Skip to main content

Mechanical Properties of Glass

  • Chapter
Springer Handbook of Glass

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter focuses on the mechanical properties and behavior of glasses below their glass transition temperature. In this temperature range, they are usually seen as perfectly brittle materials: materials that deform only elastically, until they break. This chapter explores the behavior of glasses from the domain from elasticity to fracture. We first review the most widely used methods for measuring the elastic moduli of glasses, and the state of the art regarding knowledge of the relationship between elastic moduli and short- to medium-range order in glasses. We then discuss nonlinear elasticity in glasses, and how temperature and pressure impact on elastic moduli. But glasses can also deform plastically under high levels of compressive stress, particularly under sharp contact (indentation), because of high pressure and shear stress. This plastic deformation is highly dependent on glass composition; it results from densification and shear flow, two mechanisms that are affected by the loading path, temperature and strain rate. We examine how plasticity occurs under sharp contact (e. g., indentation, scratch), until damage appears (cracks). Finally, we examine the practical strength of glasses, which is highly dependent on resistance to surface damage as well as to crack propagation (fracture toughness). The important role of moisture is also discussed, as it is responsible for subcritical crack propagation, and thus lower durability of glass parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • R. Hooke: Lectures de Potentia Restitutiva (John Martyn, London 1931)

    Google Scholar 

  • P.M. Morse: Diatomic molecules according to the wave mechanics. II. Vibrational levels, Phys. Rev. 34(1), 57 (1929)

    Article  CAS  Google Scholar 

  • P.K. Gupta, C.R. Kurkjian: Intrinsic failure and non-linear elastic behavior of glasses, J. Non-Cryst. Solids 351(27–29), 2324–2328 (2005)

    Article  CAS  Google Scholar 

  • F.P. Mallinder, B.A. Proctor: Elastic constants of fused silica as a function of large tensile strain, Phys. Chem. Glasses 5(4), 91–103 (1964)

    Google Scholar 

  • L.H. Donnell: A new theory for the buckling of thin cylinders under axial compression and bending, Trans. ASME 56(11), 795–806 (1934)

    Google Scholar 

  • J.K. Banerjee: Barreling of solid cylinders under axial compression, J. Eng. Mater. Technol. 107(2), 138–144 (1985)

    Article  Google Scholar 

  • V. Chean, E. Robin, R. El Abdi, J.C. Sangleboeuf, P. Houizot: Use of the mark-tracking method for optical fiber characterization, Opt. Laser Technol. 43(7), 1172–1178 (2011)

    Article  CAS  Google Scholar 

  • R.J. Angel, J.M. Jackson, H.J. Reichmann, S. Speziale: Elasticity measurements on minerals: A review, Eur. J. Mineral. 21(3), 525–550 (2009)

    Article  CAS  Google Scholar 

  • S. Timoshenko: History of Strength of Materials: With a Brief Account of the History of Theory of Elasticity and Theory of Structures (Courier Corporation, Chelmsford 1953)

    Google Scholar 

  • H.J. McSkimin: Measurement of elastic constants at low temperatures by means of ultrasonic waves—data for silicon and germanium single crystals, and for fused silica, J. Appl. Phys. 24(8), 988–997 (1953)

    Article  CAS  Google Scholar 

  • H.J. McSkimin: Notes and references for the measurement of elastic moduli by means of ultrasonic waves, J. Acoust. Soc. Am. 33(5), 606–615 (1961)

    Article  Google Scholar 

  • V. Keryvin, T. Rouxel, M. Huger, L. Charleux: Elastic moduli of a ZrCuAlNi bulk metallic glass from room temperature to complete crystallisation by in situ pulse-echo ultrasonic echography, J. Ceram. Soc. 116(1356), 851–854 (2008)

    Article  CAS  Google Scholar 

  • M.J. Bamber, K.E. Cooke, A.B. Mann, B. Derby: Accurate determination of Young's modulus and Poisson's ratio of thin films by a combination of acoustic microscopy and nanoindentation, Thin Solid Films 398, 299–305 (2001)

    Article  Google Scholar 

  • X. Xiao, N. Hata, K. Yamada, T. Kikkawa: Mechanical properties of periodic porous silica low-k films determined by the twin-transducer surface acoustic wave technique, Rev. Sci. Instrum. 74(10), 4539–4541 (2003)

    Article  CAS  Google Scholar 

  • ASTM E1875-13: Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Sonic Resonance (ASTM, West Conshohocken 1875)

    Google Scholar 

  • G. Roebben, B. Bollen, A. Brebels, J. Van Humbeeck, O. der Biest: Impulse excitation apparatus to measure resonant frequencies, elastic moduli, and internal friction at room and high temperature, Rev. Sci. Instrum. 68(12), 4511–4515 (1997)

    Article  CAS  Google Scholar 

  • G. Roebben, B. Basu, J. Vleugels, J. Van Humbeeck, O. der Biest: The innovative impulse excitation technique for high-temperature mechanical spectroscopy, J. Alloys Compd. 310(1/2), 284–287 (2000)

    Article  CAS  Google Scholar 

  • L. Brillouin: Diffusion de la lumière et des rayons X par un corps transparent homogène. Influence de l'agitation thermique, Ann. Phys. 9(17), 88–122 (1922)

    Article  Google Scholar 

  • E. Gross: Change of wave-length of light due to elastic heat waves at scattering in liquids, Nature 126(3171), 201 (1930)

    Article  Google Scholar 

  • W. Hayes, R. Loudon: Scattering of Light by Crystals (Courier Corporation, Chelmsford 2012)

    Google Scholar 

  • S. Speziale, H. Marquardt, T.S. Duffy: Brillouin scattering and its application in geosciences, Rev. Mineral. Geochem. 78(1), 543–603 (2014)

    Article  CAS  Google Scholar 

  • G. Hernández: Fabry–Perot Interferometers (Cambridge Univ. Press, Cambridge 1988)

    Google Scholar 

  • S.M. Shapiro, R.W. Gammon, H.Z. Cummins: Brillouin scattering spectra of crystalline quartz, fused quartz and glass, Appl. Phys. Lett. 9(4), 157–159 (1966)

    Article  CAS  Google Scholar 

  • E.S. Zouboulis, M. Grimsditch, A.K. Ramdas, S. Rodriguez: Temperature dependence of the elastic moduli of diamond: A Brillouin-scattering study, Phys. Rev. B 57(5), 2889 (1998)

    Article  CAS  Google Scholar 

  • S.V. Sinogeikin, J.M. Jackson, B. O'Neill, J.W. Palko, J.D. Bass: Compact high-temperature cell for Brillouin scattering measurements, Rev. Sci. Instrum. 71(1), 201–206 (2000)

    Article  CAS  Google Scholar 

  • J.A. Bucaro, H.D. Dardy: High-temperature Brillouin-scattering in fused quartz, J. Appl. Phys. 45(12), 5324–5329 (1974)

