M.J. Gander, Why it is difficult to solve Helmholtz problems with classical iterative methods, in Numerical Analysis of Multiscale Problems (Springer, Berlin, 2012)

    MATH  Google Scholar 

  11. M.J. Gander, Optimized Schwarz methods. SIAM J. Numer. Anal. 44, 699–731 (2006)

    Article  MathSciNet  Google Scholar 

  12. M.J. Gander, F. Nataf, AILU: a preconditioner based on the analytic factorization of the elliptic operator. Numer. Linear Algebra Appl. 7, 505–526 (2000)

    Article  MathSciNet  Google Scholar 

  13. M.J. Gander, F. Nataf, An incomplete LU preconditioner for problems in acoustics. J. Comput. Acoust. 13, 455–476 (2005)

    Article  MathSciNet  Google Scholar 

  14. M.J. Gander, A. Schädle, The pole condition: a Padé approximation of the Dirichlet to Neumann operator, in Domain Decomposition Methods in Science and Engineering XIX (Springer, Berlin, 2011), pp. 125–132

    Book  Google Scholar 

  15. M.J. Gander, A. Schädle, On the relationship between the pole condition, absorbing boundary conditions and perfectly matched layers (2018, in preparation)

    Google Scholar 

  16. M.J. Gander, H. Zhang, A class of iterative solvers for the Helmholtz equation: factorizations, sweeping preconditioners, source transfer, single layer potentials, polarized traces, and optimized Schwarz methods. SIAM Rev. (2018, in print)

    Google Scholar 

  17. M.J. Gander, F. Magoules, F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24, 38–60 (2002)

    Article  MathSciNet  Google Scholar 

  18. M.J. Gander, L. Halpern, F. Magoules, An optimized Schwarz method with two-sided Robin transmission conditions for the Helmholtz equation. Int. J. Numer. Methods Fluids 55, 163–175 (2007)

    Article  MathSciNet  Google Scholar 

  19. M.J. Gander, I.G. Graham, E.A. Spence, Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed? Numer. Math. 131, 567–614 (2015)

    Article  MathSciNet  Google Scholar 

  20. I.G. Graham, E.A. Spence, E. Vainikko, Domain decomposition preconditioning for high-frequency Helmholtz problems using absorption. ArXiv e-prints (2015)

    Google Scholar 

  21. A. Schädle, L. Zschiedrich, Additive Schwarz method for scattering problems using the PML method at interfaces, in Domain Decomposition Methods in Science and Engineering XVI (Springer, Berlin, 2007), pp. 205–212

    Google Scholar 

  22. A. Toselli, Some results on overlapping Schwarz methods for the Helmholtz equation employing perfectly matched layers, in Domain Decomposition Methods in Sciences and Engineering: Eleventh International Conference, London (1998), pp. 539–545

    Google Scholar 

  23. L. Zepeda-Núñez, L. Demanet, The method of polarized traces for the 2D Helmholtz equation. J. Comput. Phys. 308, 347–388 (2016)

    Article  MathSciNet  Google Scholar 

  24. L. Zepeda-Núñez, R.J. Hewett, L. Demanet, Preconditioning the 2D Helmholtz equation with polarized traces, in SEG Technical Program Expanded Abstracts 2014 (SEG, 2014), pp. 3465–3470

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin J. Gander or Hui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gander, M.J., Zhang, H. (2018). Restrictions on the Use of Sweeping Type Preconditioners for Helmholtz Problems. In: Bjørstad, P., et al. Domain Decomposition Methods in Science and Engineering XXIV . DD 2017. Lecture Notes in Computational Science and Engineering, vol 125. Springer, Cham. https://doi.org/10.1007/978-3-319-93873-8_30

Download citation

Publish with us

Policies and ethics