Skip to main content

Glass in Integrated Photonics

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Abstract

Integrated photonics, which generically refers to the technology of combining multiple optical components on a chip-scale platform to form a functional photonic circuit, is often hailed as the optical equivalent of electronic integrated circuits, which holds the potential to revolutionize communications, computing, sensing, and imaging. Similar to microelectronic integrated circuits, which assimilate more than half the Mendeleev periodic table into the manufacturing process, integrated photonics necessarily involves many classes of materials to enable different photonic functionalities essential to photonic circuit operation. Glassy materials, with their exceptional optical and structural properties, constitute critical building blocks in state-of-the-art integrated photonic systems. The progress in these materials will help diversify the choices of materials for novel devices and components and will, therefore, push forward the development of integrated photonics with advanced functionalities. This chapter addresses the key facets of glassy materials in the context of integrated photonics, including material characteristics and processing technologies with specific application examples based on different glass composition families.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • K.C. Kao, G.A. Hockham: Dielectric-fibre surface waveguides for optical frequencies, Proc. Inst. Elect. Eng.-Lond. 113, 1151 (1966)

    Article  Google Scholar 

  • S.E. Miller: Integrated Optics—An introduction, Bell Syst. Tech. J. 48, 2059 (1969)

    Article  Google Scholar 

  • D.W. Wilmot, E. Schinell: Optical waveguides formed by proton irradiation of fused silica, J. Opt. Soc. Am. 56, 1434 (1966)

    Article  Google Scholar 

  • J.E. Goell, R.D. Standley: Sputtered glass waveguide for integrated optical circuits, Bell Syst. Tech. J. 48, 3445 (1969)

    Article  Google Scholar 

  • J.E. Goell, R.D. Standley: Integrated optical circuits, Proc. Inst. Elect. Electron. Eng. 58, 1504 (1970)

    Article  Google Scholar 

  • S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, T. Manabe: Prediction of loss minima in infrared optical fibers, Electron. Lett. 17, 775–777 (1981)

    Article  CAS  Google Scholar 

  • M.E. Lines: Scattering losses in optic fiber materials. 1. A new parametrization, J. Appl. Phys. 55, 4052–4057 (1984)

    Article  CAS  Google Scholar 

  • M.E. Lines: Scattering losses in optic fiber materials. 2. Numerical estimates, J. Appl. Phys. 55, 4058–4063 (1984)

    Article  CAS  Google Scholar 

  • X.C. Long, S.R.J. Brueck: Large photosensitivity in lead-silicate glasses, Appl. Phys. Lett. 74, 2110–2112 (1999)

    Article  CAS  Google Scholar 

  • A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, R. Vallee: Direct femtosecond laser writing of waveguides in As2S3 thin films, Opt. Lett. 29, 748–750 (2004)

    Article  CAS  Google Scholar 

  • S. Ramachandran, S.G. Bishop: Low loss photoinduced waveguides in rapid thermally annealed films of chalcogenide glasses, Appl. Phys. Lett. 74, 13–15 (1999)

    Article  CAS  Google Scholar 

  • A.V. Kolobov, J. Tominaga: Chalcogenides Metastability and Phase Change Phenomena (Springer, Berlin 2012)

    Book  Google Scholar 

  • K.M. Davis, K. Miura, N. Sugimoto, K. Hirao: Writing waveguides in glass with a femtosecond laser, Opt. Lett. 21, 1729–1731 (1996)

    Article  CAS  Google Scholar 

  • B. Malo, J. Albert, F. Bilodeau, T. Kitagawa, D.C. Johnson, K.O. Hill, K. Hattori, Y. Hibino, S. Gujrathi: Photosensitivity in phosphorus-doped silica glass and optical wave-guides, Appl. Phys. Lett. 65, 394–396 (1994)

    Article  CAS  Google Scholar 

  • A. Canciamilla, S. Grillanda, F. Morichetti, C. Ferrari, J.J. Hu, J.D. Musgraves, K. Richardson, A. Agarwal, L.C. Kimerling, A. Melloni: Photo-induced trimming of coupled ring-resonator filters and delay lines in As2S3 chalcogenide glass, Opt. Lett. 36, 4002–4004 (2011)

    Article  CAS  Google Scholar 

  • Q. Wang, E.T.F. Rogers, B. Gholipour, C.M. Wang, G.H. Yuan, J.H. Teng, N.I. Zheludev: Optically reconfigurable metasurfaces and photonic devices based on phase change materials, Nat. Photonics 10, 60–65 (2016)

    Article  CAS  Google Scholar 

  • M. Takahashi, K. Sugimoto, R. Maeda: Nanoimprint of glass materials with glassy carbon molds fabricated by focused-ion-beam etching, Jpn. J. Appl. Phys. Part 1(44), 5600–5605 (2005)

    Article  CAS  Google Scholar 

  • C. Peroz, C. Heitz, E. Barthel, E. Sondergard, V. Goletto: Glass nanostructures fabricated by soft thermal nanoimprint, J. Vac. Sci. Technol. B 25, L27–L30 (2007)

    Article  CAS  Google Scholar 

  • T. Han, S. Madden, D. Bulla, B. Luther-Davies: Low loss chalcogenide glass waveguides by thermal nano-imprint lithography, Opt. Express 18, 19286–19291 (2010)

    Article  CAS  Google Scholar 

  • D.K. Armani, T.J. Kippenberg, S.M. Spillane, K.J. Vahala: Ultra-high-Q toroid microcavity on a chip, Nature 421, 925–928 (2003)

    Article  CAS  Google Scholar 

  • S. Tanabe: Glass and rare-earth elements: A personal perspective, Int. J. Appl. Glass Sci. 6, 305–328 (2015)

    Article  CAS  Google Scholar 

  • R.W. Boyd: Nonlinear Optics (Academic, Cambridge 2003)

    Google Scholar 

  • D.J. Moss, R. Morandotti, A.L. Gaeta, M. Lipson: New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics, Nat. Photonics 7, 597–607 (2013)

    Article  CAS  Google Scholar 

  • V.G. Ta'eed, N.J. Baker, L.B. Fu, K. Finsterbusch, M.R.E. Lamont, D.J. Moss, H.C. Nguyen, B.J. Eggleton, D.Y. Choi, S. Madden, B. Luther-Davies: Ultrafast all-optical chalcogenide glass photonic circuits, Opt. Express 15, 9205–9221 (2007)

    Article  CAS  Google Scholar 

  • M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, T. Cardinal: Thermal poling of optical glasses: Mechanisms and second-order optical properties, Int. J. Appl. Glass Sci. 3, 309–320 (2012)

    Article  CAS  Google Scholar 

  • Y. Shen: Surface properties probed by second-harmonic and sum-frequency generation, Nature 337, 519–525 (1989)

    Article  CAS  Google Scholar 

  • M. Cazzanelli, J. Schilling: Second order optical nonlinearity in silicon by symmetry breaking, Appl. Phys. Rev. 3, 011104 (2016)

    Article  CAS  Google Scholar 

  • A. Hedler, S.L. Klaumunzer, W. Wesch: Amorphous silicon exhibits a glass transition, Nat. Mater. 3, 804–809 (2004)

    Article  CAS  Google Scholar 

  • J.T. Tippett: Optical and Electro-optical Information Processing (MIT Press, Cambridge 1965)

    Google Scholar 

  • D.B. Anderson, R.R. August, W.A. Mcdowell, S.G. Plouski: Rectangular dielectric optical wave-guide of width about one-half wave-length of the transmitted light (1971) US patent US3563630A

    Google Scholar 

  • D. Hülsenberg, A. Harnisch, A. Bismarck: Microstructuring of Glasses (Springer, Berlin 2008)

    Book  Google Scholar 

  • E. Mcgoldrick, P. Beaud, J. Schutz, W. Hodel, C. Deutsch, N. Thomas, S.A. Hubbard: Optical characterization of arsenic-doped silica-on-silicon wave-guides using femtosecond optical-time-domain-reflectometry techniques, Opt. Lett. 15, 1354–1356 (1990)

    Article  CAS  Google Scholar 

  • R.R.A. Syms, A.S. Holmes: Reflow and burial of channel wave-guides formed in sol-gel glass on Si substrates, IEEE Photonics Technol. Lett. 5, 1077–1079 (1993)

    Article  Google Scholar 

  • R. Adar, M.R. Serbin, V. Mizrahi: Less-than-1 dB per meter propagation loss of silica wave-guides measured using a ring-resonator, J. Lightwave Technol. 5, 1369–1372 (1994)

    Article  Google Scholar 

  • T. Kominato, Y. Hida, M. Itoh, H. Takahashi, S. Sohma, T. Kitoh, Y. Hibino: Extremely low-loss (0.3 dB/m) and long silica-based waveguides with large width and clothoid curve connection, In: Proc. ECOC pp, 5–9 (2004)

    Google Scholar 

  • H. Lee, T. Chen, J. Li, O. Painter, K.J. Vahala: Ultra-low-loss optical delay line on a silicon chip, Nat. Commun. 3, 867 (2012)

    Article  CAS  Google Scholar 

  • T.J. Kippenberg, J. Kalkman, A. Polman, K.J. Vahala: Demonstration of an erbium-doped microdisk laser on a silicon chip, Phys. Rev. A 74, 051802(R) (2006)

    Article  CAS  Google Scholar 

  • H. Lee, T. Chen, J. Li, K.Y. Yang, S. Jeon, O. Painter, K.J. Vahala: Chemically etched ultrahigh-Q wedge-resonator on a silicon chip, Nat. Photonics 6, 369–373 (2012)

    Article  CAS  Google Scholar 

  • J.A. Frantz, L.B. Shaw, J.S. Sanghera, I.D. Aggarwal: Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass, Opt. Express 14, 1797–1803 (2006)

    Article  CAS  Google Scholar 

  • J.J. Hu, V. Tarasov, N. Carlie, N.N. Feng, L. Petit, A. Agarwal, K. Richardson, L. Kimerling: Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides, Opt. Express 15, 11798–11807 (2007)

    Article  CAS  Google Scholar 

  • J. Hu, N.-N. Feng, N. Carlie, L. Petit, J. Wang, A. Agarwal, K. Richardson, L. Kimerling: Low-loss high-index-contrast planar waveguides with graded-index cladding layers, Opt. Express 15, 14566–14572 (2007)

    Article  CAS  Google Scholar 

  • J.J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L. Kimerling: Exploration of waveguide fabrication from thermally evaporated Ge-Sb-S glass films, Opt. Mater. 30, 1560–1566 (2008)

    Article  CAS  Google Scholar 

  • J.J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L. Kimerling: Demonstration of chalcogenide glass racetrack microresonators, Opt. Lett. 33, 761–763 (2008)

    Article  CAS  Google Scholar 

  • V. Mittal, A. Aghajani, L.G. Carpenter, J.C. Gates, J. Butement, P.G.R. Smith, J.S. Wilkinson, G.S. Murugan: Fabrication and characterization of high-contrast mid-infrared GeTe4 channel waveguides, Opt. Lett. 40, 2016–2019 (2015)

    Article  CAS  Google Scholar 

  • Y. Gao, B. Boulard, M. Lemiti, R. Rimet, P. Loeffler, H. Poignant: Design and fabrication of lead-based fluoride glass channel waveguides, J. Non-Cryst. Solids 256, 183–188 (1999)

    Article  Google Scholar 

  • J.-L. Adam, E. Lebrasseur, B. Boulard, B. Jacquier, G. Fonteneau, Y. Gao, R. Sramek, C. Legein, S. Guy: Rare-earth-doped fluoride-glass channel waveguides for optical amplification. In: Proc. Symp. Integr. Optoelectron (2000) pp. 130–138

    Google Scholar 

  • C.C. Evans, C.Y. Liu, J. Suntivich: Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process, Opt. Express 23, 11160–11169 (2015)

    Article  CAS  Google Scholar 

  • N.Y. Duan, H.T. Lin, L. Li, J.J. Hu, L. Bi, H.P. Lu, X.L. Weng, J.L. Xie, L.J. Deng: ZrO2-TiO2 thin films: A new material system for mid-infrared integrated photonics, Opt. Mater. Express 3, 1537–1545 (2013)

    Article  Google Scholar 

  • F.P. Jiang, L. Bi, H.T. Lin, Q.Y. Du, J.J. Hu, A.R. Guo, C.Y. Li, J.L. Xie, L.J. Deng: Microstructure, optical properties, and optical resonators of Hf1-xTixO2 amorphous thin films, Opt. Mater. Express 6, 1871–1880 (2016)

    Article  CAS  Google Scholar 

  • W.D. Li, W. Wu, R.S. Williams: Combined helium ion beam and nanoimprint lithography attains 4 nm half-pitch dense patterns, J. Vac. Sci. Technol. B 30, 06F304 (2012)

    Article  CAS  Google Scholar 

  • F. Hua, Y.G. Sun, A. Gaur, M.A. Meitl, L. Bilhaut, L. Rotkina, J.F. Wang, P. Geil, M. Shim, J.A. Rogers, A. Shim: Polymer imprint lithography with molecular-scale resolution, Nano Lett. 4, 2467–2471 (2004)