    Article  CAS  Google Scholar 

  • C.H. Whitfield, E.M. Brody, W.A. Bassett: Elastic moduli of NaCl by Brillouin scattering at high pressure in a diamond anvil cell, Rev. Sci. Instrum. 47(8), 942–947 (1976)

    Article  CAS  Google Scholar 

  • C. Zha, R.J. Hemley, H. Mao, T.S. Duffy, C. Meade: Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering, Phys. Rev. B 50(18), 13105–13112 (1994)

    Article  CAS  Google Scholar 

  • H. Shimizu, E.M. Brody, H.K. Mao, P.M. Bell: Brillouin Measurements of Solid n-H2 and n-D2 to 200 kbar at room temperature, Phys. Rev. Lett. 47(2), 128 (1981)

    Article  CAS  Google Scholar 

  • C. Sonneville, D. De Ligny, A. Mermet, B. Champagnon, C. Martinet, G.H. Henderson, T. Deschamps, J. Margveritat, E. Barthel: In situ Brillouin study of sodium alumino silicate glasses under pressure, J. Chem. Phys. 139(7), 074501 (2013)

    Article  CAS  Google Scholar 

  • W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7(06), 1564–1583 (1992)

    Article  CAS  Google Scholar 

  • A.N. Sreeram, A.K. Varshneya, D.R. Swiler: Molar volume and elastic properties of multicomponent chalcogenide glasses, J. Non-Cryst. Solids 128(3), 294–309 (1991)

    Article  CAS  Google Scholar 

  • W.H. Wang, C. Dong, C.H. Shek: Bulk metallic glasses, Mater. Sci. Eng. R Rep. 44(2/3), 45–89 (2004)

    Google Scholar 

  • T. Rouxel: Elastic properties and short-to medium-range order in glasses, J. Am. Ceram. Soc. 90(10), 3019–3039 (2007)

    Article  CAS  Google Scholar 

  • L.C.E. Struik: Integration of polymer science and technology? In: Integration of Fundamental Polymer Science and Technology 3, ed. by P.J. Lemstra, L.A. Kleintjens (Springer, Dordrecht 1989) pp. 3–16

    Chapter  Google Scholar 

  • C. Zwikker, R. Smoluchowski: Physical properties of solid materials, Phys. Today 8, 17 (1955)

    Article  Google Scholar 

  • A. Makishima, J.D. Mackenzie: Calculation of bulk modulus, shear modulus and Poisson's ratio of glass, J. Non-Cryst. Solids 17(2), 147–157 (1975)

    Article  CAS  Google Scholar 

  • A.K. Bandyopadhyay, L.C. Ming: Pressure-induced phase transformations in amorphous selenium by x-ray diffraction and Raman spectroscopy, Phys. Rev. B 54(17), 12049 (1996)

    Article  CAS  Google Scholar 

  • M.E. Fine: Elasticity and thermal expansion of germanium between $$-195$$ and 275 °C, J. Appl. Phys. 24(3), 338–340 (1953)

    Article  CAS  Google Scholar 

  • G. Yang, B. Bureau, T. Rouxel, Y. Gueguen, O. Gulbiten, C. Roiland, E. Soignord, J.L. Yarger, J. Troles, J.-C. Sangleboeuf, P. Lucas: Correlation between structure and physical properties of chalcogenide glasses in the AsxSe1-x system, Phys. Rev. B 82(19), 195206 (2010)

    Article  CAS  Google Scholar 

  • G. Yang, Y. Gueguen, J.-C. Sangleboeuf, T. Rouxel, C. Boussard-Plédel, J. Troles, P. Lucas, B. Bureau: Physical properties of the GexSe1-x glasses in the $$0<x<0.42$$ range in correlation with their structure, J. Non-Cryst. Solids 377, 54–59 (2013)

    Article  CAS  Google Scholar 

  • A. Makishima, J.D. Mackenzie: Direct calculation of Young's modulus of glass, J. Non-Cryst. Solids 12(1), 35–45 (1973)

    Article  CAS  Google Scholar 

  • J. Rocherulle's, C. Ecolivet, M. Poulain, P. Verdier, Y. Laurent: Elastic moduli of oxynitride glasses: Extension of Makishima and Mackenzie Theory, J. Non-Cryst. Solids 108(2), 187–193 (1989)

    Article  Google Scholar 

  • A. Pönitzsch, M. Nofz, L. Wondraczek, J. Deubener: Bulk elastic properties, hardness and fatigue of calcium aluminosilicate glasses in the intermediate-silica range, J. Non-Cryst. Solids 434, 1–12 (2016)

    Article  CAS  Google Scholar 

  • G.N. Greaves, A.L. Greer, R.S. Lakes, T. Rouxel: Poisson's ratio and modern materials, Nat. Mater. 10(11), 823–837 (2011)

    Article  CAS  Google Scholar 

  • J.C. Phillips: Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys, J. Non-Cryst. Solids 34(2), 153–181 (1979)

    Article  CAS  Google Scholar 

  • M.F. Thorpe: Continuous deformations in random networks, J. Non-Cryst. Solids 57(3), 355–370 (1983)

    Article  CAS  Google Scholar 

  • P.K. Gupta, J.C. Mauro: Composition dependence of glass transition temperature and fragility. I. A topological model incorporating temperature-dependent constraints, J. Chem. Phys. 130(9), 094503 (2009)

    Article  CAS  Google Scholar 

  • M.M. Smedskjaer, J.C. Mauro, Y. Yue: Prediction of glass hardness using temperature-dependent constraint theory, Phys. Rev. Lett. 105(11), 115503 (2010)

    Article  CAS  Google Scholar 

  • H. He, M.F. Thorpe: Elastic properties of glasses, Phys. Rev. Lett. 54(19), 2107 (1985)

    Article  CAS  Google Scholar 

  • S.S. Yun, H. Li, R.L. Cappelletti, R.N. Enzweiler, P. Boolchand: Onset of rigidity in Se1-xGex glasses: Ultrasonic elastic moduli, Phys. Rev. B 39(12), 8702 (1989)

    Article  CAS  Google Scholar 

  • C.A. Angell: Formation of glasses from liquids and biopolymers, Science 267(5206), 1924–1935 (1995)

    Article  CAS  Google Scholar 

  • R.E. Youngman, J. Kieffer, J.D. Bass, L. Duffrene: Extended structural integrity in network glasses and liquids, J. Non-Cryst. Solids 222, 190–198 (1997)

    Article  CAS  Google Scholar 

  • Y. Gueguen, T. Rouxel, P. Gadaud, C. Bernard, V. Keryvin, J.-C. Sangleboeuf: High-temperature elasticity and viscosity of GexSe1-x glasses in the transition range, Phys. Rev. B 84(6), 064201 (2011)