    Article  CAS  Google Scholar 

  • H. Schift, A. Kristensen: Nanoimprint lithography—patterning of resists using molding. In: Springer Handbook of Nanotechnology, ed. by B. Bhushan (Springer, Berlin 2010) pp. 271–312

    Chapter  Google Scholar 

  • Z.G. Man, W.J. Pan, D. Furniss, T.M. Benson, A.B. Seddon, T. Kohoutek, J. Orava, T. Wagner: Embossing of chalcogenide glasses: Monomode rib optical waveguides in evaporated thin films, Opt. Lett. 34, 1234–1236 (2009)

    Article  Google Scholar 

  • T. Han, S. Madden, S. Debbarma, B. Luther-Davies: Improved method for hot embossing As2S3 waveguides employing a thermally stable chalcogenide coating, Opt. Express 19, 25447–25453 (2011)

    Article  CAS  Google Scholar 

  • A.B. Seddon, W.J. Pan, D. Furniss, C.A. Miller, H. Rowe, D. Zhang, E. McBrearty, Y. Zhang, A. Loni, P. Sewell, T.M. Benson: Fine embossing of chalcogenide glasses—A new fabrication route for photonic integrated circuits, J. Non-Cryst. Solids 352, 2515–2520 (2006)

    Article  CAS  Google Scholar 

  • M. Solmaz, H. Park, C.K. Madsen, X. Cheng: Patterning chalcogenide glass by direct resist-free thermal nanoimprint, J. Vac. Sci. Technol. B 26, 606–610 (2008)

    Article  CAS  Google Scholar 

  • M.T. Li, H. Tan, L. Chen, J. Wang, S.Y. Chou: Large area direct nanoimprinting of SiO2-TiO2 gel gratings for optical applications, J. Vac. Sci. Technol. B 21, 660–663 (2003)

    Article  CAS  Google Scholar 

  • M. Okinaka, K. Tsukagoshi, Y. Aoyagi: Direct nanoimprint of inorganic–organic hybrid glass, J. Vac. Sci. Technol. B 24, 1402–1404 (2006)

    Article  CAS  Google Scholar 

  • Y. Zou, L. Moreel, H.T. Lin, J. Zhou, L. Li, S. Danto, J.D. Musgraves, E. Koontz, K. Richardson, K.D. Dobson, R. Birkmire, J.J. Hu: Solution processing and resist-free nanoimprint fabrication of thin film chalcogenide glass devices: Inorganic–organic hybrid photonic integration, Adv. Opt. Mater. 2, 759–764 (2014)

    Article  CAS  Google Scholar 

  • H. Mekaru, T. Tsuchida, J. Uegaki, M. Yasui, M. Yamashita, M. Takahashi: Micro lens imprinted on Pyrex glass by using amorphous Ni-P alloy mold, Microelectron. Eng. 85, 873–876 (2008)

    Article  CAS  Google Scholar 

  • C. Tsay, Y.L. Zha, C.B. Arnold: Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides, Opt. Express 18, 26744–26753 (2010)

    Article  CAS  Google Scholar 

  • Y.L. Zha, M. Waldmann, C.B. Arnold: A review on solution processing of chalcogenide glasses for optical components, Opt. Mater. Express 3, 1259–1272 (2013)

    Article  CAS  Google Scholar 

  • H. Krause, W. Mönch, H. Zappe: Replicated, high-aspect-ratio micro-optical components fabricated from inorganic solgel materials, Appl. Opt. 45, 4843–4849 (2006)

    Article  CAS  Google Scholar 

  • V.K. Parashar, A. Sayah, M. Pfeffer, F. Schoch, J. Gobrecht, M.A.M. Gijs: Nano-replication of diffractive optical elements in sol-gel derived glasses, Microelectron. Eng. 67/68, 710–719 (2003)

    Article  CAS  Google Scholar 

  • M.T. Gale: Replication technology for micro-optics and optical microsystems, Proc. SPIE 5177, 113–120 (2003)

    Article  CAS  Google Scholar 

  • X.C. Yuan, W.X. Yu, M. He, J. Bu, W.C. Cheong, H.B. Niu, X. Peng: Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2-TiO2 sol-gel glass, Appl. Phys. Lett. 86, 114102 (2005)

    Article  CAS  Google Scholar 

  • Y. Huang, L.J. Liu, M. Johnson, A.C. Hillier, M. Lu: One-step sol-gel imprint lithography for guided-mode resonance structures, Nanotechnology 27, 095–302 (2016)

    Google Scholar 

  • S.K. Smoukov, K.J.M. Bishop, R. Klajn, C.J. Campbell, B.A. Grzybowski: Cutting into solids with micropatterned gels, Adv. Mater. 17, 1361 (2005)

    Article  CAS  Google Scholar 

  • B.A. Grzybowski, K.J.M. Bishop: Micro- and nanoprinting into solids using reaction-diffusion etching and hydrogel stamps, Small 5, 22–27 (2009)

    Article  CAS  Google Scholar 

  • G.D. Marshall, A. Politi, J.C.F. Matthews, P. Dekker, M. Ams, M.J. Withford, J.L. O'Brien: Laser written waveguide photonic quantum circuits, Opt. Express 17, 12546–12554 (2009)

    Article  CAS  Google Scholar 

  • C. Corbari, A. Champion, M. Gecevicius, M. Beresna, Y. Bellouard, P.G. Kazansky: Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass, Opt. Express 21, 3946–3958 (2013)

    Article  CAS  Google Scholar 

  • B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tunnermann: Femtosecond, picosecond and nanosecond laser ablation of solids, Appl. Phys. A 63, 109–115 (1996)

    Article  Google Scholar 

  • H. Ebendorff-Heidepriem: Laser writing of waveguides in photosensitive glasses, Opt. Mater. 25, 109–115 (2004)

    Article  CAS  Google Scholar 

  • A.K. Mairaj, P. Hua, H.N. Rutt, D.W. Hewak: Fabrication and characterization of continuous wave direct UV (lambda = 244 nm) written channel waveguides in chalcogenide (Ga:La:S) glass, J. Lightwave Technol. 20, 1578–1584 (2002)

    Article  CAS  Google Scholar 

  • W.X. Yu, X.C. Yuan, N.Q. Ngo, W.X. Qui, W.C. Cheong, V. Koudriachov: Single-step fabrication of continuous surface relief micro-optical elements in hybrid sol-gel glass by laser direct writing, Opt. Express 10, 443–448 (2002)

    Article  CAS  Google Scholar 

  • M. Svalgaard, C.V. Poulsen, A. Bjarklev, O. Poulsen: Direct UV writing of buried singlemode channel wave-guides in Ge-doped silica films, Electron. Lett. 30, 1401–1403 (1994)

    Article  CAS  Google Scholar 

  • M. Svalgaard, M. Kristensen: Directly UV written silica-on-silicon planar waveguides with low loss, Electron. Lett. 33, 861–863 (1997)

    Article  CAS  Google Scholar 

  • C.B.E. Gawith, A. Fu, T. Bhutta, P. Hua, D.P. Shepherd, E.R. Taylor, P.G.R. Smith, D. Milanese, M. Ferraris: Direct-UV-written buried channel waveguide lasers in direct-bonded intersubstrate ion-exchanged neodymium-doped germano-borosilicate glass, Appl. Phys. Lett. 81, 3522–3524 (2002)

    Article  CAS  Google Scholar 

  • T. Anderson, L. Petit, N. Carlie, J. Choi, J. Hu, A. Agarwal, L. Kimerling, K. Richardson, M. Richardson: Femtosecond laser photo-response of Ge23Sb7S70 films, Opt. Express 16, 20081–20098 (2008)

    Article  CAS  Google Scholar 

  • S. Ramachandran, S.G. Bishop, J.P. Guo, D.J. Brady: Fabrication of holographic gratings in As2S3 glass by photoexpansion and photodarkening, IEEE Photonics Technol. Lett. 8, 1041–1043 (1996)

    Article  Google Scholar 

  • I. Antonov, F. Bass, Y. Kaganovskii, M. Rosenbluh, A. Lipovskii: Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam, J. Appl. Phys. 93, 2343–2348 (2003)

    Article  CAS  Google Scholar 

  • S. Nolte, M. Will, J. Burghoff, A. Tuennermann: Femtosecond waveguide writing: A new avenue to three-dimensional integrated optics, Appl. Phys. A 77, 109–111 (2003)

    Article  CAS  Google Scholar 

  • J. Lapointe, M. Gagne, M.J. Li, R. Kashyap: Making smart phones smarter with photonics, Opt. Express 22, 15473–15483 (2014)

    Article  Google Scholar 

  • J. Lapointe, F. Parent, E.S. de Lima, S. Loranger, R. Kashyap: Toward the integration of optical sensors in smartphone screens using femtosecond laser writing, Opt. Lett. 40, 5654–5657 (2015)

    Article  Google Scholar 

  • M. Beresna, M. Gecevicius, P.G. Kazansky: Ultrafast laser direct writing and nanostructuring in transparent materials, Adv. Opt. Photonics 6, 293–339 (2014)

    Article  CAS  Google Scholar 

  • R.R. Gattass, E. Mazur: Femtosecond laser micromachining in transparent materials, Nat. Photonics 2, 219–225 (2008)

    Article  CAS  Google Scholar 

  • R. Osellame, G. Cerullo, R. Ramponi: Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer, Berlin 2012)

    Book  Google Scholar 

  • G.D. Valle, R. Osellame, P. Laporta: Micromachining of photonic devices by femtosecond laser pulses, J. Opt. A Pure Appl. Opt. 11, 013001 (2009)

    Article  CAS  Google Scholar 

  • M. Ams, G.D. Marshall, P. Dekker, J.A. Piper, M.J. Withford: Ultrafast laser written active devices, Laser Photonics Rev. 3, 535–544 (2009)

    Article  Google Scholar 

  • J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, B. Poumellec: Anatomy of a femtosecond laser processed silica waveguide, Opt. Mater. Express 1, 998–1008 (2011)

    Article  CAS  Google Scholar 

  • F. Watt, M.B.H. Breese, A.A. Bettiol, J.A. van Kan: Proton beam writing, Mater. Today 10, 20–29 (2007)

    Article  CAS  Google Scholar 

  • A.A. Bettiol, S.Y. Chiam, E.J. Teo, C. Udalagama, S.F. Chan, S.K. Hoi, J.A. van Kan, M.B.H. Breese, F. Watt: Advanced applications in microphotonics using proton beam writing, Nucl. Instr. Meth. Phys. Res. B 267, 2280–2284 (2009)

    Article  CAS  Google Scholar 

  • Q. An, C. Cheng, S.K. Vanga, A.A. Bettiol, F. Chen: Proton beam writing of chalcogenide glass: A new approach for fabrication of channel waveguides at telecommunication O and C bands, J. Lightwave Technol. 32, 4365–4369 (2014)

    Article  CAS  Google Scholar 

  • A.A. Bettiol, S.V. Rao, E.J. Teo, J.A. van Kan, F. Watt: Fabrication of buried channel waveguides in photosensitive glass using proton beam writing, Appl. Phys. Lett. 88, 171106 (2006)

    Article  CAS  Google Scholar 

  • K. Liu, E.Y.B. Pun, T.C. Sum, A.A. Bettiol, J.A. van Kan, F. Watt: Erbium-doped waveguide amplifiers fabricated using focused proton beam writing, Appl. Phys. Lett. 84, 684–686 (2004)

    Article  CAS  Google Scholar 

  • Y. Handa, T. Suhara, H. Nishihara, J. Koyama: Microgratings for high-efficiency guided-beam deflection fabricated by electron-beam direct-writing techniques, Appl. Opt. 19, 2842–2847 (1980)

    Article  CAS  Google Scholar 

  • T. Suhara, H. Nishihara, J. Koyama: Electron-beam-induced refractive-index change of amorphous-semiconductors, Jpn. J. Appl. Phys. 14, 1079–1080 (1975)

    Article  CAS  Google Scholar 

  • E.-B. Kley, M. Cumme, L.-C. Wittig, C. Wu: Adapting existing e-beam writers to write HEBS-glass gray-scale masks. In: Proc. Optoelectron. 99, Integr. Optoelectron. Devices (1999) pp. 35–45

    Google Scholar 

  • S. Rizvi: Handbook of Photomask Manufacturing Technology (CRC, Boca Raton 2005)

    Google Scholar 

  • M. Baba, T. Ikeda: A new inorganic electron resist using amorphous Wo3 film, Jpn. J. Appl. Phys. 20, L149–L152 (1981)

    Article  CAS  Google Scholar 

  • J. Stowers, D.A. Keszler: High resolution, high sensitivity inorganic resists, Microelectron. Eng. 86, 730–733 (2009)

    Article  CAS  Google Scholar 

  • M. Kang, S. Kim, J. Jung, H. Kim, I. Shin, C. Jeon, H. Lee: Inorganic resist materials based on zirconium phosphonate for atomic force microscope lithography, Proc. SPIE 9051, 905110 (2014)

    Article  CAS  Google Scholar 

  • M.S.M. Saifullah, H. Namatsu, T. Yamaguchi, K. Yamazaki, K. Kurihara: Spin-coatable Al2O3 resists in electron beam nanolithography, Proc. SPIE 3678, 633–642 (1999)