    Article  CAS  Google Scholar 

  • J.C. Dyre, N.B. Olsen, T. Christensen: Local elastic expansion model for viscous-flow activation energies of glass-forming molecular liquids, Phys. Rev. B 53(5), 2171–2174 (1996)

    Article  CAS  Google Scholar 

  • L. Huang, J. Kieffer: Amorphous-amorphous transitions in silica glass. I. Reversible transitions and thermomechanical anomalies, Phys. Rev. B 69(22), 224203 (2004)

    Article  CAS  Google Scholar 

  • Q. Zhao, M. Guerette, G. Scannell, L. Huang: In-situ high temperature Raman and Brillouin light scattering studies of sodium silicate glasses, J. Non-Cryst. Solids 358(24), 3418–3426 (2012)

    Article  CAS  Google Scholar 

  • A.N. Clark, C.E. Lesher, S.D. Jacobsen, S. Sen: Mechanisms of anomalous compressibility of vitreous silica, Phys. Rev. B 90(17), 174110 (2014)

    Article  CAS  Google Scholar 

  • R. Ota, T. Yamate, N. Soga, M. Kunugi: Elastic properties of Ge-Se glass under pressure, J. Non-Cryst. Solids 29(1), 67–76 (1978)

    Article  CAS  Google Scholar 

  • H.S. Chen: The influence of structural relaxation on the density and Young's modulus of metallic glasses, J. Appl. Phys. 49(6), 3289–3291 (1978)

    Article  CAS  Google Scholar 

  • A. Kursumovic, M.G. Scott: The use of Young's modulus to monitor relaxation in metallic glasses, Appl. Phys. Lett. 37(7), 620–622 (1980)

    Article  CAS  Google Scholar 

  • P.C. Anderson, U. Senapati, A.K. Varshneya: Sub-Tg relaxation in Ge5Se95 and As5Se95 glasses, J. Non-Cryst. Solids 176(1), 51–57 (1994)

    Article  CAS  Google Scholar 

  • D.L. Anderson: Theory of the Earth (Blackwell Scientific, Oxford 1989)

    Google Scholar 

  • D.N. Nichols, D.S. Rimai, R.J. Sladek: Effect of hydrostatic pressure on the elastic moduli of As2S3 and As2Se3 glasses at 195 and 296 K, J. Non-Cryst. Solids 34(3), 297–305 (1979)

    Article  CAS  Google Scholar 

  • R. Ota, N. Soga: Elastic properties of fluoride glasses under pressure and temperature, J. Non-Cryst. Solids 56(1–3), 105–110 (1983)

    Article  CAS  Google Scholar 

  • J.C. Thompson, K.E. Bailey: Survey of elastic properties of some semiconducting glasses under pressure, J. Non-Cryst. Solids 27(2), 161–172 (1978)

    Article  CAS  Google Scholar 

  • M.H. Manghnani: Pressure and temperature dependence of the elastic moduli of Na2O-TiO2-SiO2 glasses, J. Am. Ceram. Soc. 55(7), 360–365 (1972)

    Article  CAS  Google Scholar 

  • R. Ota, H. Yamanaka, M. Kunugi: Pressure dependence of elastic properties for B2O3-Na2O glasses and equations of state for glass. In: High-Pressure Science and Technology, ed. by K.D. Timmerhaus, M.S. Barber (Springer, Boston 1979) pp. 1241–1247

    Chapter  Google Scholar 

  • E. Gamberg, D.R. Uhlmann, D.H. Chung: Pressure dependence of the elastic moduli of glasses in the K2O-SiO2 system, J. Non-Cryst. Solids 13(3), 399–408 (1974)

    Article  CAS  Google Scholar 

  • L. Huang, J. Kieffer: Thermomechanical anomalies and polyamorphism in B2O3 glass: A molecular dynamics simulation study, Phys. Rev. B 74(22), 224107 (2006)

    Article  CAS  Google Scholar 

  • R. Hill: The Mathematical Theory of Plasticity (Clarendon, Oxford 1950)

    Google Scholar 

  • A.E.H. Love: A Treatise on the Mathematical Theory of Elasticity (Cambridge Univ. Press, Cambridge 1892)

    Google Scholar 

  • J.W. French: Some notes on glass grinding and polishing, Trans. Opt. Soc. 17(2), 24–71 (1916)

    Article  Google Scholar 

  • G.T. Beilby: Researches on polished surfaces, Trans. Opt. Soc. 9(1), 22–71 (1907)

    Article  Google Scholar 

  • G.I. Finch, A.G. Quarrell, J.S. Roebuck: The Beilby layer, Proc. R. Soc. A 145(855), 676–681 (1934)

    Article  Google Scholar 

  • T. Suratwala, W. Steele, L. Wong, M.D. Feit, P.E. Miller, R. Dylla-Spears, N. Shen, R. Desjardin: Chemistry and formation of the Beilby layer during polishing of fused silica glass, J. Am. Ceram. Soc. 98(8), 2395–2402 (2015)

    Article  CAS  Google Scholar 

  • E.W. Taylor: A hardness table for some well-known types of optical glass, J. Sci. Instrum. 26(9), 314 (1949)

    Article  Google Scholar 

  • J.F.H. Custers: Plastic deformation of glass during scratching, Nature 164(4171), 627–627 (1949)

    Article  CAS  Google Scholar 

  • P.W. Bridgman, I. Simon: Effects of very high pressures on glass, J. Appl. Phys. 24(4), 405–413 (1953)

    Article  CAS  Google Scholar 

  • T. Rouxel, H. Ji, T. Hammouda, A. Moréac: Poisson's ratio and the densification of glass under high pressure, Phys. Rev. Lett. 100(22), 225501 (2008)

    Article  CAS  Google Scholar 

  • C. Meade, R.J. Hemley, H.K. Mao: High-pressure x-ray diffraction of SiO2 glass, Phys. Rev. Lett. 69(9), 1387–1390 (1992)

    Article  CAS  Google Scholar 

  • T. Deschamps, A. Kassir-Bodon, C. Sonneville, J. Margveritat, C. Martinet, D. de Ligny, A. Mermet, B. Champagnon: Permanent densification of compressed silica glass: A Raman-density calibration curve, J. Phys. Condens. Matter 25(2), 025402 (2013)

    Article  CAS  Google Scholar 

  • B. Hehlen: Inter-tetrahedra bond angle of permanently densified silicas extracted from their Raman spectra, J. Phys. Condens. Matter 22(2), 25401 (2010)

    Article  CAS  Google Scholar 

  • V. Keryvin, J.-X. Meng, S. Gicquel, J.-P. Guin, L. Charleux, J.-C. Sangleboeuf, P. Pilvin, T. Rouxel, G. Le Quilliec: Constitutive modeling of the densification process in silica glass under hydrostatic compression, Acta Mater. 62, 250–257 (2014)