    Article  CAS  Google Scholar 

  • K.D. Kolwicz, M.S. Chang: Silver-halide chalcogenide glass inorganic resists for x-ray-lithography, J. Electrochem. Soc. 127, 135–138 (1980)

    Article  CAS  Google Scholar 

  • H. Jain, M. Vlcek: Glasses for lithography, J. Non-Cryst. Solids 354, 1401–1406 (2008)

    Article  CAS  Google Scholar 

  • A. Yoshikawa, O. Ochi, H. Nagai, Y. Mizushima: New inorganic electron resist of high contrast, Appl. Phys. Lett. 31, 161–163 (1977)

    Article  CAS  Google Scholar 

  • A. Yoshikawa, O. Ochi, Y. Mizushima: Dry development of Se-Ge inorganic photoresist, Appl. Phys. Lett. 36, 107–109 (1980)

    Article  CAS  Google Scholar 

  • K. Balasubramanyam, L. Karapiperis, C.A. Lee, A.L. Ruoff: An inorganic resist for ion-beam microfabrication, J. Vac. Sci. Technol. 19, 18–22 (1981)

    Article  CAS  Google Scholar 

  • A. Kovalskiy, J. Cech, M. Vlcek, C.M. Waits, M. Dubey, W.R. Heffner, H. Jain: Chalcogenide glass e-beam and photoresists for ultrathin grayscale patterning, J. Micro/Nanolith., MEMS MOEMS 8, 043012 (2009)

    Article  CAS  Google Scholar 

  • V. Lyubin: Chalcogenide glassy photoresists: History of development, properties, and applications, Phys. Status Solidi (b) 246, 1758–1767 (2009)

    Article  CAS  Google Scholar 

  • I. Utke, S. Moshkalev, P. Russell: Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications (Oxford Univ. Press, Oxford 2012)

    Google Scholar 

  • C.A. Volkert, A.M. Minor: Focused ion beam microscopy and micromachining, MRS Bulletin 32, 389–399 (2007)

    Article  CAS  Google Scholar 

  • R.M. Langford, P.M. Nellen, J. Gierak, Y. Fu: Focused ion beam micro-and nanoengineering, MRS Bulletin 32, 417–423 (2007)

    Article  CAS  Google Scholar 

  • T. Izawa, H. Nakagome: Optical waveguide formed by electrically induced migration of ions in glass plates, Appl. Phys. Lett. 21, 584 (1972)

    Article  CAS  Google Scholar 

  • T.G. Giallorenzi, E.J. West, R. Kirk, R. Ginther, R.A. Andrews: Optical waveguides formed by thermal migration of ions in glass, Appl. Opt. 12, 1240–1245 (1973)

    Article  CAS  Google Scholar 

  • E. Fogret, G. Fonteneau, J. Lucas, R. Rimet: Fluoride glass planar optical waveguides by anionic exchange, Opt. Mater. 5, 87–95 (1996)

    Article  CAS  Google Scholar 

  • E. Josse, G. Fonteneau, J. Lucas: Low-phonon waveguides made by F-/Cl- exchange on fluoride glasses, Mater. Res. Bull. 32, 1139–1146 (1997)

    Article  CAS  Google Scholar 

  • J.L. Jackel: Glass waveguides made using low melting point nitrate mixtures, Appl. Opt. 27, 472–475 (1988)

    Article  CAS  Google Scholar 

  • A. Tervonen, B.R. West, S. Honkanen: Ion-exchanged glass waveguide technology: A review, Opt. Eng. 50, 071107 (2011)

    Article  Google Scholar 

  • P. Camy, J.E. Roman, F.W. Willems, M. Hempstead, J.C. van der Plaats, C. Prel, A. Beguin, A.M.J. Koonen, J.S. Wilkinson, C. Lerminiaux: Ion-exchanged planar lossless splitter at 1.5 \(\upmu\)m, Electron. Lett. 32, 321–323 (1996)

    Article  CAS  Google Scholar 

  • S. Das, D.F. Geraghty, S. Honkanen, N. Peyghambarian: MMI splitters by ion-exchange in glass. In: Proc. Symp. Integr. Optoelectron (2000) pp. 239–247

    Google Scholar 

  • A. Tervonen, P. Poyhonen, S. Honkanen, M. Tahkokorpi: A guided-wave Mach–Zehnder interferometer structure for wavelength multiplexing, IEEE Photonics Technol. Lett. 3, 516–518 (1991)

    Article  Google Scholar 

  • B. Buchold, E. Voges: Polarisation insensitive arrayed-waveguide grating multiplexers with ion-exchanged waveguides in glass, Electron. Lett. 32, 2248–2250 (1996)

    Article  Google Scholar 

  • A. Yiyan, W.K. Chan, T.J. Gmitter, L.T. Florez, J.L. Jackel, E. Yablonovitch, R. Bhat, J.P. Harbison: Grafted GaAs detectors on lithium-niobate and glass optical wave-guides, IEEE Photonics Technol. Lett. 1, 379–380 (1989)

    Article  Google Scholar 

  • M. Nannini, E. Grondin, A. Gorin, V. Aimez, J.E. Broquin: Hybridization of III–V semiconductor membranes onto ion-exchanged waveguides, IEEE J. Sel. Top. Quantum Electron. 11, 547–554 (2005)

    Article  CAS  Google Scholar 

  • S. Honkanen, B.R. West, S. Yliniemi, P. Madasamy, M. Morrell, J. Auxier, A. Schulzgen, N. Peyghambarian, J. Carriere, J. Frantz, R. Kostuk, J. Castro, D. Geraghty: Recent advances in ion exchanged glass waveguides and devices, Phys. Chem. Glasses 47, 110–120 (2006)

    CAS  Google Scholar 

  • S. Wong, E. Pun, P. Chung: Er3+/Yb3+ codoped phosphate glass waveguide amplifier using Ag+/Li+ ion exchange, IEEE Photonics Technol. Lett. 14, 80–82 (2002)

    Article  Google Scholar 

  • C. Florea, K.A. Winick: Ytterbium-doped glass waveguide laser fabricated by ion exchange, J. Lightwave Technol. 17, 1593–1601 (1999)

    Article  CAS  Google Scholar 

  • K.A. Winick, G.L. Vossler: Erbium:ytterbium planar waveguide laser in ion-exchanged glass, Proc. SPIE 2996, 121–134 (1997)

    Article  CAS  Google Scholar 

  • P.D. Townsend, P. Chandler, L. Zhang: Optical Effects of Ion Implantation, Vol. 13 (Cambridge Univ. Press, Cambridge 2006)

    Google Scholar 

  • M. Nastasi, J. Mayer, J.K. Hirvonen: Ion–Solid Interactions: Fundamentals and Applications (Cambridge Univ. Press, Cambridge 1996)

    Book  Google Scholar 

  • G.C. Righini, A. Chiappini: Glass optical waveguides: A review of fabrication techniques, Opt. Eng. 53, 071819 (2014)

    Article  CAS  Google Scholar 

  • W. Wesch, E. Wendler: Ion Beam Modification of Solids: Ion-Solid Interaction and Radiation Damage (Springer, Cham 2016)

    Book  Google Scholar 

  • F. Chen, X.L. Wang, K.M. Wang: Development of ion-implanted optical waveguides in optical materials: A review, Opt. Mater. 29, 1523–1542 (2007)

    Article  CAS  Google Scholar 

  • A. Polman: Erbium implanted thin film photonic materials, J. Appl. Phys. 82, 1–39 (1997)

    Article  CAS  Google Scholar 

  • B. Min, T.J. Kippenberg, L. Yang, K.J. Vahala, J. Kalkman, A. Polman: Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip, Phys. Rev. A 70, 033803 (2004)

    Article  CAS  Google Scholar 

  • A. Polman, B. Min, J. Kalkman, T.J. Kippenberg, K.J. Vahala: Ultralow-threshold erbium-implanted toroidal microlaser on silicon, Appl. Phys. Lett. 84, 1037–1039 (2004)

    Article  CAS  Google Scholar 

  • M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour: Inkjet printing-process and its applications, Adv. Mater. 22, 673–685 (2010)

    Article  CAS  Google Scholar 

  • R. Danzebrink, M.A. Aegerter: Deposition of micropatterned coating using an ink-jet technique, Thin Solid Films 351, 115–118 (1999)

    Article  CAS  Google Scholar 

  • H.Y. Fan, Y.F. Lu, A. Stump, S.T. Reed, T. Baer, R. Schunk, V. Perez-Luna, G.P. Lopez, C.J. Brinker: Rapid prototyping of patterned functional nanostructures, Nature 405, 56–60 (2000)

    Article  CAS  Google Scholar 

  • D. Kim, Y. Jeong, C.Y. Koo, K. Song, J. Moon: Thin film transistors with ink-jet printed amorphous oxide semiconductors, Jpn. J. Appl. Phys. 49, 05EB06 (2010)

    Google Scholar 

  • T. Vidmar, M. Topic, P. Dzik, U.O. Krasovec: Inkjet printing of sol-gel derived tungsten oxide inks, Sol. Energy Mater. Sol. Cells 125, 87–95 (2014)

    Article  CAS  Google Scholar 

  • E.A. Sanchez, M. Waldmann, C.B. Arnold: Chalcogenide glass microlenses by inkjet printing, Appl. Opt. 50, 1974–1978 (2011)

    Article  CAS  Google Scholar 

  • J.U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair, D.K. Mukhopadhyay, C.Y. Lee, M.S. Strano, A.G. Alleyne, J.G. Georgiadis, P.M. Ferreira, J.A. Rogers: High-resolution electrohydrodynamic jet printing, Nat. Mater. 6, 782–789 (2007)

    Article  CAS  Google Scholar 

  • C.W. Sele, T. von Werne, R.H. Friend, H. Sirringhaus: Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution, Adv. Mater. 17, 997–1001 (2005)

    Article  CAS  Google Scholar 

  • N.P. Bansal, R.H. Doremus: Handbook of Glass Properties (Academic, Orlando 1986)

    Google Scholar 

  • J.C. Mauro, Y.Z. Yue, A.J. Ellison, P.K. Gupta, D.C. Allan: Viscosity of glass-forming liquids, Proc. Natl. Acad. Sci. USA 106, 19780–19784 (2009)

    Article  CAS  Google Scholar 

  • N.M. Parikh: Effect of atmosphere on surface tension of glass, J. Am. Ceram. Soc. 41, 18–22 (1958)

    Article  CAS  Google Scholar 

  • F.T. O'Neill, J.T. Sheridan: Photoresist reflow method of microlens production Part I: Background and experiments, Optik 113, 391–404 (2002)

    Article  CAS  Google Scholar 

  • D. Nieto, J. Arines, C. Gomez-Reino, G.M. O'Connor, M.T. Flores-Arias: Fabrication and characterization of microlens arrays on soda-lime glass using a combination of laser direct-write and thermal reflow techniques, J. Appl. Phys. 110, 023108 (2011)

    Article  CAS  Google Scholar 

  • S.K. Lee, M.G. Kim, K.W. Jo, S.M. Shin, J.H. Lee: A glass reflowed microlens array on a Si substrate with rectangular through-holes, J. Opt. Pure Appl. Opt. 10, 044003 (2008)

    Article  CAS  Google Scholar 

  • N.P. Eisenberg, M. Klebanov, V. Lyubin, M. Manevich, S. Noach: Infrared microlens arrays based on chalcogenide photoresist, fabricated by thermal reflow process, J. Optoelectron. Adv. Mater. 2, 147–152 (2000)

    CAS  Google Scholar 

  • J. Jackle, K. Kawasaki: Intrinsic roughness of glass surfaces, J. Phys. Cond. Matt. 7, 4351–4358 (1995)

    Article  CAS  Google Scholar 

  • J.J. Hu, N.N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L. Kimerling: Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow, Opt. Express 18, 1469–1478 (2010)

    Article  CAS  Google Scholar 

  • P.J. Roberts, F. Couny, H. Sabert, B.J. Mangan, D.P. Williams, L. Farr, M.W. Mason, A. Tomlinson, T.A. Birks, J.C. Knight, P.S.J. Russell: Ultimate low loss of hollow-core photonic crystal fibres, Opt. Express 13, 236–244 (2005)

    Article  CAS  Google Scholar 

  • D. Vernooy, V.S. Ilchenko, H. Mabuchi, E. Streed, H. Kimble: High-Q measurements of fused-silica microspheres in the near infrared, Opt. Lett. 23, 247–249 (1998)

    Article  CAS  Google Scholar 

  • T.J. Kippenberg, S.M. Spillane, K.J. Vahala: Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip, Appl. Phys. Lett. 85, 6113–6115 (2004)

    Article  CAS  Google Scholar 

  • K.J. Vahala: Optical microcavities, Nature 424, 839–846 (2003)

    Article  CAS  Google Scholar 

  • A.J. Maker, A.M. Armani: Fabrication of silica ultra high quality factor microresonators, J. Vis. Exp. 65, e4164–e4164 (2012)

    Google Scholar 

  • C. Tsay, E. Mujagic, C.K. Madsen, C.F. Gmachl, C.B. Arnold: Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides, Opt. Express 18, 15523–15530 (2010)

    Article  CAS  Google Scholar 

  • J.D. Wright, N.A. Sommerdijk: Sol-Gel Materials: Chemistry and Applications (CRS, Boca Raton 2000)