    Article  CAS  Google Scholar 

  • D. Wakabayashi, N. Funamori, T. Sato, T. Taniguchi: Compression behavior of densified SiO2 glass, Phys. Rev. B 84(14), 144103 (2011)

    Article  CAS  Google Scholar 

  • Y. Satoshi, J.-C. Sangleboeuf, T. Rouxel: Quantitative evaluation of indentation-induced densification in glass, J. Mater. Res. 20(12), 3404–3412 (2005)

    Article  Google Scholar 

  • M.I. Eremets: High Pressure Experimental Methods (Oxford Univ. Press, Oxford 1996)

    Google Scholar 

  • H.M. Cohen, R. Roy: Effects of ultra high pressures on glass, J. Am. Ceram. Soc. 44(10), 523 (1961)

    Article  CAS  Google Scholar 

  • E.B. Christiansen, S.S. Kistler, W.B. Gogarty: Irreversible compressibility of silica glass as a means of determining the distribution of force in high-pressure cells, J. Am. Ceram. Soc. 45(4), 172–177 (1962)

    Article  CAS  Google Scholar 

  • J.D. Mackenzie: High-pressure effects on oxide glasses: I, densification in rigid state, J. Am. Ceram. Soc. 46(10), 461 (1963)

    Article  CAS  Google Scholar 

  • C. Martinet, A. Kassir-Bodon, T. Deschamps, A. Cornet, S. Le Floch, V. Martinez, B. Champagnon: Permanently densified SiO2 glasses: A structural approach, J. Phys. Condens. Matter 27(32), 325401 (2015)

    Article  CAS  Google Scholar 

  • A. Cornet, V. Martinez, D. de Ligny, B. Champagnon, C. Martinet: Relaxation processes of densified silica glass, J. Chem. Phys. 146(9), 94504 (2017)

    Article  CAS  Google Scholar 

  • J. Arndt: Shock-wave densification of silica glass, Phys. Chem. Glasses 12, 1–7 (1971)

    CAS  Google Scholar 

  • M. Okuno, B. Reynard, Y. Shimada, Y. Syono, C. Willaime: A Raman spectroscopic study of shock-wave densification of vitreous silica, Phys. Chem. Miner. 26(4), 304–311 (1999)

    Article  CAS  Google Scholar 

  • R. Renou, L. Soulard, E. Lescoute, C. Dereure, D. Loison, J.-P. Guin: Silica glass structural properties under elastic shock compression: Experiments and molecular simulations, J. Phys. Chem. C 121(24), 13324–13334 (2017)

    Article  CAS  Google Scholar 

  • R. Renou, L. Soulard, E. Lescoute, C. Dereure, D. Loison, J.P. Guin: Understanding shock induced glass densification using molecular dynamics simulation, Phys. Chem. Phys.

    Google Scholar 

  • P. Klapetek, D. Nečas, C. Anderson: Gwyddion, http://www.gwyddion.net/ (2004)

  • W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7(6), 1564–1583 (1992)

    Article  CAS  Google Scholar 

  • A.C. Fischer-Cripps: Introduction to Contact Mechanics, Vol. 101 (Springer, New York 2007)

    Book  Google Scholar 

  • D. Tabor: The physical meaning of indentation and scratch hardness, Br. J. Appl. Phys. 7(5), 159 (1956)

    Article  Google Scholar 

  • M.M. Smedskjaer, J.C. Mauro, S. Sen, Y. Yue: Quantitative design of glassy materials using temperature-dependent constraint theory, Chem. Mater. 22(18), 5358–5365 (2010)

    Article  CAS  Google Scholar 

  • A. Kassir-Bodon, T. Deschamps, C. Martinet, B. Champagnon, J. Teisseire, G. Kermouche: Raman mapping of the indentation-induced densification of a soda-lime-silicate glass, Int. J. Appl. Glasses Sci. 3(1), 29–35 (2012)

    Article  CAS  Google Scholar 

  • A. Perriot, D. Vandembroucq, E. Barthel, V. Martinez, L. Grosvalet, C. Martinet, B. Champagnon: Raman microspectroscopic characterization of amorphous silica plastic behavior, J. Am. Ceram. Soc. 89(2), 596–601 (2006)

    Article  CAS  Google Scholar 

  • H. Tran, S. Clement, R. Vialla, D. Vandembroucq, B. Ruffle: Micro-Brillouin spectroscopy mapping of the residual density field induced by Vickers indentation in a soda-lime-silicate glass, Appl. Phys. Lett. 100(23), 231901–2319014 (2012)

    Article  CAS  Google Scholar 

  • G. Kermouche, E. Barthel, D. Vandembroucq, P. Dubujet: Mechanical modelling of indentation-induced densification in amorphous silica, Acta Mater. 56(13), 3222 (2008)

    Article  CAS  Google Scholar 

  • Y. Niu, K. Han, J. Guin: Locally enhanced dissolution rate as a probe for nanocontact-induced densification in oxide glasses, Langmuir 28, 10733–10740 (2012)

    Article  CAS  Google Scholar 

  • R. Lacroix, V. Chomienne, G. Kermouche, J. Teisseire, E. Barthel, S. Queste: Micropillar testing of amorphous silica, Int. J. Appl. Glass Sci. 3(1), 36–43 (2012)

    Article  CAS  Google Scholar 

  • G. Kermouche, G. Guillonneau, J. Michler, J. Teisseire, E. Barthel: Perfectly plastic flow in silica glass, Acta Mater. 114, 146–153 (2016)

    Article  CAS  Google Scholar 

  • M. Mačković, F. Niekiel, L. Wondraczek, E. Spiecker: Direct observation of electron-beam-induced densification and hardening of silica nanoballs by in situ transmission electron microscopy and finite element method simulations, Acta Mater. 79, 363–373 (2014)

    Article  CAS  Google Scholar 

  • M. Mačković, F. Niekiel, L. Wondraczek, E. Bitzek, E. Spiecker: In situ mechanical quenching of nanoscale silica spheres in the transmission electron microscope, Scr. Mater. 121, 70–74 (2016)

    Article  CAS  Google Scholar 

  • S. Romeis, J. Paul, P. Herre, D. de Ligny, J. Schmidt, W. Peukert: Local densification of a single micron sized silica sphere by uniaxial compression, Scr. Mater. 108, 84–87 (2015)

    Article  CAS  Google Scholar 

  • V. Keryvin, L. Charleux, R. Hin, J.-P. Guin, J.-C. Sangleboeuf: Mechanical behaviour of fully densified silica glass under vickers indentation, Acta Mater. 129, 492–499 (2017)

    Article  CAS  Google Scholar 

  • B. Mantisi, G. Kermouche, E. Barthel, A. Tanguy: Impact of pressure on plastic yield in amorphous solids with open structure, Phys. Rev. E 93(3), 33001 (2016)

    Article  CAS  Google Scholar 

  • G. Molnár, G. Kermouche, E. Barthel: Plastic response of amorphous silicates, from atomistic simulations to experiments—A general constitutive relation, Mech. Mater. 114, 1–8 (2017)

    Article  Google Scholar 

  • H. Hertz: On the contact of elastic solids, Z. reine angew. Math. 92, 156–171 (1881)

    Google Scholar 

  • B.R. Lawn: Indentation of ceramics with spheres: A century after Hertz, J. Am. Ceram. Soc. 81(8), 1977–1994 (1998)

    Article  CAS  Google Scholar 

  • B.R. Lawn, M.V. Swain: Microfracture beneath point indentations in brittle solids, J. Mater. Sci. 10(1), 113–122 (1974)

    Article  Google Scholar 

  • R.F. Cook, G.M. Pharr: Direct observation and analysis of indentation cracking in glasses and ceramics, J. Am. Ceram. Soc. 73(4), 787–817 (1990)

    Article  CAS  Google Scholar 

  • J.T. Hagan: Cone cracks around Vickers indentations in fused silica glass, J. Mater. Sci. 14(2), 462 (1979)

    Article  CAS  Google Scholar 

  • A. Arora, D.B. Marshall, B.R. Lawn, M.V. Swain: Indentation deformation/fracture of normal and anomalous glasses, J. Non-Cryst. Solids 31(3), 415–428 (1979)

    Article  CAS  Google Scholar 

  • R. Limbach, A. Winterstein-Beckmann, J. Dellith, D. Möncke, L. Wondraczek: Plasticity, crack initiation and defect resistance in alkali-borosilicate glasses: From normal to anomalous behavior, J. Non-Cryst. Solids 417/418, 15–27 (2015)

    Article  CAS  Google Scholar 

  • T.M. Gross: Deformation and cracking behavior of glasses indented with diamond tips of various sharpness, J. Non-Cryst. Solids 358(24), 3445–3452 (2012)

    Article  CAS  Google Scholar 

  • J.-P. Guin, T. Rouxel, J.-C. Sanglebœuf, I. Melscoët, J. Lucas: Hardness, toughness, and scratchability of germanium-selenium chalcogenide glasses, J. Am. Ceram. Soc. 85(6), 1545–1552 (2002)

    Article  CAS  Google Scholar 

  • Y. Ahna, T.N. Farris, S. Chandrasekar: Sliding microindentation fracture of brittle materials: Role of elastic stress fields, Mech. Mater. 29(3), 143–152 (1998)

    Article  Google Scholar 

  • V. Le Houérou, J.-C. Sangleboeuf, S. Dériano, T. Rouxel, G. Duisit: Surface damage of soda-lime-silica glasses: Indentation scratch behavior, J. Non-Cryst. Solids 316(1), 54–63 (2003)

    Article  Google Scholar 

  • J.D.B. Veldkamp, N. Hattu: Deformation and cracking during high-temperature scratching of a glass, J. Mater. Sci. 16(5), 1273–1284 (1981)

    Article  CAS  Google Scholar 

  • J. Sehgal, S. Ito: A new low-brittleness glass in the soda-lime-silica glass family, J. Am. Ceram. Soc. 81(9), 2485–2488 (1998)

    Article  CAS  Google Scholar 

  • G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall: A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements, J. Am. Ceram. Soc. 64(9), 533–538 (1981)

    Article  CAS  Google Scholar 

  • G. Quinn, R. Bradt: On the Vickers indentation fracture toughness test, J. Am. Ceram. Soc. 90(3), 673–680 (2007)

    Article  CAS  Google Scholar 

  • S. Dériano, A. Jarry, T. Rouxel, J.-C. Sangleboeuf, S. Hampshire: The indentation fracture toughness (\(K\)c) and its parameters: The case of silica-rich glasses, J. Non-Cryst. Solids 344(1), 44–50 (2004)

    Article  CAS  Google Scholar 

  • B.R. Lawn, D.B. Marshall: Hardness, toughness, and brittleness: An indentation analysis, J. Am. Ceram. Soc. 62(7/8), 347–350 (1979)

    Article  CAS  Google Scholar 

  • J. Sehgal, Y. Nakao, H. Takahashi, S. Ito: Brittleness of glasses by indentation, J. Mater. Sci. Lett. 14(3), 167–169 (1995)

    Article  CAS  Google Scholar 

  • S. Yoshida, A. Hidaka, J. Matsuoka: Crack initiation behavior of sodium aluminosilicate glasses, J. Non-Cryst. Solids 344(1/2), 37–43 (2004)

    Article  CAS  Google Scholar 

  • P. Sellappan, T. Rouxel, F. Celarie, E. Becker, P. Houizot, R. Conradt: Composition dependence of indentation deformation and indentation cracking in glass, Acta Mater. 61(16), 5949–5965 (2013)

    Article  CAS  Google Scholar 

  • T. Rouxel: Driving force for indentation cracking in glass: Composition, pressure and temperature dependence, Philos. Trans. R. Soc. A 373(2038), 20140140 (2015)

    Article  CAS  Google Scholar 

  • T. Rouxel, P. Sellappan, F. Celarie, P. Houizot, J.-C. Sangleboeuf: Toward glasses with better indentation cracking resistance, Comptes Rendus Mécanique 342(1), 46–51 (2014)

    Article  Google Scholar 

  • E.H. Yoffe: Elastic stress fields caused by indenting brittle materials, Philos. Mag. A 46(4), 617–628 (1982)

    Article  CAS  Google Scholar 

  • J. Boussinesq: Application des potentiels à l’étude de l’équilibre det des mouvements des solides élastiques (Gauthier-Villars, Paris 1885)

    Google Scholar 

  • K. Januchta, R.E. Youngman, A. Goel, M. Bauchy, S.L. Logunov, S.J. Rzoska, M. Bockowski, L.R. Jensen, M.M. Smedskjaer: Discovery of ultra-crack-resistant oxide glasses with adaptive networks, Chem. Mater. 29(14), 5865–5876 (2017)

    Article  CAS  Google Scholar 

  • S. Bista, J.F. Stebbins, J. Wu, T.M. Gross: Structural changes in calcium aluminoborosilicate glasses recovered from pressures of 1.5 to 3 GPa: Interactions of two network species with coordination number increases, J. Non-Cryst. Solids 478, 50–57 (2017)

    Article  CAS  Google Scholar 

  • M.S. Pambianchi, M. Dejneka, T. Gross, A. Ellisol, S. Goinez, J. Price, Y. Fang, P. Tandon, D. Bookbinder, M.-J. Li: Corning incorporated: Designing a new future with glass and optics. In: Materials Research for Manufacturing: An Industrial Perspective of Turning Materials into New Products, ed. by L.D. Madsen, E.B. Svedberg (Springer, Cham 2016) pp. 1–38