    Google Scholar 

  • L. Yang, T. Carmon, B. Min, S.M. Spillane, K.J. Vahala: Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process, Appl. Phys. Lett. 86, 091114 (2005)

    Article  CAS  Google Scholar 

  • V.S. Ilchenko, A.A. Savchenkov, A.B. Matsko, L. Maleki: Nonlinear optics and crystalline whispering gallery mode cavities, Phys. Rev. Lett. 92, 043903 (2004)

    Article  CAS  Google Scholar 

  • S.M. Spillane, T.J. Kippenberg, K.J. Vahala: Ultralow-threshold Raman laser using a spherical dielectric microcavity, Nature 415, 621–623 (2002)

    Article  CAS  Google Scholar 

  • T. Carmon, K.J. Vahala: Visible continuous emission from a silica microphotonic device by third-harmonic generation, Nat. Phys. 3, 430–435 (2007)

    Article  CAS  Google Scholar 

  • P. Del'Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T.J. Kippenberg: Optical frequency comb generation from a monolithic microresonator, Nature 450, 1214–1217 (2007)

    Article  CAS  Google Scholar 

  • B. Min, T.J. Kippenberg, K.J. Vahala: Compact, fiber-compatible, cascaded Raman laser, Opt. Lett. 28, 1507–1509 (2003)

    Article  Google Scholar 

  • S. Montant, A. Le Calvez, E. Freysz, A. Ducasse, M. Couzi: Time-domain separation of nuclear and electronic contributions to the third-order nonlinearity in glasses, J. Opt. Soc. Am. B 15, 2802–2807 (1998)

    Article  CAS  Google Scholar 

  • J. Li, H. Lee, T. Chen, K.J. Vahala: Characterization of a high coherence, Brillouin microcavity laser on silicon, Opt. Express 20, 20170–20180 (2012)

    Article  CAS  Google Scholar 

  • P. Del'Haye, T. Herr, E. Gavartin, M.L. Gorodetsky, R. Holzwarth, T.J. Kippenberg: Octave spanning tunable frequency comb from a microresonator, Phys. Rev. Lett. 107, 063901 (2011)

    Article  CAS  Google Scholar 

  • T. Herr, V. Brasch, J.D. Jost, C.Y. Wang, N.M. Kondratiev, M.L. Gorodetsky, T.J. Kippenberg: Temporal solitons in optical microresonators, Nat. Photonics 8, 145–152 (2014)

    Article  CAS  Google Scholar 

  • T.J. Kippenberg, S.M. Spillane, K.J. Vahala: Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity, Phys. Rev. Lett. 93, 083904 (2004)

    Article  CAS  Google Scholar 

  • X. Yi, Q.F. Yang, K.Y. Yang, M.G. Suh, K. Vahala: Soliton frequency comb at microwave rates in a high-Q silica microresonator, Optica 2, 1078–1085 (2015)

    Article  CAS  Google Scholar 

  • F. Vollmer, L. Yang: Label-free detection with high-Q microcavities: A review of biosensing mechanisms for integrated devices, Nanophotonics 1, 267–291 (2012)

    Article  CAS  Google Scholar 

  • Y.Y. Zhi, X.C. Yu, Q.H. Gong, L. Yang, Y.F. Xiao: Single nanoparticle detection using optical microcavities, Adv. Mater. 29, 1604920 (2017)

    Article  CAS  Google Scholar 

  • F. Vollmer, S. Arnold, D. Keng: Single virus detection from the reactive shift of a whispering-gallery mode, Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008)

    Article  CAS  Google Scholar 

  • F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, S. Arnold: Protein detection by optical shift of a resonant microcavity, Appl. Phys. Lett. 80, 4057–4059 (2002)

    Article  CAS  Google Scholar 

  • J.G. Zhu, S.K. Ozdemir, Y.F. Xiao, L. Li, L.N. He, D.R. Chen, L. Yang: On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator, Nat. Photonics 4, 46–49 (2010)

    Article  CAS  Google Scholar 

  • L.B. Shao, X.F. Jiang, X.C. Yu, B.B. Li, W.R. Clements, F. Vollmer, W. Wang, Y.F. Xiao, Q.H. Gong: Detection of single nanoparticles and lentiviruses using microcavity resonance broadening, Adv. Mater. 25, 5616 (2013)

    Article  CAS  Google Scholar 

  • C.M. Bender, S. Boettcher: Real spectra in non-Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80, 5243–5246 (1998)

    Article  CAS  Google Scholar 

  • B. Peng, S.K. Ozdemir, F.C. Lei, F. Monifi, M. Gianfreda, G.L. Long, S.H. Fan, F. Nori, C.M. Bender, L. Yang: Parity-time-symmetric whispering-gallery microcavities, Nat. Phys. 10, 394–398 (2014)

    Article  CAS  Google Scholar 

  • X.Y. Sun, Q. Du, T. Goto, M.C. Onbasli, D.H. Kim, N.M. Aimon, J. Hu, C.A. Ross: Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation, ACS Photonics 2, 856–863 (2015)

    Article  CAS  Google Scholar 

  • L. Bi, J. Hu, P. Jiang, H.S. Kim, D.H. Kim, M.C. Onbasli, G.F. Dionne, C.A. Ross: Magneto-optical thin films for on-chip monolithic integration of non-reciprocal photonic devices, Materials 6, 5094–5117 (2013)

    Article  CAS  Google Scholar 

  • G.S. Wiederhecker, S. Manipatruni, S. Lee, M. Lipson: Broadband tuning of optomechanical cavities, Opt. Express 19, 2782–2790 (2011)

    Article  Google Scholar 

  • G. Anetsberger, R. Riviere, A. Schliesser, O. Arcizet, T.J. Kippenberg: Ultralow-dissipation optomechanical resonators on a chip, Nat. Photonics 2, 627–633 (2008)

    Article  CAS  Google Scholar 

  • T. Carmon, K.J. Vahala: Modal spectroscopy of optoexcited vibrations of a micron-scale on-chip resonator at greater than 1 GHz frequency, Phys. Rev. Lett. 98, 123901 (2007)

    Article  CAS  Google Scholar 

  • M. Aspelmeyer, T.J. Kippenberg, F. Marquard: Cavity optomechanics, Rev. Mod. Phys. 86, 1391–1452 (2014)

    Article  Google Scholar 

  • T.J. Kippenberg, K.J. Vahala: Cavity optomechanics: Back-action at the mesoscale, Science 321, 1172–1176 (2008)

    Article  CAS  Google Scholar 

  • F. Ruesink, M.A. Miri, A. Alu, E. Verhagen: Nonreciprocity and magnetic-free isolation based on optomechanical interactions, Nat. Commun. 7, 13662 (2016)

    Article  CAS  Google Scholar 

  • A.H. Safavi-Naeini, T.P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J.T. Hill, D.E. Chang, O. Painter: Electromagnetically induced transparency and slow light with optomechanics, Nature 472, 69–73 (2011)

    Article  CAS  Google Scholar 

  • Y.C. Chen, S. Kim, G. Bahl: Brillouin cooling in a linear waveguide, New J. Phys. 18, 115004 (2016)

    Article  CAS  Google Scholar 

  • C.H. Dong, Z. Shen, C.L. Zou, Y.L. Zhang, W. Fu, G.C. Guo: Brillouin-scattering-induced transparency and non-reciprocal light storage, Nat. Commun. 6, 6193 (2015)

    Article  CAS  Google Scholar 

  • B. Peng, S.K. Ozdemir, M. Liertzer, W.J. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, L. Yang: Chiral modes and directional lasing at exceptional points, Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016)

    Article  CAS  Google Scholar 

  • B. Peng, S.K. Ozdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C.M. Bender, F. Nori, L. Yang: Loss-induced suppression and revival of lasing, Science 346, 328–332 (2014)

    Article  CAS  Google Scholar 

  • W. Chen, Ş.K. Özdemir, G.M. Zhao, J. Wiersig, L. Yang: Exceptional points enhance sensing in an optical microcavity, Nature 548, 192 (2017)

    Article  CAS  Google Scholar 

  • M.E. Lines: Oxide glasses for fast photonic switching—A comparative-study, J. Appl. Phys. 69, 6876–6884 (1991)

    Article  CAS  Google Scholar 

  • S.H. Kim, T. Yoko: Nonlinear-optical properties of TeO2-based glasses: MOx-TeO2 (M = Sc, Ti, V, Nb, Mo, Ta, and W) binary classes, J. Am. Ceram. Soc. 78, 1061–1065 (1995)

    Article  CAS  Google Scholar 

  • G.S. Murugan, T. Suzuki, Y. Ohishi: Raman characteristics and nonlinear optical properties of tellurite and phosphotellurite glasses containing heavy metal oxides with ultrabroad Raman bands, J. Appl. Phys. 100, 023107 (2006)

    Article  CAS  Google Scholar 

  • R. Stegeman, C. Rivero, K. Richardson, G. Stegeman, P. Delfyett, Y. Guo, A. Pope, A. Schulte, T. Cardinal, P. Thomas, J.C. Champarnaud-Mesjard: Raman gain measurements of thallium-tellurium oxide glasses, Opt. Express 13, 1144–1149 (2005)

    Article  CAS  Google Scholar 

  • D.W. Hall, M.A. Newhouse, N.F. Borrelli, W.H. Dumbaugh, D.L. Weidman: Nonlinear optical susceptibilities of high-index glasses, Appl. Phys. Lett. 54, 1293–1295 (1989)

    Article  CAS  Google Scholar 

  • R. Reisfeld, Y. Eckstein: Radiative and non-radiative transition-probabilities and quantum yields for excited-states of Er3+ in germanate and tellurite glasses, J. Non-Cryst. Solids 15, 125–140 (1974)

    Article  CAS  Google Scholar 

  • K. Sun, W.M. Risen: Rare-earth phosphate-glasses, Solid State Commun 60, 697–700 (1986)

    Article  CAS  Google Scholar 

  • O. Ogbuu, Q. Du, H. Lin, L. Li, Y. Zou, E. Koontz, C. Smith, S. Danto, K. Richardson, J. Hu: Impact of stoichiometry on structural and optical properties of sputter deposited multicomponent tellurite glass films, J. Am. Ceram. Soc. 98, 1731–1738 (2015)

    Article  CAS  Google Scholar 

  • P.T. Lin, M. Vanhoutte, N.S. Patel, V. Singh, J. Hu, Y. Cai, R. Camacho-Aguilera, J. Michel, L.C. Kimerling, A. Agarwal: Engineering broadband and anisotropic photoluminescence emission from rare earth doped tellurite thin film photonic crystals, Opt. Express 20, 2124–2135 (2012)

    Article  CAS  Google Scholar 

  • M.W. Sckerl, S. Guldberg-Kjaer, M.R. Poulsen, P. Shi, J. Chevallier: Precipitate coarsening and self organization in erbium-doped silica, Phys. Rev. B 59, 13494–13497 (1999)

    Article  CAS  Google Scholar 

  • S. Tanabe: Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication, C.R. Chim. 5, 815–824 (2002)

    Article  CAS  Google Scholar 

  • D.L. Yang, E.Y.B. Pun, B.J. Chen, H. Lin: Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides, J. Opt. Soc. Am. B 26, 357–363 (2009)

    Article  CAS  Google Scholar 

  • S.F. Wong, E.Y.B. Pun, P.S. Chung: Er3+-Yb3+ codoped phosphate glass waveguide amplifier using Ag+-Li+ ion exchange, IEEE Photonics Technol. Lett. 14, 80–82 (2002)

    Article  Google Scholar 

  • T.T. Fernandez, S.M. Eaton, G.D. Valle, R.M. Vazquez, M. Irannejad, G. Jose, A. Jha, G. Cerullo, R. Osellame, P. Laporta: Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass, Opt. Express 18, 20289–20297 (2010)

    Article  CAS  Google Scholar 

  • S. Gross, M. Ams, G. Palmer, C.T. Miese, R.J. Williams, G.D. Marshall, A. Fuerbach, M.J. Withford, D.G. Lancaster, H. Ebendorff-Heidepriem: Ultrafast laser inscription in soft glasses: A comparative study of athermal and thermal processing regimes for guided wave optics, Int. J. Appl. Glass Sci. 3, 332–348 (2012)

    Article  CAS  Google Scholar 

  • D.P. Shepherd, D.J.B. Brinck, J. Wang, A.C. Tropper, D.C. Hanna, G. Kakarantzas, P.D. Townsend: 1.9-\(\upmu\)m operation of a Tm: lead germanate glass waveguide laser, Opt. Lett. 19, 954–956 (1994)

    Article  CAS  Google Scholar 

  • K. Vu, S. Madden: Tellurium dioxide erbium doped planar rib waveguide amplifiers with net gain and 2.8 dB/cm internal gain, Opt. Express 18, 19192–19200 (2010)

    Article  CAS  Google Scholar 

  • K. Vu, S. Farahani, S. Madden: 980 nm pumped erbium doped tellurium oxide planar rib waveguide laser and amplifier with gain in S, C and L band, Opt. Express 23, 747–755 (2015)