    Google Scholar 

  • C. Janssen: Specimen for fracture mechanics studies on glass. In: Proc. 10th Int. Congr. Glass Ceram. Soc., Tokyo (1974)

    Google Scholar 

  • A. Shyam, E. Lara-Curzio: The double-torsion testing technique for determination of fracture toughness and slow crack growth behavior of materials: A review, J. Mater. Sci. 41(13), 4093–4104 (2006)

    Article  CAS  Google Scholar 

  • M. Sakai, R.C. Bradt: Fracture toughness testing of brittle materials, Int. Mater. Rev. 38(2), 53–78 (1993)

    Article  CAS  Google Scholar 

  • S. Freiman, J.J. Mecholsky Jr.: The Fracture of Brittle Materials: Testing and Analysis (Wiley, Hoboken 2012)

    Book  Google Scholar 

  • ASTM C1421-18: Standard Test Methods for Determination of Fracture Toughness of Advanced Ceramics at Ambient Temperature (ASTM, West Conshohocken 2010)

    Google Scholar 

  • M. Sakai, K. Urashima, M. Inagaki: Energy principle of elastic-plastic fracture and its application to the fracture mechanics of a polycrystalline graphite, J. Am. Ceram. Soc. 66(12), 868–874 (1983)

    Article  Google Scholar 

  • J. Glucklich: On crack stability in some fracture tests, Eng. Fract. Mech. 3(3), 333–344 (1971)

    Article  Google Scholar 

  • D. Munz, R.T. Bubsey, J.L. Shannon: Fracture toughness determination of Al2O3 using four-point-bend specimens with straight-through and chevron notches, J. Am. Ceram. Soc. 63(5/6), 300–305 (1980)

    Article  CAS  Google Scholar 

  • J.I. Bluhm: Stability considerations in the generalized three dimensional ‘work of fracture’ specimen. In: Analysis and Mechanics, ed. by D.M.R. Taplin (Elsevier 1978) pp. 409–417

    Google Scholar 

  • National Institute of Standards and Technology (NIST): https://srdata.nist.gov/CeramicDataPortal/fracture

  • E. Orowan: Fracture and strength of solids, Rep. Prog. Phys. XII, 185–232 (1949)

    Article  Google Scholar 

  • S.M. Wiederhorn: Fracture surface energy of glass, J. Am. Ceram. Soc. 52(2), 99 (1969)

    Article  CAS  Google Scholar 

  • I. Naray-Szabo, J. Ladik: Strength of silica glass, Nature 188(4746), 226 (1960)

    Article  CAS  Google Scholar 

  • T.F. Soules: Models of glass strength and relaxation phenomena suggested by molecular dynamic simulations, J. Non-Cryst. Solids 73(1–3), 315–330 (1985)

    Article  CAS  Google Scholar 

  • R. Ochoa, T.P. Swiler, J.H. Simmons: Molecular dynamics studies of brittle failure in silica: Effect of thermal vibrations, J. Non-Cryst. Solids 128(1), 57–68 (1991)

    Article  CAS  Google Scholar 

  • K. Muralidharan: Molecular dynamics studies of brittle fracture in vitreous silica: Review and recent progress, J. Non-Cryst. Solids 351, 1532–1542 (2005)

    Article  CAS  Google Scholar 

  • B.A. Proctor, I. Whitney, J.W. Johnson: The strength of fused silica, Proc. R. Soc. A 297(1451), 534–557 (1967)

    Article  CAS  Google Scholar 

  • G. Brambilla, D.N. Payne: The ultimate strength of glass silica nanowires, Nano Lett. 9(2), 831–835 (2009)

    Article  CAS  Google Scholar 

  • B. Varughese, Y.-K. Lee, M. Tomozawa: Effect of fictive temperature on mechanical strength of soda-lime glasses, J. Non-Cryst. Solids 241(2/3), 134–139 (1998)

    Article  CAS  Google Scholar 

  • H. Li, A. Agarwal, M. Tomozawa: Effect of fictive temperature on dynamic fatigue behavior of silica and soda-lime glasses, J. Am. Ceram. Soc. 78(5), 1393–1396 (1995)

    Article  CAS  Google Scholar 

  • C.E. Inglis: Stresses in a plate due to the presence of cracks and sharp corners, Trans. Inst. Nav. Archit. 55(219–241), 193–198 (1913)

    Google Scholar 

  • A.A. Griffith: The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. A 221(582–593), 163–198 (1921)

    Article  Google Scholar 

  • G.R. Irwin: Crack-extension force for a part-through crack in a plate, J. Appl. Mech. 29(4), 651–654 (1962)

    Article  Google Scholar 

  • H.M. Westergaard: Bearing pressures and cracks, J. Appl. Mech. 6, 49 (1939)

    Google Scholar 

  • M.L. Williams: On the stress distribution at the base of a stationary crack, J. Appl. Mech. 24, 109–114 (1957)

    Google Scholar 

  • H. Tada, P.C. Paris, G.R. Irwin: The Stress Analysis of Cracks Handbook, 3rd edn. (American Society of Mechanical Engineers, New York 2000)

    Book  Google Scholar 

  • M.J. Matthewson, C.R. Kurkjian, S.T. Gulati: Strength measurement of optical fibers by bending, J. Am. Ceram. Soc. 69(11), 815–821 (1986)

    Article  CAS  Google Scholar 

  • J.B. Murgatroyd: The strength of glass fibers, J. Soc. Glass Technol. 28, 388–405 (1944)

    CAS  Google Scholar 

  • P.W. France, M.J. Paradine, M.H. Reeve, G.R. Newns: Liquid nitrogen strengths of coated optical glass fibres, J. Mater. Sci. 15(4), 825–830 (1980)

    Article  CAS  Google Scholar 

  • ASTM C158-02: Standard Test Methods for Strength of Glass by Flexure (Determination of Modulus of Rupture) (ASTM, West Conshohocken 2017)

    Google Scholar 

  • W. Weibull: A Statistical Theory of the Strength of Materials (Generalstabens litografiska anstalt, Stockholm 1939)

    Google Scholar 

  • F.W. Zok: On weakest link theory and Weibull statistics, J. Am. Ceram. Soc. 100(4), 1265–1268 (2017)

    Article  CAS  Google Scholar 

  • J.T. Littleton Jr.: A new method for measuring the tensile strength of glass, Phys. Rev. 22(5), 510 (1923)

    Article  Google Scholar 

  • M. Grenet: Recherches sur la résistance mécanique du verre, Bull. Soc. Encourag. Ind. Natl. 5(4), 838–848 (1899)

    Google Scholar 

  • D.G. Holloway: The fracture of glass, Phys. Educ. 3(6), 317 (1968)

    Article  Google Scholar 

  • R.E. Mould, R.D. Southwick: Strength and static fatigue of abraded glass under controlled ambient conditions: I, general concepts and apparatus, J. Am. Ceram. Soc. 42(11), 542–547 (1959)