    Article  CAS  Google Scholar 

  • C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, J. Lucas: Chalcogenide glasses with high non linear optical properties for telecommunications, J. Phys. Chem. Solids 62, 1435–1440 (2001)

    Article  CAS  Google Scholar 

  • T. Wang, X. Gai, W.H. Wei, R.P. Wang, Z.Y. Yang, X. Shen, S. Madden, B. Luther-Davies: Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses, Opt. Mater. Express 4, 1011–1022 (2014)

    Article  CAS  Google Scholar 

  • L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, K. Richardson: Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses, J. Solid State Chem. 182, 2756–2761 (2009)

    Article  CAS  Google Scholar 

  • B.J. Eggleton, B. Luther-Davies, K. Richardson: Chalcogenide photonics, Nat. Photonics 5, 141–148 (2011)

    Article  CAS  Google Scholar 

  • G.X. Wang, Q.H. Nie, X.S. Wang, X. Shen, F. Chen, T.F. Xu, S.X. Dai, X.H. Zhang: New far-infrared transmitting Te-based chalcogenide glasses, J. Appl. Phys. 110, 043536 (2011)

    Article  CAS  Google Scholar 

  • Z.Y. Yang, P. Lucas: Tellurium-based far-infrared transmitting glasses, J. Am. Ceram. Soc. 92, 2920–2923 (2009)

    Article  CAS  Google Scholar 

  • V. Singh, P.T. Lin, N. Patel, H.T. Lin, L. Li, Y. Zou, F. Deng, C.Y. Ni, J.J. Hu, J. Giammarco, A.P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J.D. Musgraves, K. Richardson, L.C. Kimerling, A.M. Agarwal: Mid-infrared materials and devices on a Si platform for optical sensing, Sci. Technol. Adv. Mater. 15, 014603 (2014)

    Article  CAS  Google Scholar 

  • L. Labadie, O. Wallner: Mid-infrared guided optics: A perspective for astronomical instruments, Opt. Express 17, 1947–1962 (2009)

    Article  CAS  Google Scholar 

  • J. Hu, J. Meyer, K. Richardson, L. Shah: Feature issue introduction: Mid-IR photonic materials, Opt. Mater. Express 3, 1571–1575 (2013)

    Article  CAS  Google Scholar 

  • P.T. Lin, V. Singh, J. Wang, H. Lin, J. Hu, K. Richardson, J.D. Musgraves, I. Luzinov, J. Hensley, L.C. Kimerling: Si-CMOS compatible materials and devices for mid-IR microphotonics, Opt. Mater. Express 3, 1474–1487 (2013)

    Article  CAS  Google Scholar 

  • H. Lin, Z. Luo, T. Gu, L.C. Kimerling, K. Wada, A. Agarwal, J. Hu: Mid-infrared integrated photonics on silicon: A perspective, Nanophotonics 7, 393–420 (2018)

    Article  CAS  Google Scholar 

  • J.D. Musgraves, N. Carlie, J. Hu, L. Petit, A. Agarwal, L.C. Kimerling, K.A. Richardson: Comparison of the optical, thermal and structural properties of Ge-Sb-S thin films deposited using thermal evaporation and pulsed laser deposition techniques, Acta Mater 59, 5032–5039 (2011)

    Article  CAS  Google Scholar 

  • B. Brunetti, V. Piacente, P. Scardala: Torsion measurement of orpiment vapor pressure, J. Chem. Eng. Data 52, 1343–1346 (2007)

    Article  CAS  Google Scholar 

  • J.D.F. Ramsay, R.G. Avery: Ultrafine oxide powders prepared by electron-beam evaporation. 1. Evaporation and condensation processes, J. Mater. Sci. 9, 1681–1688 (1974)

    Article  CAS  Google Scholar 

  • E. Lhuillier, S. Keuleyan, P. Zolotavin, P. Guyot-Sionnest: Mid-infrared HgTe/As2S3 field effect transistors and photodetectors, Adv. Mater. 25, 137–141 (2013)

    Article  CAS  Google Scholar 

  • E. Lhuillier, M. Scarafagio, P. Hease, B. Nadal, H. Aubin, X.Z. Xu, N. Lequeux, G. Patriarche, S. Ithurria, B. Dubertret: Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz, Nano Lett. 16, 1282–1286 (2016)

    Article  CAS  Google Scholar 

  • M.A. Hughes, Y. Fedorenko, B. Gholipour, J. Yao, T.H. Lee, R.M. Gwilliam, K.P. Homewood, S. Hinder, D.W. Hewak, S.R. Elliott, R.J. Curry: n-Type chalcogenides by ion implantation, Nat. Commun. 5, 5346 (2014)

    Article  CAS  Google Scholar 

  • D. Strand: Ovonics: From science to products, J. Optoelectron. Adv. Mater. 7, 1679–1690 (2005)

    CAS  Google Scholar 

  • T. Katsuyama, S. Satoh, H. Matsumura: Fabrication of high-purity chalcogenide glasses by chemical vapor-deposition, J. Appl. Phys. 59, 1446–1449 (1986)

    Article  CAS  Google Scholar 

  • C.C. Huang, D.W. Hewak, J.V. Badding: Deposition and characterization of germanium sulphide glass planar waveguides, Opt. Express 12, 2501–2506 (2004)

    Article  CAS  Google Scholar 

  • E. Sleeckx, P. Nagels, R. Callaerts, M. Vanroy: Plasma-enhanced CVD of amorphous GexS1-X and GexSe1-X films, J. Phys. IV 3, 419–426 (1993)

    CAS  Google Scholar 

  • G.C. Chern, I. Lauks: Spin-coated amorphous-chalcogenide films, J. Appl. Phys. 53, 6979–6982 (1982)

    Article  CAS  Google Scholar 

  • S. Novak, P.-T. Lin, C. Li, N. Borodinov, Z. Han, C. Monmeyran, N. Patel, Q. Du, M. Malinowski, S. Fathpour, C. Lumdee, C. Xu, P.G. Kik, W. Deng, J. Hu, A. Agarwal, I. Luzinov, K. Richardson: Electrospray deposition of uniform thickness Ge23Sb7S70 and As40S60 chalcogenide glass films, J. Vis. Exp. (2016), https://doi.org/10.3791/54379

    Article  Google Scholar 

  • V. Nazabal, F. Charpentier, J.L. Adam, P. Nemec, H. Lhermite, M.L. Brandily-Anne, J. Charrier, J.P. Guin, A. Moreac: Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films, Int. J. Appl. Ceram. Technol. 8, 990–1000 (2011)

    Article  CAS  Google Scholar 

  • J. Hu, X. Sun, A.M. Agarwal, J.F. Viens, L.C. Kimerling, L. Petit, N. Carlie, K.C. Richardson, T. Anderson, J. Choi, M. Richardson: Studies on structural, electrical, and optical properties of Cu doped As-Se-Te chalcogenide glasses, J. Appl. Phys. 101, 063520 (2007)

    Article  CAS  Google Scholar 

  • Y. Zou, H.T. Lin, O. Ogbuu, L. Li, S. Danto, S. Novak, J. Novak, J.D. Musgraves, K. Richardson, J.J. Hu: Effect of annealing conditions on the physio-chemical properties of spin-coated As2Se3 chalcogenide glass films, Opt. Mater. Express 2, 1723–1732 (2012)

    Article  CAS  Google Scholar 

  • A. Kovalskiy, J. Cech, M. Vlcek, C.M. Waits, M. Dubey, W.R. Heffner, H. Jain: Chalcogenide glass e-beam and photoresists for ultrathin grayscale patterning, J. Micro-Nanolithogr. MEMS MOEMS 8, 043012 (2009)

    Article  CAS  Google Scholar 

  • D.G. Georgiev, P. Boolchand, K.A. Jackson: Intrinsic nanoscale phase separation of bulk As2S3 glass, Philos. Mag. 83, 2941–2953 (2003)

    Article  CAS  Google Scholar 

  • R.A. Street, R.J. Nemanich, G.A.N. Connell: Thermally induced effects in evaporated chalcogenide films. 2. Optical-absorption, Phys. Rev. B 18, 6915–6919 (1978)

    Article  CAS  Google Scholar 

  • R.P. Wang, S.J. Madden, C.J. Zha, A.V. Rode, B. Luther-Davies: Annealing induced phase transformations in amorphous As2S3 films, J. Appl. Phys. 100, 063524 (2006)

    Article  CAS  Google Scholar 

  • D.Y. Choi, S. Madden, D. Bulla, R.P. Wang, A. Rode, B. Luther-Davies: Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance, J. Appl. Phys. 107, 053106 (2010)

    Article  CAS  Google Scholar 

  • X. Gai, T. Han, A. Prasad, S. Madden, D.Y. Choi, R.P. Wang, D. Bulla, B. Luther-Davies: Progress in optical waveguides fabricated from chalcogenide glasses, Opt. Express 18, 26635–26646 (2010)

    Article  Google Scholar 

  • A. Zakery, Y. Ruan, A.V. Rode, M. Samoc, B. Luther-Davies: Low-loss waveguides in ultrafast laser-deposited As2S3 chalcogenide films, J. Opt. Soc. Am. B Opt. Phys. 20, 1844–1852 (2003)

    Article  CAS  Google Scholar 

  • N. Ho, M.C. Phillips, H. Qiao, P.J. Allen, K. Krishnaswami, B.J. Riley, T.L. Myers, N.C. Anheier: Single-mode low-loss chalcogenide glass waveguides for the mid-infrared, Opt. Lett. 31, 1860–1862 (2006)

    Article  CAS  Google Scholar 

  • J. Lapointe, Y. Ledemi, S. Loranger, V.L. Iezzi, E.S. de Lima, F. Parent, S. Morency, Y. Messaddeq, R. Kashyap: Fabrication of ultrafast laser written low-loss waveguides in flexible As2S3 chalcogenide glass tape, Opt. Lett. 41, 203–206 (2016)

    Article  CAS  Google Scholar 

  • A. Rodenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, R. Thomson: Three-dimensional mid-infrared photonic circuits in chalcogenide glass, Opt. Lett. 37, 392–394 (2012)

    Article  Google Scholar 

  • R.M. Bryce, H.T. Nguyen, P. Nakeeran, R.G. DeCorby, P.K. Dwivedi, C.J. Haugen, J.N. McMullin, S.O. Kasap: Direct UV patterning of waveguide devices in AS2Se3 thin films, J. Vac. Sci. Technol. A 22, 1044–1047 (2004)

    Article  CAS  Google Scholar 

  • R.G. DeCorby, N. Ponnampalam, M.M. Pai, H.T. Nguyen, P.K. Dwivedi, T.J. Clement, C.J. Haugen, J.N. McMullin, S.O. Kasap: High index contrast waveguides in chalcogenide glass and polymer, IEEE J. Select. Top. Quantum Electron. 11, 539–546 (2005)

    Article  CAS  Google Scholar 

  • M.W. Lee, C. Grillet, C.L.C. Smith, D.J. Moss, B.J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y.L. Ruan, Y.H. Lee: Photosensitive post tuning of chalcogenide photonic crystal waveguides, Opt. Express 15, 1277–1285 (2007)

    Article  CAS  Google Scholar 

  • J.J. Hu, M. Torregiani, F. Morichetti, N. Carlie, A. Agarwal, K. Richardson, L.C. Kimerling, A. Melloni: Resonant cavity-enhanced photosensitivity in As2S3 chalcogenide glass at 1550 nm telecommunication wavelength, Opt. Lett. 35, 874–876 (2010)

    Article  CAS  Google Scholar 

  • A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B.J. Eggleton, N. Stoltz, P. Petroff, J. Vuckovic: Local tuning of photonic crystal cavities using chalcogenide glasses, Appl. Phys. Lett. 92, 043123 (2008)

    Article  CAS  Google Scholar 

  • M.W. Lee, C. Grillet, S. Tomljenovic-Hanic, E.C. Magi, D.J. Moss, B.J. Eggleton, X. Gai, S. Madden, D.Y. Choi, D.A.P. Bulla, B. Luther-Davies: Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals, Opt. Lett. 34, 3671–3673 (2009)

    Article  CAS  Google Scholar 

  • J.F. Viens, C. Meneghini, A. Villeneuve, T.V. Galstian, E.J. Knystautas, M.A. Duguay, K.A. Richardson, T. Cardinal: Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses, J. Lightwave Technol. 17, 1184–1191 (1999)

    Article  CAS  Google Scholar 

  • S.J. Madden, D.Y. Choi, D.A. Bulla, A.V. Rode, B. Luther-Davies, V.G. Ta'eed, M.D. Pelusi, B.J. Eggleton: Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration, Opt. Express 15, 14414–14421 (2007)

    Article  CAS  Google Scholar 

  • Q.Y. Du, Y.Z. Huang, J.Y. Li, D. Kita, J. Michon, H.T. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, J.J. Hu: Low-loss photonic device in Ge-Sb-S chalcogenide glass, Opt. Lett. 41, 3090–3093 (2016)

    Article  CAS  Google Scholar 

  • X. Gai, B. Luther-Davies, T.P. White: Photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding with a high Q-factor (\(> \) 750 000), Opt. Express 20, 15503–15515 (2012)

    Article  CAS  Google Scholar 

  • P. Ma, D.Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, B. Luther-Davies: Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared, Opt. Express 21, 29927–29937 (2013)

    Article  CAS  Google Scholar 

  • J.J. Hu, L. Li, H.T. Lin, Y. Zou, Q.Y. Du, C. Smith, S. Novak, K. Richardson, J.D. Musgraves: Chalcogenide glass microphotonics: Stepping into the spotlight, Am. Ceram. Soc. Bull. 94, 24–29 (2015)

    Google Scholar 

  • X. Xia, Q. Chen, C. Tsay, C.B. Arnold, C.K. Madsen: Low-loss chalcogenide waveguides on lithium niobate for the mid-infrared, Opt. Lett. 35, 3228–3230 (2010)

    Article  CAS  Google Scholar 

  • H.T. Lin, L. Li, F. Deng, C.Y. Ni, S. Danto, J.D. Musgraves, K. Richardson, J.J. Hu: Demonstration of mid-infrared waveguide photonic crystal cavities, Opt. Lett. 38, 2779–2782 (2013)

    Article  CAS  Google Scholar 

  • H.T. Lin, L. Li, Y. Zou, S. Danto, J.D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P.T. Lin, V. Singh, A. Agarwal, L.C. Kimerling, J.J. Hu: Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators, Opt. Lett. 38, 1470–1472 (2013)

    Article  CAS  Google Scholar 

  • Y. Zou, D.N. Zhang, H.T. Lin, L. Li, L. Moreel, J. Zhou, Q.Y. Du, O. Ogbuu, S. Danto, J.D. Musgraves, K. Richardson, K.D. Dobson, R. Birkmire, J.J. Hu: High-Performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates, Adv. Opt. Mater. 2, 478–486 (2014)

    Article  CAS  Google Scholar 

  • T. Kohoutek, J. Orava, A.L. Greer, H. Fudouzi: Sub-micrometer soft lithography of a bulk chalcogenide glass, Opt. Express 21, 9584–9591 (2013)

    Article  CAS  Google Scholar 

  • I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, J. Nishii: Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass, Opt. Lett. 36, 3882–3884 (2011)

    Article  CAS  Google Scholar 

  • Y.F. Zhai, R.D. Qi, C.Z. Yuan, W. Zhang, Y.D. Huang: High-quality chalcogenide glass waveguide fabrication by hot melt smoothing and micro-trench filling, Appl. Phys. Exp. 9, 052201 (2016)

    Article  CAS  Google Scholar 

  • Y.L. Zha, P.T. Lin, L. Kimerling, A. Agarwal, C.B. Arnold: Inverted-rib chalcogenide waveguides by solution process, ACS Photonics 1, 153–157 (2014)

    Article  CAS  Google Scholar 

  • C. Tsay, F. Toor, C.F. Gmachl, C.B. Arnold: Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits, Opt. Lett. 35, 3324–3326 (2010)

    Article  CAS  Google Scholar 

  • Z. Han, V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li, X. Huang, L. Kimerling, J. Hu: On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors, Appl. Phys. Lett. 109, 071111 (2016)

    Article  CAS  Google Scholar 

  • V. Singh, T. Zens, J. Hu, J. Wang, J.D. Musgraves, K. Richardson, L.C. Kimerling, A. Agarwal: Evanescently coupled mid-infrared photodetector for integrated sensing applications: Theory and design, Sens. Actuators B Chem. 185, 195–200 (2013)

    Article  CAS  Google Scholar 

  • L. Li, H.T. Lin, S. Geiger, A. Zerdoum, P. Zhang, O. Ogbuu, Q.Y. Du, X.Q. Jia, S. Novak, C. Smith, K. Richardson, J.D. Musgraves, J.J. Hu: Amorphous thin films for mechanically flexible, multimaterial integrated photonics, Am. Ceram. Soc. Bull. 95, 34–36 (2016)

    CAS  Google Scholar 

  • L. Li, H. Lin, Y. Huang, R.-J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu: High-performance flexible waveguide-integrated photodetectors, Optica 5, 44–51 (2018)

    Article  Google Scholar 

  • S. Serna, H. Lin, C. Alonso-Ramos, A. Yadav, X. Le Roux, K. Richardson, E. Cassan, N. Dubreuil, J. Hu, L. Vivien: Nonlinear optical properties of integrated GeSbS chalcogenide waveguides, Photonics Res. 6, B37–B42 (2018)

    Article  CAS  Google Scholar 

  • X. Gai, S. Madden, D.Y. Choi, D. Bulla, B. Luther-Davies: Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W-1 m-1 at 1550 nm, Opt. Express 18, 18866–18874 (2010)

    Article  CAS  Google Scholar 

  • K. Suzuki, T. Baba: Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides, Opt. Express 18, 26675–26685 (2010)

    Article  CAS  Google Scholar 

  • S. Smolorz, I. Kang, F. Wise, B.G. Aitken, N.F. Borrelli: Studies of optical non-linearities of chalcogenide and heavy-metal oxide glasses, J. Non-Cryst. Solids 256, 310–317 (1999)

    Article  Google Scholar 

  • T.D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L.K. Oxenløwe, S.J. Madden, D.Y. Choi, D.A. Bulla, M.D. Pelusi, J. Schroder, B. Luther-Davies, B.J. Eggleton: Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal, Opt. Express 18, 17252–17261 (2010)

    Article  CAS  Google Scholar 

  • Y. Yu, X. Gai, T. Wang, P. Ma, R.P. Wang, Z.Y. Yang, D.Y. Choi, S. Madden, B. Luther-Davies: Mid-infrared supercontinuum generation in chalcogenides, Opt. Mater. Express 3, 1075–1086 (2013)

    Article  CAS  Google Scholar 

  • K.A. Cerqua-Richardson, J.M. McKinley, B. Lawrence, S. Joshi, A. Villeneuve: Comparison of nonlinear-optical properties of sulfide glasses in bulk and thin film form, Opt. Mater. 10, 155–159 (1998)

    Article  CAS  Google Scholar 

  • S. Spalter, H.Y. Hwang, J. Zimmermann, G. Lenz, T. Katsufuji, S.W. Cheong, R.E. Slusher: Strong self-phase modulation in planar chalcogenide glass waveguides, Opt. Lett. 27, 363–365 (2002)

    Article  CAS  Google Scholar 

  • Y.L. Ruan, W.T. Li, R. Jarvis, N. Madsen, A. Rode, B. Luther-Davies: Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching, Opt. Express 12, 5140–5145 (2004)

    Article  CAS  Google Scholar 

  • N.D. Psaila, R.R. Thomson, H.T. Bookey, S.X. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, A.K. Kar: Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide, Opt. Express 15, 15776–15781 (2007)

    Article  Google Scholar 

  • Y. Yu, X. Gai, P. Ma, D.Y. Choi, Z.Y. Yang, R.P. Wang, S. Debbarma, S.J. Madden, B. Luther-Davies: A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide, Laser Photonics Rev. 8, 792–798 (2014)

    Article  CAS  Google Scholar 

  • X. Gai, D.Y. Choi, S. Madden, Z.Y. Yang, R.P. Wang, B. Luther-Davies: Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide, Opt. Lett. 37, 3870–3872 (2012)

    Article  CAS  Google Scholar 

  • D.S. Zhivotkov, E.A. Romanova, A. Vukovic, S. Phang: Highly non-linear optical microresonators for frequency combs generation. In: Proc. Saratov Fall Meet. 2014: Opt. Technol. Biophys. Med. Xvi; Laser Phys. Photonics Xvi; Comput. Biophys, Vol. 9448 (2015) p. 9448

    Google Scholar 

  • Y. Guo, J. Wang, Z. Han, Z. Jafari, A. Zarifkar, J. Hu, A.M. Agarwal, L.C. Kimerling, J. Michel, L. Zhang: Wavelength-flexible Kerr frequency comb generation covering a 2000-nm bandwidth in mid-infrared. In: Proc. Mid-Infrared Coherent Sources (2016) p. MM1C.4

    Google Scholar 

  • Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, J. Hu: Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide, Photonics Res. 6, 506–510 (2018)

    Article  CAS  Google Scholar 

  • B. Mizaikoff: Waveguide-enhanced mid-infrared chem/bio sensors, Chem. Soc. Rev. 42, 8683–8699 (2013)

    Article  CAS  Google Scholar 

  • Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, D.T.H. Tan: On-chip mid-infrared gas detection using chalcogenide glass waveguide, Appl. Phys. Lett. 108, 141106 (2016)

    Article  CAS  Google Scholar 

  • A. Ganjoo, H. Jain, C. Yu, R. Song, J.V. Ryan, J. Irudayaraj, Y.J. Ding, C.G. Pantano: Planar chalcogenide glass waveguides for IR evanescent wave sensors, J. Non-Cryst. Solids 352, 584–588 (2006)

    Article  CAS  Google Scholar 

  • J.J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, K. Richardson: Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor, Opt. Express 15, 2307–2314 (2007)

    Article  CAS  Google Scholar 

  • L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, K. Richardson, J.J. Hu, A. Agarwal, L. Kimerling, T. Anderson, M. Richardson: Development of novel integrated bio/chemical sensor systems using chalcogenide glass materials, Int. J. Nanotechnol. 6, 799–815 (2009)

    Article  CAS  Google Scholar 

  • K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, M. Richardson: Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors, J. Nonlinear Opt. Phys. Mater. 19, 75–99 (2010)

    Article  CAS  Google Scholar 

  • M.L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compere, B. Bureau: Chalcogenide glass optical waveguides for infrared biosensing, Sensors 9, 7398–7411 (2009)

    Article  CAS  Google Scholar 

  • J. Charrier, M.L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, V. Nazabal: Evanescent wave optical micro-sensor based on chalcogenide glass, Sens. Actuators B Chem. 173, 468–476 (2012)

    Article  CAS  Google Scholar 

  • A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, C.G. Pantano: Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films, J. Non-Cryst. Solids 354, 2757–2762 (2008)

    Article  CAS  Google Scholar 

  • J. Giammarco, B. Zdyrko, L. Petit, J.D. Musgraves, J. Hu, A. Agarwal, L. Kimerling, K. Richardson, I. Luzinov: Towards universal enrichment nanocoating for IR-ATR waveguides, Chem. Commun. 47, 9104–9106 (2011)

    Article  CAS  Google Scholar 

  • J. Hu, V. Tarasov, N. Carlie, R. Sun, L. Petit, A. Agarwal, K. Richardson, L. Kimerling: Low-loss integrated planar chalcogenide waveguides for microfluidic chemical sensing, Proc. SPIE 644, 64440N (2007)

    Article  CAS  Google Scholar 

  • J.J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L.C. Kimerling: Cavity-enhanced IR absorption in planar chalcogenide glass microdisk resonators: Experiment and analysis, J. Lightwave Technol. 27, 5240–5245 (2009)

    Article  CAS  Google Scholar 

  • N. Borodinov, A.P. Soliani, Y. Galabura, B. Zdyrko, C. Tysinger, S. Novak, Q. Du, Y. Huang, V. Singh, Z. Han: Gradient polymer nanofoams for encrypted recording of chemical events, ACS Nano 10, 10716–10725 (2016)

    Article  CAS  Google Scholar 

  • J. Hu, X. Sun, A. Agarwal, L.C. Kimerling: Design guidelines for optical resonator biochemical sensors, J. Opt. Soc. Am. B 26, 1032–1041 (2009)

    Article  CAS  Google Scholar 

  • J.J. Hu: Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy, Opt. Express 18, 22174–22186 (2010)

    Article  CAS  Google Scholar 

  • H.T. Lin, Z. Yi, J.J. Hu: Double resonance 1-D photonic crystal cavities for single-molecule mid-infrared photothermal spectroscopy: theory and design, Opt. Lett. 37, 1304–1306 (2012)

    Article  CAS  Google Scholar 

  • D. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, J. Hu: On-chip infrared spectroscopic sensing: Redefining the benefits of scaling, IEEE J. Select. Top. Quantum Electron. 23, 5900110 (2017)

    Article  Google Scholar 

  • L. Su, C.J. Rowlands, S.R. Elliott: Nanostructures fabricated in chalcogenide glass for use as surface-enhanced Raman scattering substrates, Opt. Lett. 34, 1645–1647 (2009)

    Article  CAS  Google Scholar 

  • M.J. Schoning, J.P. Kloock: About 20 years of silicon-based thin-film sensors with chalcogenide glass materials for heavy metal analysis: Technological aspects of fabrication and miniaturization, Electroanalysis 19, 2029–2038 (2007)

    Article  CAS  Google Scholar 

  • L. Li, H.T. Lin, S.T. Qiao, Y. Zou, S. Danto, K. Richardson, J.D. Musgraves, N.S. Lu, J.J. Hu: Integrated flexible chalcogenide glass photonic devices, Nat. Photonics 8, 643–649 (2014)

    Article  CAS  Google Scholar 

  • H.T. Lin, L. Li, Y. Zou, Q.Y. Du, O. Ogbuu, C. Smith, E. Koontz, J.D. Musgraves, K. Richardson, J.J. Hu: Substrate-blind photonic integration based on high-index glasses, Proc. SPIE 9277, 92770T (2014)