    Article  CAS  Google Scholar 

  • R.E. Mould: Strength and static fatigue of abraded glass under controlled ambient conditions: IV, effect of surrounding medium, J. Am. Ceram. Soc. 44(10), 481–491 (1961)

    Article  CAS  Google Scholar 

  • F.W. Preston: The mechanical properties of glass, J. Appl. Phys. 13(10), 623–634 (1942)

    Article  CAS  Google Scholar 

  • R.J. Charles: Static fatigue of glass. I, J. Appl. Phys. 29(11), 1549–1553 (1958)

    Article  CAS  Google Scholar 

  • R.J. Charles: Static fatigue of glass. II, J. Appl. Phys. 29(11), 1554–1560 (1958)

    Article  CAS  Google Scholar 

  • R.J. Charles, W.B. Hilling: Surfaces, stress-dependent reactions and strength. In: High-Strength Materials, ed. by V.F. Zackay (Wiley, Hoboken 1965) pp. 682–705

    Google Scholar 

  • W.B. Hillig: Model of effect of environmental attack on flaw growth kinetics of glass, Int. J. Fract. 143(3), 219–230 (2007)

    Article  Google Scholar 

  • J.T. Dickinson, S.C. Langford, L.C. Jensen, G.L. McVay, J.F. Kelso, C.G. Pantano: Fractoemission from fused silica and sodium silicate glasses, J. Vac. Sci. Technol. A 6(3), 1084–1089 (1988)

    Article  CAS  Google Scholar 

  • S.N. Crichton, M. Tomozawa, J.S. Hayden, T.I. Suratwala, J.H. Campbell: Subcritical crack growth in a phosphate laser glass, J. Am. Ceram. Soc. 82(11), 3097–3104 (1999)

    Article  CAS  Google Scholar 

  • C.L. Rountree: Recent progress to understand stress corrosion cracking in sodium borosilicate glasses: Linking the chemical composition to structural, physical and fracture properties, J. Phys. D 50(34), 343002 (2017)

    Article  CAS  Google Scholar 

  • S. Yoshida, J. Matsuoka, N. Soga: Sub-critical crack growth in sodium germanate glasses, J. Non-Cryst. Solids 316(1), 28–34 (2003)

    Article  CAS  Google Scholar 

  • T.A. Michalske, B.C. Bunker: Slow fracture model based on strained silicate structures, J. Appl. Phys. 56(10), 2686–2693 (1984)

    Article  CAS  Google Scholar 

  • E. Silva, J. Li, D. Liao, S. Subramanian, T. Zhu, S. Yip: Atomic scale chemo-mechanics of silica: Nano-rod deformation and water reaction, J. Computer-Aided Mater. Des. 13(25), 135–159 (2006)

    Article  CAS  Google Scholar 

  • T. Zhu, J. Li, X. Lin, S. Yip: Stress-dependent molecular pathways of silica–water reaction, J. Mech. Phys. Solids 53, 1597–1623 (2005)

    Article  CAS  Google Scholar 

  • S.M. Wiederhorn: Influence of water vapor on crack propagation in soda-lime glass, J. Am. Ceram. Soc. 50(8), 407–414 (1967)

    Article  CAS  Google Scholar 

  • S.M. Wiederhorn, L.H. Bolz: Stress corrosion and static fatigue of glass, J. Am. Ceram. Soc. 53(10), 543 (1970)

    Article  CAS  Google Scholar 

  • F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchard, C. Guillot, C. Marlière: Glass breaks like metal, but at the nanometer scale, Phys. Rev. Lett. 90(7), 75504 (2003)

    Article  CAS  Google Scholar 

  • C. Kocer, R.E. Collins: Measurement of very slow crack growth in glass, J. Am. Ceram. Soc. 84(11), 2585–2593 (2001)

    Article  CAS  Google Scholar 

  • T. Cramer, A. Wanner, P. Gumbsch: Crack velocities during dynamic fracture of glass and single crystalline silicon, Phys. Status Solidi (a) 164(1), R5/R6 (1997)

    Article  Google Scholar 

  • S.M. Wiederhorn: Effect of deuterium oxide on crack growth in soda-lime-silica glass, J. Am. Ceram. Soc. 65(12), C-202/C-203 (1982)

    Article  Google Scholar 

  • S.W. Freiman: Effect of alcohols on crack propagation in glass, J. Am. Ceram. Soc. 57(8), 350–353 (1974)

    Article  CAS  Google Scholar 

  • S.M. Wiederhorn, S.W. Freiman, E.R. Fuller, C.J. Simmons: Effects of water and other dielectrics on crack-growth, J. Mater. Sci. 17(12), 3460–3478 (1982)

    Article  CAS  Google Scholar 

  • B.R. Lawn: Diffusion-controlled subcritical crack growth in the presence of a dilute gas environment, Mater. Sci. Eng. 13(3), 277–283 (1974)

    Article  CAS  Google Scholar 

  • R.G. Horn, K.T. Wan, S. Courmont, B.R. Lawn: Diffusion of water along “closed” mica interfaces, J. Colloid Interface Sci. 159(2), 509–511 (1993)

    Article  CAS  Google Scholar 

  • T.A. Michalske, B.C. Bunker: A chemical kinetics model for glass fracture, J. Am. Ceram. Soc. 76(10), 2613–2618 (1993)

    Article  CAS  Google Scholar 

  • P. Paris, F. Erdogan: A critical analysis of crack propagation laws, J. Basic Eng. 85(4), 528–533 (1963)

    Article  CAS  Google Scholar 

  • E. Gehrke, C. Ullner, M. Hähnert: Fatigue limit and crack arrest in alkali-containing silicate glasses, J. Mater. Sci. 26(20), 5445–5455 (1991)

    Article  CAS  Google Scholar 

  • T.A. Michalske: The stress corrosion limit: Its measurement and implications. In: Fracture Mechanics of Ceramics, Vol. 5 (Plenum, New York 1977) p. 277

    Google Scholar 

  • J.-P. Guin, S.M. Wiederhorn: Crack growth threshold in soda lime silicate glass: Role of hold-time, J. Non-Cryst. Solids 316(1), 12–20 (2003)

    Article  CAS  Google Scholar 

  • J.H. Seaman, P.J. Lezzi, T.A. Blanchet, M. Tomozawa: Modeling slow crack growth behavior of glass strengthened by a subcritical tensile stress using surface stress relaxation, J. Am. Ceram. Soc. 98(10), 3075–3086 (2015)

    Article  CAS  Google Scholar 

  • J.H. Seaman, T.A. Blanchet, M. Tomozawa: Origin of the static fatigue limit in oxide glasses, J. Am. Ceram. Soc. 99(11), 3600–3609 (2016)