    Article  Google Scholar 

  • E.J. McBrearty, P. Mason, D. Orchard, M. Harris, K. Lewis: Optical bonding of high-refractive-index semiconductors using index-matched chalcogenide glass, Proc. SPIE (2004), https://doi.org/10.1117/12.513577

    Article  Google Scholar 

  • X. Sheng, C.A. Bower, S. Bonafede, J.W. Wilson, B. Fisher, M. Meitl, H. Yuen, S.D. Wang, L. Shen, A.R. Banks, C.J. Corcoran, R.G. Nuzzo, S. Burroughs, J.A. Rogers: Printing-based assembly of quadruple-junction four-terminal microscale solar cells and their use in high-efficiency modules, Nat. Mater. 13, 593–598 (2014)

    Article  CAS  Google Scholar 

  • V. Wood, J. Busch, C. Verber: Design, fabrication and evaluation of chalcogenide glass Luneburg lenses for LiNbO3 integrated optical devices, Technical Report NASA-CR-165972, NASA.26:165972 (NASA Langley Research Center, Hampton 1982)

    Google Scholar 

  • A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, S. Fathpour: Heterogeneous microring and Mach–Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon, Opt. Express 23, 22746–22752 (2015)

    Article  CAS  Google Scholar 

  • M.E. Solmaz: Tunable ring-coupled Mach–Zehnder interferometer based on lithium niobate, J. Mod. Opt. 61, 419–423 (2014)

    Article  CAS  Google Scholar 

  • R.J. Martin-Palma, C.G. Pantano, A. Lakhtakia: Biomimetization of butterfly wings by the conformal-evaporated-film-by-rotation technique for photonics, Appl. Phys. Lett. 93, 083901 (2008)

    Article  CAS  Google Scholar 

  • H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, Z. Luo: Chalcogenide glass-on-graphene photonics, Nat. Photonics 11, 798–805 (2017)

    Article  CAS  Google Scholar 

  • S. Deckoff-Jones, H. Lin, D. Kita, H. Zheng, D. Li, W. Zhang, J. Hu: Chalcogenide glass waveguide-integrated black phosphorus mid-infrared photodetectors, J. Opt. 20, 044004 (2018)

    Article  CAS  Google Scholar 

  • L. Zhu, F. Liu, H. Lin, J. Hu, Z. Yu, X. Wang, S. Fan: Angle-selective perfect absorption with two-dimensional materials, Light Sci. Appl. 5, e16052 (2016)

    Article  CAS  Google Scholar 

  • H.C. Ko, M.P. Stoykovich, J.Z. Song, V. Malyarchuk, W.M. Choi, C.J. Yu, J.B. Geddes, J.L. Xiao, S.D. Wang, Y.G. Huang, J.A. Rogers: A hemispherical electronic eye camera based on compressible silicon optoelectronics, Nature 454, 748–753 (2008)

    Article  CAS  Google Scholar 

  • D.H. Kim, N.S. Lu, R. Ma, Y.S. Kim, R.H. Kim, S.D. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T.I. Kim, R. Chowdhury, M. Ying, L.Z. Xu, M. Li, H.J. Chung, H. Keum, M. McCormick, P. Liu, Y.W. Zhang, F.G. Omenetto, Y.G. Huang, T. Coleman, J.A. Rogers: Epidermal electronics, Science 333, 838–843 (2011)

    Article  CAS  Google Scholar 

  • E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, P. Van Daele: Highly reliable flexible active optical links, IEEE Photonics Technol. Lett. 22, 287–289 (2010)

    Article  Google Scholar 

  • L. Li, Y. Zou, H.T. Lin, J.J. Hu, X.C. Sun, N.N. Feng, S. Danto, K. Richardson, T. Gu, M. Haney: A fully-integrated flexible photonic platform for chip-to-chip optical interconnects, J. Lightwave Technol. 31, 4080–4086 (2013)

    Article  CAS  Google Scholar 

  • Y. Chen, H. Li, M. Li: Flexible and tunable silicon photonic circuits on plastic substrates, Sci. Rep. 2, 622 (2012)

    Article  CAS  Google Scholar 

  • J.J. Hu, L. Li, H.T. Lin, P. Zhang, W.D. Zhou, Z.Q. Ma: Flexible integrated photonics: Where materials, mechanics and optics meet, Opt. Mater. Express 3, 1313–1331 (2013)

    Article  CAS  Google Scholar 

  • L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J.-Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav: Monolithically integrated stretchable photonics, Light Sci. Appl. 7, 17138 (2018)

    Article  CAS  Google Scholar 

  • L. Li, H. Lin, J. Michon, Y. Huang, J. Li, Q. Du, A. Yadav, K. Richardson, T. Gu, J. Hu: A new twist on glass: A brittle material enabling flexible integrated photonics, Int. J. Appl. Glass Sci. 8, 61–68 (2017)

    Article  CAS  Google Scholar 

  • C. Charron, E. Fogret, G. Fonteneau, R. Rimet, J. Lucas: Fluoride glass planar optical waveguides, J. Non-Cryst. Solids 184, 222–224 (1995)

    Article  CAS  Google Scholar 

  • M.E. Lines: Ultralow-loss glasses, Annu. Rev. Mater. Sci. 16, 113–135 (1986)

    Article  CAS  Google Scholar 

  • I.D. Aggarwal, G. Lu: Fluoride Glass Fiber Optics (Academic Press, Cambridge 2013)

    Google Scholar 

  • S. Gross, N. Jovanovic, A. Sharp, M. Ireland, J. Lawrence, M.J. Withford: Low loss mid-infrared ZBLAN waveguides for future astronomical applications, Opt. Express 23, 7946–7956 (2015)

    Article  CAS  Google Scholar 

  • J.L. Adam, F. Smektala, J. Lucas: Active fluoride glass optical waveguides for laser sources, Opt. Mater. 4, 85–90 (1994)

    Article  CAS  Google Scholar 

  • B. Boulard, C. Jacoboni: Preparation of fluoride glass-films by evaporation, Mater. Res. Bull. 25, 671–677 (1990)

    Article  CAS  Google Scholar 

  • K. Fujiura, Y. Nishida, H. Sato, S. Sugawara, K. Kobayashi, Y. Terunuma, S. Takahashi: Plasma-enhanced chemical-vapor-deposition of ZrF4-based fluoride glasses, J. Non-Cryst. Solids 161, 14–17 (1993)

    Article  CAS  Google Scholar 

  • J. Ballato, R.E. Riman, E. Snitzer: Sol-gel synthesis of fluoride optical materials for planar integrated photonic applications, J. Non-Cryst. Solids 213, 126–136 (1997)

    Article  Google Scholar 

  • J.D. Shephard, D. Furniss, P.A. Houston, A.B. Seddon: Fabrication of mid-infrared planar waveguides from compatible fluorozirconate glass pairs, via hot spin-casting, J. Non-Cryst. Solids 284, 160–167 (2001)

    Article  CAS  Google Scholar 

  • D. Ganser, J. Gottmann, U. Mackens, U. Weichmann: Pulsed laser deposition of fluoride glass thin films, Appl. Surf. Sci. 257, 954–959 (2010)

    Article  CAS  Google Scholar 

  • J. Gottmann, L. Moiseev, I. Vasilief, D. Wortmann: Manufacturing of Er:ZBLAN ridge waveguides by pulsed laser deposition and ultrafast laser micromachining for green integrated lasers, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 146, 245–251 (2008)

    Article  CAS  Google Scholar 

  • J. Gottmann, L. Moiseev, D. Wortmann, I. Vasilief, L. Starovoytova, D. Ganser, R. Wagner: Laser deposition and structuring of laser active planar waveguides of Er:ZBLAN, Nd:YAG and Nd:GGG for integrated waveguide lasers, Proc. SPIE 6459, 64590W (2007)

    Article  CAS  Google Scholar 

  • C. Jacoboni, O. Perrot, B. Boulard: Vapor-phase deposition of rare-earth-doped PZG glasses, J. Non-Cryst. Solids 184, 184–189 (1995)

    Article  CAS  Google Scholar 

  • O. Perrot, L. Guinvarch, D. Benhaddou, P.C. Montgomery, R. Rimet, B. Boulard, C. Jacobini: Optical investigation of fluoride glass planar wave-guides made by vapor-phase deposition, J. Non-Cryst. Solids 184, 257–262 (1995)

    Article  CAS  Google Scholar 

  • E. Lebrasseur, B. Jacquier, M.C.M. de Lucas, E. Josse, J.L. Adam, G. Fonteneau, J. Lucas, Y. Gao, B. Boulard, C. Jacoboni, J.E. Broquin, R. Rimet: Optical amplification and laser spectroscopy of neodymium-doped fluoride glass channel waveguides, J. Alloys Compd. 275, 716–720 (1998)

    Article  Google Scholar 

  • P.J. Morais, M.C. Goncalves, R.M. Almeida: Physical vapor deposition of rare-earth doped ZrF4-based glass planar waveguides, J. Non-Cryst. Solids 256, 194–199 (1999)

    Article  Google Scholar 

  • S.H. Cho, W.S. Chang, J.G. Kim, K.R. Kim, J.W. Hong: Fabrication of internal diffraction gratings in planar fluoride glass using low-density plasma formation induced by a femtosecond laser, Appl. Surf. Sci. 255, 2069–2074 (2008)

    Article  CAS  Google Scholar 

  • K. Miura, J.R. Qiu, H. Inouye, T. Mitsuyu, K. Hirao: Photowritten optical waveguides in various glasses with ultrashort pulse laser, Appl. Phys. Lett. 71, 3329–3331 (1997)

    Article  CAS  Google Scholar 

  • K. Miura, J.R. Qiu, T. Mitsuyu, K. Hirao: Preparation and optical properties of fluoride glass waveguides induced by laser pulses, J. Non-Cryst. Solids 256, 212–219 (1999)

    Article  Google Scholar 

  • E. Fogret, G. Fonteneau, J. Lucas, R. Rimet: Fluoride glass planar optical waveguides by cationic exchange, Opt. Mater. 5, 79–86 (1996)

    Article  CAS  Google Scholar 

  • V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J.L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, J.L. Adam: Fluoride and oxyfluoride glasses for optical applications, J. Fluor. Chem. 134, 18–23 (2012)

    Article  CAS  Google Scholar 

  • T. Ohtsuki, S. Honkanen, N. Peyghambarian, M. Takahashi, Y. Kawamoto, J. Ingenhoff, A. Tervonen, K. Kadono: Evanescent-field amplification in Nd3+-doped fluoride planar waveguide, Appl. Phys. Lett. 69, 2012–2014 (1996)

    Article  CAS  Google Scholar 

  • I. Vasilief, S. Guy, B. Jacquier, B. Boulard, Y.P. Gao, C. Duverger, H. Haquin, V. Nazabal, J.L. Adam, M. Couchaud, L. Fulbert, C. Cassagnettes, F. Rooms, D. Barbier: Propagation losses and gain measurements in erbium-doped fluoride glass channel waveguides by use of a double-pass technique, Appl. Opt. 44, 4678–4683 (2005)

    Article  CAS  Google Scholar 

  • N.D. Psaila, R.R. Thomson, H.T. Bookey, A.K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, S. Shen: Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription, Appl. Phys. Lett. 90, 131102 (2007)

    Article  CAS  Google Scholar 

  • D. Harwood, A. Fu, E. Taylor, R. Moore, Y. West, D. Payne: A 1317 nm neodymium doped fluoride glass waveguide laser, ECOC Proc. 2, 191–192 (2000)

    Google Scholar 

  • G. Palmer, S. Gross, A. Fuerbach, D.G. Lancaster, M.J. Withford: High slope efficiency and high refractive index change in direct-written Yb-doped waveguide lasers with depressed claddings, Opt. Express 21, 17413–17420 (2013)

    Article  CAS  Google Scholar 

  • D.G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T.M. Monro, M. Ams, A. Fuerbach, M.J. Withford: Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser, Opt. Lett. 36, 1587–1589 (2011)

    Article  CAS  Google Scholar 

  • D.G. Lancaster, S. Gross, A. Fuerbach, H.E. Heidepriem, T.M. Monro, M.J. Withford: Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers, Opt. Express 20, 27503–27509 (2012)

    Article  CAS  Google Scholar 

  • D.G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M.J. Withford, T.M. Monro: 2.1 \(\upmu\)m waveguide laser fabricated by femtosecond laser direct-writing in Ho3+,Tm3+:ZBLAN glass, Opt. Lett. 37, 996–998 (2012)

    Article  CAS  Google Scholar 

  • D.G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M.J. Withford, T.M. Monro, S.D. Jackson: Efficient 2.9 \(\upmu\)m fluorozirconate glass waveguide chip laser, Opt. Lett. 38, 2588–2591 (2013)

    Article  CAS  Google Scholar 

  • E.D. Zanotto: A bright future for glass-ceramics, Am. Ceram. Soc. Bull. 89, 19–27 (2010)

    CAS  Google Scholar 

  • N.F. Borrelli: Electro-optic effect in transparent niobate glass-ceramic systems, J. Appl. Phys. 38, 4243 (1967)

    Article  CAS  Google Scholar 

  • G.H. Beall, D.A. Duke: Transparent glass-ceramics, J. Mater. Sci. 4, 340 (1969)

    Article  CAS  Google Scholar 

  • P.A. Tick: Are low-loss glass-ceramic optical waveguides possible?, Opt. Lett. 23, 1904–1905 (1998)

    Article  CAS  Google Scholar 

  • P. Tick, N. Borrelli, I. Reaney: The relationship between structure and transparency in glass-ceramic materials, Opt. Mater. 15, 81–91 (2000)

    Article  CAS  Google Scholar 

  • A. Edgar, G.V.M. Williams, J. Hamelin: Optical scattering in glass ceramics, Curr. Appl. Phys. 6, 355–358 (2006)

    Article  Google Scholar 

  • M. Mattarelli, M. Montagna, P. Verrocchio: Ultratransparent glass ceramics: The structure factor and the quenching of the Rayleigh scattering, Appl. Phys. Lett. 91, 061911 (2007)

    Article  CAS  Google Scholar 

  • M. Mortier, A. Monteville, G. Patriarche, G. Maze, F. Auzel: New progresses in transparent rare-earth doped glass-ceramics, Opt. Mater. 16, 255–267 (2001)

    Article  CAS  Google Scholar 

  • T. Berthier, V.M. Fokin, E.D. Zanotto: New large grain, highly crystalline, transparent glass–ceramics, J. Non-Cryst. Solids 354, 1721–1730 (2008)

    Article  CAS  Google Scholar 

  • M.C. Gonçalves, L.F. Santos, R.M. Almeida: Rare-earth-doped transparent glass ceramics, C.R. Chim. 5, 845–854 (2002)

    Article  Google Scholar 

  • Y. Wang, J. Ohwaki: New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion, Appl. Phys. Lett. 63, 3268–3270 (1993)

    Article  CAS  Google Scholar 

  • M.J. Dejneka: Transparent oxyfluoride glass ceramics, MRS Bulletin 23, 57–62 (1998)

    Article  CAS  Google Scholar 

  • M. Mortier, A. Bensalah, G. Dantelle, G. Patriarche, D. Vivien: Rare-earth doped oxyfluoride glass-ceramics and fluoride ceramics: Synthesis and optical properties, Opt. Mater. 29, 1263–1270 (2007)

    Article  CAS  Google Scholar 

  • M.J. Dejneka: The luminescence and structure of novel transparent oxyfluoride glass-ceramics, J. Non-Cryst. Solids 239, 149–155 (1998)

    Article  CAS  Google Scholar 

  • M.J. Dejneka: Rare-earth fluorescence in novel oxyfluoride glasses and glass-ceramics. In: Proc. Optoelectron. High-Power Lasers Appl. (1998), https://doi.org/10.1117/12.305402

    Chapter  Google Scholar 

  • S. Berneschi, S. Soria, G. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser: Rare-earth-activated glass–ceramic waveguides, Opt. Mater. 32, 1644–1647 (2010)

    Article  CAS  Google Scholar 

  • B. Samson, P. Tick, N. Borrelli: Efficient neodymium-doped glass-ceramic fiber laser and amplifier, Opt. Lett. 26, 145–147 (2001)

    Article  CAS  Google Scholar 

  • V. Tikhomirov, A. Seddon, J. Koch, D. Wandt, B. Chichkov: Fabrication of buried waveguides and nanocrystals in Er3+-doped oxyfluoride glass, Phys. Status Solidi (a) 202, R73–R75 (2005)

    Article  CAS  Google Scholar 

  • A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, C.D. Arfuso: Rare earth-activated glass-ceramic in planar format, Opt. Eng. 50, 071105 (2011)

    Article  CAS  Google Scholar 

  • Y. Jestin, C. Armellini, A. Chiasera, A. Chiappini, M. Ferrari, E. Moser, R. Retoux, G. Righini: Low-loss optical Er3+-activated glass-ceramics planar waveguides fabricated by bottom-up approach, Appl. Phys. Lett. 91, 071909 (2007)

    Article  CAS  Google Scholar 

  • O. Péron, B. Boulard, Y. Jestin, M. Ferrari, C. Duverger-Arfuso, S. Kodjikian, Y. Gao: Erbium doped fluoride glass–ceramics waveguides fabricated by PVD, J. Non-Cryst. Solids 354, 3586–3591 (2008)

    Article  CAS  Google Scholar 

  • F.T. Aquino, J.L. Ferrari, S.J.L. Ribeiro, A. Ferrier, P. Goldner, R.R. Gonçalves: Broadband NIR emission in novel sol-gel Er3+-doped SiO2-Nb2O5 glass ceramic planar waveguides for photonic applications, Opt. Mater. 35, 387–396 (2013)

    Article  CAS  Google Scholar 

  • J.H. Shin, M.J. Kim, S.Y. Seo, C. Lee: Composition dependence of room temperature 1.54 \(\upmu\)m Er3+ luminescence from erbium-doped silicon: Oxygen thin films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition, Appl. Phys. Lett. 72, 1092–1094 (1998)

    Article  CAS  Google Scholar 

  • A.J. Kenyon, C.E. Chryssou, C.W. Pitt, T. Shimizu-Iwayama, D.E. Hole, N. Sharma, C.J. Humphreys: Luminescence from erbium-doped silicon nanocrystals in silica: Excitation mechanisms, J. Appl. Phys. 91, 367–374 (2002)

    Article  CAS  Google Scholar 

  • R.D. Kekatpure, M.L. Brongersma: Quantification of free-carrier absorption in silicon nanocrystals with an optical microcavity, Nano Lett. 8, 3787–3793 (2008)

    Article  CAS  Google Scholar 

  • N. Prtljaga, D. Navarro-Urrios, A. Tengattini, A. Anopchenko, J.M. Ramírez, J.M. Rebled, S. Estradé, J.-P. Colonna, J.-M. Fedeli, B. Garrido: Limit to the erbium ions emission in silicon-rich oxide films by erbium ion clustering, Opt. Mater. Express 2, 1278–1285 (2012)

    Article  CAS  Google Scholar 

  • S. Brovelli, N. Chiodini, R. Lorenzi, A. Lauria, M. Romagnoli, A. Paleari: Fully inorganic oxide-in-oxide ultraviolet nanocrystal light emitting devices, Nat. Commun. 3, 690 (2012)

    Article  CAS  Google Scholar 

  • A. Lipovskii, D. Svistunov, D. Tagantsev, B. Tatarintsev, P. Kazansky: Optical waveguides in electrooptical nanophase glass–ceramics, Mater. Lett. 58, 1231–1233 (2004)

    Article  CAS  Google Scholar 

  • P.A. Krug, R.M. Rogojan, J. Albert: Directly photoinscribed refractive index change and Bragg gratings in Ohara WMS-15 glass ceramic, Appl. Opt. 48, 3429–3437 (2009)

    Article  CAS  Google Scholar 

  • K. Richardson, A. Buff, C. Smith, L. Sisken, J. Musgraves, P. Wachtel, T. Mayer, A. Swisher, A. Pogrebnyakov, M. Kang: Engineering novel infrared glass ceramics for advanced optical solutions. In: SPIE Defense + Security (2016) p. 982205

    Google Scholar 

  • L. Sisken, C. Smith, A. Buff, M. Kang, K. Chamma, P. Wachtel, J.D. Musgraves, C. Rivero-Baleine, A. Kirk, M. Kalinowski, M. Melvin, T.S. Mayer, K. Richardson: Evidence of spatially selective refractive index modification in 15GeSe2-45As2Se3-40PbSe glass ceramic through correlation of structure and optical property measurements for GRIN applications, Opt. Mater. Express 7, 3077–3092 (2017)

    Article  CAS  Google Scholar 

  • D. Strand, D.V. Tsu, R. Miller, M. Hennessey, D. Jablonski: Optical routers based on ovonic phase change materials. In: Proc. Eur. Phase Change Ovonics Symp. (E/PCOS) (2006)

    Google Scholar 

  • Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, H. Tsuda: Reversible optical gate switching in Si wire waveguide integrated with Ge2Sb2Te5 thin film, Electron. Lett. 46, 1460–1462 (2010)

    Article  CAS  Google Scholar 

  • M. Rudé, J. Pello, R.E. Simpson, J. Osmond, G. Roelkens, J.J. van der Tol, V. Pruneri: Optical switching at 1.55 \(\upmu\)m in silicon racetrack resonators using phase change materials, Appl. Phys. Lett. 103, 141119 (2013)

    Article  CAS  Google Scholar 

  • B. Gholipour, J. Zhang, K.F. MacDonald, D.W. Hewak, N.I. Zheludev: An all-optical, non-volatile, bidirectional, phase-change meta-switch, Adv. Mater. 25, 3050–3054 (2013)

    Article  CAS  Google Scholar 

  • Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, D. Tanaka, H. Tsuda: Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide, Electron. Lett. 46, 368–369 (2010)

    Article  CAS  Google Scholar 

  • B.-S. Lee, S.G. Bishop: Optical and electrical properties of phase change materials. In: Phase Change Materials, ed. by S. Raoux, M. Wuttig (Springer, Boston 2009) pp. 175–198

    Chapter  Google Scholar 

  • A. Mendoza-Galvan, J. González-Hernández: Drude-like behavior of Ge:Sb:Te alloys in the infrared, J. Appl. Phys. 87, 760–765 (2000)

    Article  CAS  Google Scholar 

  • P. Hosseini, C.D. Wright, H. Bhaskaran: An optoelectronic framework enabled by low-dimensional phase-change films, Nature 511, 206–211 (2014)

    Article  CAS  Google Scholar 

  • A.-K.U. Michel, P. Zalden, D.N. Chigrin, M. Wuttig, A.M. Lindenberg, T. Taubner: Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses, ACS Photonics 1, 833–839 (2014)

    Article  CAS  Google Scholar 

  • Q. Wang, E.T. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, N.I. Zheludev: Optically reconfigurable metasurfaces and photonic devices based on phase change materials, Nat. Photonics 10, 60–65 (2016)

    Article  CAS  Google Scholar 

  • A.-K.U. Michel, D.N. Chigrin, T.W. Maß, K. Schönauer, M. Salinga, M. Wuttig, T. Taubner: Using low-loss phase-change materials for mid-infrared antenna resonance tuning, Nano Lett. 13, 3470–3475 (2013)

    Article  CAS  Google Scholar 

  • D. Loke, T. Lee, W. Wang, L. Shi, R. Zhao, Y. Yeo, T. Chong, S. Elliott: Breaking the speed limits of phase-change memory, Science 336, 1566–1569 (2012)

    Article  CAS  Google Scholar 

  • S. Ahn, Y. Song, C. Jeong, J. Shin, Y. Fai, Y. Hwang, S. Lee, K. Ryoo, S. Lee, J. Park: Highly manufacturable high density phase change memory of 64Mb and beyond. In: Electron Devices Meet., 2004. IEDM Tech. Digest. IEEE Int (2004) pp. 907–910

    Chapter  Google Scholar 

  • B.-S. Lee, J.R. Abelson, S.G. Bishop, D.-H. Kang, B.-K. Cheong, K.-B. Kim: Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases, J. Appl. Phys. 97, 093509 (2005)

    Article  CAS  Google Scholar 

  • J. Olson, H. Li, T. Ju, J. Viner, P. Taylor: Optical properties of amorphous GeTe, Sb2Te3, and Ge2Sb2Te5: The role of oxygen, J. Appl. Phys. 99, 3508 (2006)

    Article  CAS  Google Scholar 

  • S. Hudgens, B. Johnson: Overview of phase-change chalcogenide nonvolatile memory technology, MRS Bulletin 29, 829–832 (2004)

    Article  CAS  Google Scholar 

  • Y. Zhang, J. Li, J. Chou, Z. Fang, A. Yadav, H. Lin, Q. Du, J. Michon, Z. Han, Y. Huang: Broadband transparent optical phase change materials. In: Proc. CLEO Appl. Technol (2017) p. JTh5C.4

    Google Scholar 

  • Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, J. Hu: Broadband nonvolatile photonic switching based on optical phase change materials: Beyond the classical figure-of-merit, Opt. Lett. 43, 94–97 (2018)

    Article  CAS  Google Scholar 

  • T. Nirschl, J. Philipp, T. Happ, G. Burr, B. Rajendran, M.-H. Lee, A. Schrott, M. Yang, M. Breitwisch, C.-F. Chen: Write strategies for 2 and 4-bit multi-level phase-change memory. In: Proc. 2007 IEEE Int. Electron Devices Meet (2007) pp. 461–464

    Chapter  Google Scholar 

  • C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C.D. Wright, H. Bhaskaran, W.H. Pernice: Integrated all-photonic non-volatile multi-level memory, Nat. Photonics 9, 725–732 (2015)

    Article  CAS  Google Scholar 

  • M.N. Kozicki, P. Dandamudi, H.J. Barnaby, Y. Gonzalez-Velo: Programmable metallization cells in memory and switching applications, ECS Transaction 58, 47–52 (2013)

    Article  CAS  Google Scholar 

  • S. Dong, K. Zhang, Z. Yu, J.A. Fan: Electrochemically programmable plasmonic antennas, ACS Nano 10, 6716–6724 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding support provided by the National Science Foundation under award number 1506605.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juejun Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Hu, J., Yang, L. (2019). Glass in Integrated Photonics. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_42

Download citation

Publish with us

Policies and ethics