    Article  CAS  Google Scholar 

  • T. Fett, J.-P. Guin, S.M. Wiederhorn: Stresses in ion-exchange layers of soda-lime-silicate glass, Fatigue Fract. Eng. Mater. Struct. 28(6), 507–514 (2005)

    Article  CAS  Google Scholar 

  • T. Fett, J.P. Guin, S.M. Wiederhorn: Interpretation of effects at the static fatigue limit of soda-lime-silicate glass, Eng. Fract. Mech. 72(18), 2774–2791 (2005)

    Article  Google Scholar 

  • S. Ito, M. Tomozawa: Crack blunting of high-silica glass, J. Am. Ceram. Soc. 65(8), 368–371 (1982)

    Article  CAS  Google Scholar 

  • Y. Bando, S. Ito, M. Tomozawa: Direct observation of crack tip geometry of SiO2 glass by high-resolution electron microscopy, J. Am. Ceram. Soc. 67(3), C-36–C-37 (1984)

    CAS  Google Scholar 

  • W.-T. Han, M. Tomozawa: Mechanism of mechanical strength increase of soda-lime glass by aging, J. Am. Ceram. Soc. 72(10), 1837–1843 (1989)

    Article  CAS  Google Scholar 

  • B.R. Lawn, D.B. Marshall, A.H. Heuer: Comment on direct observation of crack-tip geometry of SiO2 glass by high-resolution electron microscopy, J. Am. Ceram. Soc. 67(11), c253 (1984)

    Article  CAS  Google Scholar 

  • M. Tomozawa, Y. Bando, S. Ito: Reply, J. Am. Ceram. Soc. 67(11), c254 (1984)

    Article  CAS  Google Scholar 

  • P.J. Lezzi, M. Tomozawa, R.W. Hepburn: Confirmation of thin surface residual compressive stress in silica glass fiber by FTIR reflection spectroscopy, J. Non-Cryst. Solids 390, 13–18 (2014)

    Article  CAS  Google Scholar 

  • R.M. McMeeking, A.G. Evans: Mechanics of transformation-toughening in brittle materials, J. Am. Ceram. Soc. 65(5), 242–246 (1982)

    Article  Google Scholar 

  • A.Q. Tool: Relation between inelastic deformability and thermal expansion of glass in its annealing range, J. Am. Ceram. Soc. 29(9), 240–253 (1946)

    Article  CAS  Google Scholar 

  • M. Muraoka, H. Abé: Subcritical crack growth in silica optical fibers in wide range of crack velocities, J. Am. Ceram. Soc. 79(1), 51–57 (1996)

    Article  CAS  Google Scholar 

  • M. Tomozawa: Fracture of glasses, Annu. Rev. Mater. Sci. 26(1), 43–74 (1996)

    Article  CAS  Google Scholar 

  • S. Hénaux, F. Creuzet: Kinetic fracture of glass at the nanometer scale, J. Mater. Sci. Lett. 16(12), 1008–1011 (1997)

    Article  Google Scholar 

  • S. Hénaux, F. Creuzet: Crack tip morphology of slowly growing cracks in glass, J. Am. Ceram. Soc. 83(2), 415–417 (2000)

    Article  Google Scholar 

  • M. Ciccotti, M. George, V. Ranieri, L. Wondraczek, C. Marlière: Dynamic condensation of water at crack tips in fused silica glass, J. Non-Cryst. Solids 354(2–9), 564–568 (2008)

    Article  CAS  Google Scholar 

  • K. Han, M. Ciccotti, S. Roux: Measuring nanoscale stress intensity factors with an atomic force microscope, Europhys. Lett. 6, 66003 (2010)

    Article  CAS  Google Scholar 

  • S.M. Wiederhorn, T. Fett, J.-P. Guin, M. Ciccotti: Griffith cracks at the nanoscale, Int. J. Appl. Glass Sci. 4(2), 76–86 (2013)

    Article  Google Scholar 

  • G. Pezzotti, A. Leto, A.A. Porporati: Visualization of microscopic stress fields in silica glass in the scanning electron microscope, J. Ceram. Soc. 116(1356), 869–874 (2008)

    Article  CAS  Google Scholar 

  • J.-F. Poggemann, A. Gofl, G. Heide, E. Rädlein, G.H. Frischat: Direct view of the structure of a silica glass fracture surface, J. Non-Cryst. Solids 281(1–3), 221–226 (2001)

    Article  CAS  Google Scholar 

  • J.-F. Poggemann, G. Heide, G.H. Frischat: Direct view of the structure of different glass fracture surfaces by atomic force microscopy, J. Non-Cryst. Solids 326/327, 15–20 (2003)

    Article  CAS  Google Scholar 

  • G.H. Frischat, J.F. Poggemann, G. Heide: Nanostructure and atomic structure of glass seen by atomic force microscopy, J. Non-Cryst. Solids 345, 197–202 (2004)

    Article  CAS  Google Scholar 

  • S.M. Wiederhorn, J.-P. Guin, T. Fett: The use of atomic force microscopy to study crack tips in glass, Metall. Mater. Trans. A 42(2), 267–278 (2011)

    Article  CAS  Google Scholar 

  • S.M. Wiederhorn, J.M. López-Cepero, J. Wallace, J.-P. Guin, T. Fett: Roughness of glass surfaces formed by sub-critical crack growth, J. Non-Cryst. Solids 353(16/17), 1582–1591 (2007)

    Article  CAS  Google Scholar 

  • J.-P. Guin, S.M. Wiederhorn: Fracture of silicate glasses: Ductile or brittle?, Phys. Rev. Lett. 92(21), 215502 (2004)

    Article  CAS  Google Scholar 

  • J.-P. Guin, S.M. Wiederhorn: Investigation of the subcritical crack growth process in glass by atomic force microscopy. In: Fractography of Glasses and Ceramics V: Ceramic Transactions, Vol. 199, ed. by J.R. Varner, G.D. Quinn, M. Wightman (Wiley, Hoboken 2007) pp. 13–23

    Google Scholar 

  • G. Wang, D.Q. Zhao, H.Y. Bai, M.X. Pan, A.L. Xia, B.S. Han, X.K. Xi, Y. Wu, W.H. Wang: Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses, Phys. Rev. Lett. 98(23), 235501 (2007)

    Article  CAS  Google Scholar 

  • F. Celarie, M. Ciccotti, C. Marlière: Stress-enhanced ion diffusion at the vicinity of a crack tip as evidenced by atomic force microscopy in silicate glasses, J. Non-Cryst. Solids 353(1), 51–68 (2007)

    Article  CAS  Google Scholar 

  • C.R. Kurkjian, P.K. Gupta, R.K. Brow, N. Lower: The intrinsic strength and fatigue of oxide glasses, J. Non-Cryst. Solids 316(1), 114–124 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Guin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Guin, JP., Gueguen, Y. (2019). Mechanical Properties of Glass. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_7

Download citation

Publish with us

Policies and ethics